Der Einfluss der COPD auf die Neurovaskuläre Kopplung:
eine simultane Doppler-EEG-Studie

Inauguraldissertation
zur Erlangung des Grades eines Doktors der Medizin
des Fachbereichs Medizin
der Justus-Liebig-Universität Gießen

vorgelegt von Steinmann, Anna Annette
aus Würzburg

Gießen
2015
Für meine Eltern
INHALTSVERZEICHNIS

INHALTSVERZEICHNIS ................................................................................................................. I

1.) EINLEITUNG ............................................................................................................................. 1
   1.1) Definition der COD .............................................................................................................. 1
   1.2) Epidemiologie ..................................................................................................................... 1
   1.3) Ätiologie ............................................................................................................................... 2
   1.4) Diagnostik ........................................................................................................................... 2
   1.5) Pathogenese und Klinik der COPD .................................................................................... 3
   1.6) Systemische Auswirkungen der COPD .............................................................................. 7
   1.7) Das Prinzip der neurovaskulären Kopplung ..................................................................... 10
   1.8) Fragestellung ..................................................................................................................... 11

2.) PATIENTEN UND UNTERSUCHUNGSMETHODEN ................................................................. 13
   2.1) Antrag an die Ethikkommission ......................................................................................... 13
   2.2) Auswahl des Patientenkollektivs ..................................................................................... 13
      2.2.1) Klinisch relevante Daten ............................................................................................. 15
      2.2.2) NO-Messung ............................................................................................................... 15
   2.3) Untersuchungsmethoden .................................................................................................. 16
      2.3.1) Allgemeines zur transkraniellen Doppler-EEG-Technik .............................................. 16
      2.3.2) Untersuchung der Patienten mittels transkranieller Dopplersonographie ................. 16
      2.3.3) Elektroenzephalographie ............................................................................................ 18
      2.3.4) Stimulationsparadigma .............................................................................................. 20
   2.4) Ablauf der Untersuchung ................................................................................................... 21
   2.5) Analyse der Daten ............................................................................................................. 22
      2.5.1) Vaskuläre Daten ........................................................................................................... 23
      2.5.2) Neuronale Daten ......................................................................................................... 24
   2.6) Angewandte Statistik ......................................................................................................... 25

3.) ERGEBNISSE ............................................................................................................................ 26
3.1) Patientenkollektiv- demographische und klinische Parameter .......................... 26
3.2) Visuell evozierte Potentiale ........................................................................ 33
3.3) Evozierte Flussgeschwindigkeiten ............................................................... 34
4.) DISKUSSION ................................................................................................. 37
  4.1) Ergebnisdiskussion .................................................................................... 38
    4.1.1) Diskussion der klinischen Untersuchungsergebnisse ....................... 39
    4.1.2) Neurofunktionelle Daten .................................................................. 40
    4.1.3) Neurovaskuläre Daten ...................................................................... 41
  4.2.) Methodendiskussion ................................................................................ 45
  4.3) Schlussfolgerung und Ausblick ................................................................ 49
5.) ZUSAMMENFASSUNG .................................................................................. 51
6.) SUMMARY .................................................................................................... 53
   ABKÜRZUNGSVERZEICHNIS ........................................................................ III
   ABBILDUNGSVERZEICHNIS .......................................................................... V
   TABELLENVERZEICHNIS ............................................................................... VI
   LITERATURVERZEICHNIS ........................................................................... VII
   PUBLIKATIONSSVERZEICHNIS .................................................................... XVII
   EIDESSTATTLICHE ERKLÄRUNG ................................................................. XVIII
   DANKSAGUNG ............................................................................................. XIX
   LEBENSLAUF ............................................................................................... XX
1.) Einleitung

1.1) Definition der COPD


1.2) Epidemiologie

1.3) Ätiologie


1.4) Diagnostik

Ein wichtiges Symptom der COPD stellt die progrediente Belastungsdysspnoe dar. Allerdings empfinden Patienten mit einer leicht- oder sogar mittelgradigen COPD diese häufig nicht als belastend, da die Dyspnoe durch körperliche Schonung vermieden werden kann (Vogelmeier und Mitarbeiter, 2007). Um eine frühere Diagnose der Erkrankung zu garantieren, ist es deshalb wichtig bei jedem Patienten, der über die folgenden Symptome berichtet, an eine COPD zu denken:

- **Dyspnoe**: typischerweise ist diese persistierend, bei Anstrengung verstärkt und nimmt mit fortschreitender Erkrankung zu.
- **Chronischer Husten**: möglicherweise tritt dieser lediglich intermittierend auf und kann auch unproduktiv sein.
• Chronischer Auswurf: jede Art chronischer Produktion von Sputum kann auf eine COPD hinweisen.

• Exposition gegenüber Risikofaktoren: Tabakrauch, Rauch- und Chemikalienbelastung am Arbeitsplatz und Rauchexposition in häuslicher Umgebung durch Heizbrennstoffe stellen häufige Ursachen dar (Vestbo und Mitarbeiter 2013).

Die Untersuchung der Wahl zur Verifizierung der Erkrankung ist die Spirometrie, welche nach Inhalation einer ausreichenden Dosis eines kurz wirkenden Bronchodilatatators durchgeführt werden sollte, um falsch positive Ergebnisse, zum Beispiel durch das Vorliegen einer Asthmaerkrankung, auszuschließen (Vestbo und Mitarbeiter, 2013). Die Spirometrie gilt als ausreichend objektiv und leicht wiederholbar. Zur Abgrenzung eines Lungenemphysems, einer chronischen nicht obstruktiven Bronchitis sowie zur Differenzierung anderer Ursachen der Atemnot kommt die Ganzkörperpleptomographie sowie die Messung der CO-Diffusionskapazität in Form der Single Breath Methode (DLCOC SB) und des Transferkoeffizienten (DLCOC/VA) zum Einsatz. Um die Obstruktion zu verifizieren, sollten das forcierte Einsekundenvolumen als Einsekundenkapazität (FEV1), die forcierte Vitalkapazität (FVC) und das Verhältnis FEV1/FVC bestimmt werden. Ein Verhältnis der FEV1 zur FVC < 0,7 nach Inhalation eines Bronchodilatatators bestätigt den Verdacht einer Atemwegsobstruktion und damit einer COPD. Eine Blutgasanalyse in Ruhe und eventuell unter Belastung sowie die Messung einer Sechs-Minuten-Gehstrecke sind bei Vorliegen einer deutlich verminderten FEV1, starker Belastungsdyspnoe und klinischen Zeichen einer Rechtsherzbelastung indiziert (Vogelmeier und Mitarbeiter, 2007).

1.5) Pathogenese und Klinik der COPD

Im Rahmen der Erkrankung kommt es zu pathologischen Veränderungen in verschiedenen Bereichen der Lungen. Betroffen werden die zentralen und peripheren Atemwege, das Lungenparenchym sowie die pulmonalen Blutgefäße (Peinado und Mitarbeiter, 1999) (Rennard 1999). Wie schon beschrieben stellt Zigarettenrauch den Hauptsrisikofaktor für die Entwicklung einer COPD dar. Bei allen Rauchern wird hierdurch eine inflammatorische Reaktion hervorgerufen, welche aus noch nicht bekannten Gründen bei manchen Rauchern aber deutlich verstärkt abläuft und so zur


Zur Erfassung der Krankheitsschwere eignet sich zum einen die Klassifikation der Global Initiative for Obstructive Lung Disease (GOLD-Klassifikation). Mittels dieser wird die COPD in vier Stadien mit den Schweregraden leicht, mittel, schwer, sehr schwer unterteilt, welche sich aus dem Grad der Atemwegsobstruktion jeweils als Prozent vom Sollwert ergeben. Wie bereits erläutert kann eine COPD bei einem Verhältnis der FEV1 zur FVC < 70% nach Inhalation eines kurz wirkenden Bronchodilatatators diagnostiziert werden. GOLD I ist hierbei definiert als FEV1/FVC < 70% mit einer FEV1 > 80% des Sollwerts. Im Stadium GOLD II beträgt das Verhältnis FEV1/FVC <70% bei einer FEV1 von 50-80%, GOLD III fordert eine FEV1/FVC < 70% mit einer FEV1 von 30-50%, im Stadium GOLD IV besteht schließlich eine FEV1/FVC < 70% bei einer FEV1 < 30%. Insgesamt steigt mit zunehmender Atemwegsobstruktion das Risiko der Exacerbationen und somit der Mortalität der Patienten (Vestbo und Mitarbeiter, 2013). Die GOLD-Klassifikation birgt jedoch auch Mängel. Die FEV1 ist abhängig von der Mitarbeit der Patienten, so dass diese vor allem bei älteren Menschen mit weniger Kraft an Aussagekraft verliert. So kann zum Anderen die Beurteilung der Krankheitsschwere mit dem BODE-Index erfolgen. Dieser ist ein multidimensionaler Wert, der relativ leicht zu erfassen ist. Neben der FEV1 fließen in die Bestimmung dieses Index weitere Parameter mit ein, so dass dieser einen guten Prädiktor für das Mortalitätsrisiko aufgrund von respiratorischen sowie systemischen Ursachen darstellt (Celli und Mitarbeiter 2004). Für die Berechnung dieses Scores werden der B: Body Mass Index, der Grad der O: Obstruktion, gemessen durch das forcierte exspiratorische Volumen in einer Sekunde (FEV1), die D: Dyspnoe, das heißt die objektive Atemnot des Patienten und die E- exercise capacity in Form des six minute walk miteinbezogen. Für jeden Parameter werden 0-3 Punkte vergeben. Lediglich für den BMI existiert nur 0 oder 1 Punkt, je nach dessen Wert über oder unter 21, so dass maximal eine Punktzahl von 10 erreicht werden kann. Je höher die Punktzahl, desto schwerer betroffen ist der Patient (Celli und Mitarbeiter, 2004).
1.6) Systemische Auswirkungen der COPD

Die COPD betrifft nicht nur die Lungen. Im Rahmen der Erkrankung kommt es zu einer generellen Inflammation, welche schließlich auch systemische Konsequenzen hervorruft. Der wichtigste Risikofaktor für die Entwicklung einer systemischen Inflammation stellt das Rauchen von Zigaretten dar, welches nicht nur Effekte auf Atemwege und Lungen, sondern auf den gesamten Organismus verursacht. Rauchen bewirkt eine systemische humorale und zelluläre Inflammation, erhöht das thrombogene Risiko und ruft erhebliche Veränderungen der endothelialen und vasomotorischen Funktionen sowie systemischen oxidativen Stress hervor (Yanbaeva und Mitarbeiter, 2007).


1.7) Das Prinzip der neurovaskulären Kopplung:

Energiebedürfnisse der betroffenen Hirnregionen bewirkt (Iadecola, 1993). Es wird somit deutlich, dass die cerebrale Durchblutung und die neuronale Aktivität in einer engen Beziehung zueinander stehen.

Abb. 1: Schematische Darstellung des Prinzips der Neurovaskulären Kopplung (nach Rosengarten 2010)

1.8) Fragestellung:

Der neueste Stand der Forschung geht davon aus, dass die COPD keine reine Lungenerkrankung ist, sondern als Multisystemerkrankung im Verlauf den gesamten Organismus betrifft. In diesem Rahmen kommt es auch zu cerebralen Veränderungen, wie zum Beispiel einer reduzierten Hirndurchblutung oder kognitiven Einschränkungen. Letztere können sowohl direkt durch neurotoxische Prozesse als auch sekundär durch eine insuffiziente cerebrale Perfusion hervorgerufen werden.

In der vorliegenden Studie sollte untersucht werden, welcher der genannten Mechanismen hierbei im Vordergrund steht. Zwischen der neuronalen Aktivität und der lokalen cerebralen Durchblutung besteht eine feste Beziehung, so dass durch simultane Ableitung der neuronalen Aktivität und der resultierenden Blutflussänderung auf einen Stimulus hin aus dem Vergleich der Ergebnisse Rückschluss auf einen wesentlichen neuronalen oder vaskulären Effekt gezogen werden kann.

Der beschriebene Zusammenhang zwischen cerebraler Durchblutung und neuronaler Aktivität kann sowohl bei cerebralen als auch bei Erkrankungen, welche nicht primär
2.) Patienten und Untersuchungsmethoden:

2.1) Antrag an die Ethikkommission:


2.2) Auswahl des Patientenkollektivs:


2.2.1) Klinisch relevante Daten:


Für die Einschätzung des Schweregrades der Erkrankung verwendeten wir den schon erläuterten BODE-Index mit Bestimmung des BMIs, der Obstruktion in Form der FEV1, der Dyspnoe mit Hilfe der modifizierten Medical Research Council (MRC) Dyspnea Scale und der Exercise Capacity durch Messung der Gehstrecke im Rahmen des Six Minute Walks (Celli und Mitarbeiter, 2004).

2.2.2) NO-Messung

Von allen Patienten wurde die NO-Konzentration im Plasma mittels NOA Sievers 280 (FMI GmbH, Seeheim, Deutschland) bestimmt. Im Rahmen der regulären Blutentnahme wurde jeweils zusätzlich eine Plasmaprobe über ein heparinbeschichtetes Röhrchen abgenommen. Diese wurde sofort zentrifugiert und bis zur Durchführung
weiterer Messungen bei -20°C aufbewahrt. Stickstoffmonoxid (NO) reagiert im Blut mit Sauerstoff zu Nitrit (NO\(_2\)) bzw. zu Nitrat (NO\(_3^-\)). Zur Analyse der Plasmaproben wurden die entstandenen Metabolite deshalb durch Vanadiumchlorid bei einer Temperatur von 90 °C wieder zu NO reduziert. Die Ermittlung des daraus resultierenden gasförmigen Stickstoffmonoxid fand schließlich mittels Chemilumineszenz durch NOA Sievers 280 statt, welcher mit einem Computer zur Datenübertragung und Analyse durch die „NOA WIN 32“ Software DeMeTec, Langgöns, Deutschland) verbunden war.

2.3) Untersuchungsmethoden

2.3.1) Allgemeines zur Transkraniellen Doppler-EEG-Technik:

2.3.2) Untersuchung der Patienten mittels transkranieller Dopplersonographie:

Zur Identifizierung des Gefäßes wurde zunächst die Arteria cerebri media (ACM) aufgesucht. Diese befindet sich in einer Tiefe von 50-55mm und ist außerdem leicht nach ventral und kranial versetzt. Wie bereits beschrieben, ist die Arteria cerebri posterior in einer Tiefe von 55-80mm lokalisiert und konnte durch Ausrichten der Sonde nach kaudal bei gleichzeitiger Verschiebung nach dorsal aufgefunden werden. Während sich das P-1-Segment dieses Gefäßes in einer Tiefe von 60-80mm befindet, lässt sich das P-2-Segment nach weiterer Verschiebung nach Okzipital über dem hinteren transtemporalen Fenster in 55-80 mm darstellen.


Bei Patienten mit einem zu kleinen Knochenfenster oder einem zu steilen Winkel, der mit der eingeschränkten Vorrichtung am Stirnband nicht zu erreichen war, konnte kein ausreichendes Signal gefunden werden, was zum Ausschluss dieser aus der Studie führte.

2.3.3) Elektroenzephalographie

Visuell evozierte Potentiale (VEP) können durch Ableitung eines EEGs bestimmt werden. Mit diesem werden informationsverarbeitende Prozesse im Gehirn zeitgetreu dargestellt. Um VEPs zu erzeugen, wird in der Regel eine kontrastbasierte Musterumkehr erzeugt, welche sich der Patient auf einem Bildschirm ansieht. Je nach Frequenz dieser Musterumkehr werden unterschiedliche VEP-Antworten hervorgerufen. Bei einer niedrigen Frequenz tritt ein „transientes“ VEP auf, welches bei einer höheren Frequenz ab etwa 4-7 Hz in ein „steady state“ VEP übergeht. Das transiente VEP zeigt

Für die Aufzeichnung der visuell evozierten Potentiale verwendeten wir 6 Kanäle eines digitalen 16-Kanal EEGs (Schwarzer, München, Deutschland). Die Elektroden wurden gemäß den durch das internationale 10-20-System festgelegten Positionen befestigt. Ableitungen führten wir von folgenden Elektroden durch:

- Frontalpolar an Fp1 und Fp2
- Okzipital an O1 und O2
- Frontozentral an Fz diente als Referenzelektrode


2.3.4) Stimulationsparadigma:

Als Stimulationsmodell verwendeten wir eine aus Schwarz-weiß-Bildern bestehende Kontrastumkehrsequenz, welche eine Abwandlung des klassischen Schachbrettmusters darstellte. Verschiedene, ähnlich komplex strukturierte Bilder wurden als positiv und dann als negativ auf einem 21``LCD Stimulationsmonitor der Firma Iiyama Corp, Kitaowaribe-Nagano-Shi, Japan, gezeigt. Der Bildschirm hatte eine Wechselfrequenz von 5ms, was klare und definierte Wechsel erlaubte. Der Abstand der Versuchspersonen zum Bildschirm betrug einen Meter, so dass ein Gesichtsfeldanteil von 24° in der horizontalen und 18° in der vertikalen Achse aktiviert wurde.

Die Verwendung von schwarzen und weißen Bildern im Vergleich zu einem reinen Schachbrettmuster stellte für die untersuchten Personen einen wesentlich angenehmeren Reiz dar (Rosengarten & Kaps, 2010). Die Wechselfrequenz wurde auf 1 Hz eingestellt, was einem kompletten Musterwechsel entspricht. Ein Bild wurde demnach für 500ms gezeigt, gefolgt von seinem Negativ, das ebenfalls 500ms präsentiert wurde. Der Abstand der Versuchspersonen zum Bildschirm betrug einen Meter, so dass ein Gesichtsfeldanteil von 24° in der horizontalen und 18° in der vertikalen Achse aktiviert wurde.

Die Verwendung von schwarzen und weißen Bildern im Vergleich zu einem reinen Schachbrettmuster stellte für die untersuchten Personen einen wesentlich angenehmeren Reiz dar (Rosengarten & Kaps, 2010). Die Wechselfrequenz wurde auf 1 Hz eingestellt, was einem kompletten Musterwechsel entspricht. Ein Bild wurde demnach für 500ms gezeigt, gefolgt von seinem Negativ, das ebenfalls 500ms präsentiert wurde. Dem folgte anschließend ein neues Bild mit erneutem Positiv-/Negativ-Wechsel. Die Stimulationsdauer wurde auf 40s eingestellt, da in diesem Zeitraum das gesamte vaskuläre Antwortverhalten der ACP ersichtlich wird. Während der Stimulationsphase wurden folglich 40 Bilder und somit 80 Umkehrungen präsentiert (Rosengarten und Mitarbeiter, 2001a).

Die Helligkeit des schwarzen Bildschirms während der Ruhephase betrug 1,3 Lux, innerhalb der Stimulationsphase lag diese bei 5,7-6,5 Lux. Insgesamt errechnete sich somit ein Kontrast von c=92%, wobei die schwarzen Bereiche des Bildes 14 Lux und
die weißen Bereiche 360 Lux hatten. Der Kontrast wurde mit folgender Formel berechnet: \( C = \frac{(L_{\text{white}} - L_{\text{black}})}{(L_{\text{white}} + L_{\text{black}})} \). In Abhängigkeit von diesem und der Helligkeit verhielt sich das Antwortverhalten des Blutflusses und der VEPs (Zaletel und Mitarbeiter, 2004).

Durch die Stimulation wurden spezifische vaskuläre und neuronale Veränderungen hervorgerufen. Die Gefäßreaktion konnte als Änderung der Blutflussgeschwindigkeit mittels der Dopplersonden gemessen werden. Durch Ableitung der VEPs wurde ferner eine gesteigerte neuronale Aktivität deutlich.

---

![Neuronales System und Vaskuläres System](image)

**Abb. 3: Schematische Darstellung der Kombination EEG-fTCD im visuellen Kortex**
(nach Rosengarten 2010)

**2.4) Ablauf der Untersuchung**


Abb. 4: Versuchsaufbau: zu sehen ist der Film, welcher einen Musterumkehrstimulus zeigt (nach Dannhardt 2012).
2.5) Analyse der Daten

2.5.1) Vaskuläre Daten


- Dämpfung D
- Verstärkung K
- Eigenfrequenz ω
- Vorhaltezeit Tv.

Diese Begriffe stellen Kenngrößen aus dem Bereich der Regelkreistheorie dar und beschreiben die verschiedenen dynamischen Eigenschaften der neurovaskulären Kopplung. Die Dämpfung beschreibt die Schwingung des Systems und stellt Elastizitätseigenschaften dar, bevor das neue stabile Niveau erreicht ist. Die Verstärkung zeigt die relative Flussdifferenz zwischen Ruhe und Stimulation unter stabilen hämodynamischen Verhältnissen an. Die Schwingungseigenschaften, die auf
der Annahme eines ungedämpften Systems basieren, werden durch die Eigenfrequenz widergegeben. Die Vorhaltezeit beschreibt schließlich einen Differentialterm, welcher die initiale Flussantwort mit der Steilheit des Blutflusses und dem nachfolgenden Überschwung widergibt (Rosengarten & Kaps, 2010). Mit diesem automatisierten mathematischen Modell konnten wir den bereits beschriebenen Kurvenverlauf der evozierten Flussantworten auf der Basis eines Regelkreises beschreiben:

\[
G(s) = \frac{K (1 + T \nu)}{s^2 + 2 \frac{D}{\omega_0} s + 1}
\]


2.5.2) Neuronale Daten

Ausschläge N75 und P100, wodurch die Amplitudendifferenz bestimmt werden konnte (Rosengarten & Kaps, 2010).

Um die prozentuale Verteilung der typischen EEG-Bänder ermitteln zu können, unterzogen wir die elektrische Aktivität des Ruhe-EEGs einer Fourier Transformation. Hierdurch wurden die EEG-Signale, deren Amplituden eine Funktion der Zeit darstellen, in eine Funktion der Frequenz überführt, wodurch die prozentuale Verteilung der typischen EEG-Bänder ermittelt werden konnte (Wallace und Mitarbeiter, 2001). Frequenzen unter 4Hz wurden als Delta-, zwischen 4 und 7 Hz als Theta-, von 8 bis 12 Hz als Alpha und zwischen 13 und 30 Hz als Betawellen angesehen. Die Errechnung dieser wurde vom EEG-Gerät durchgeführt.

2.6) Angewandte Statistik:

3.) Ergebnisse:

3.1) Patientenkollektiv- demographische und klinische Parameter

In einem Zeitraum von 18 Monaten wurden 120 Patienten für die Teilnahme an der Studie untersucht. Von diesen erfüllten 50 nicht die Einschlusskriterien, so dass insgesamt 70 Patienten an der Studie teilnahmen. Von den ausgeschlossenen Probanden wiesen 10 nicht korrigierbare Sehstörungen oder ein insuffizientes temporales Knochenfenster auf. Darüber hinaus kam es bei vier Individuen zu Artefakten im Rahmen der Aufnahme, was zu einem unvollständigen Datensatz der Doppler- und EEG-Messung führte und somit zum Ausschluss aus der Studie führte.

Für die Auswertung wurden die Patienten gemäß ihres BODE-Stadiums in vier Gruppen untergliedert. Die Kontrollgruppe BODE 0 sowie die am schwersten betroffene Gruppe BODE 7-10 umfassten je 7 Patienten (n=7, davon 4 männlich, 3 weiblich). Der Gruppe BODE 1-2 wurden 16 Patienten zugeteilt (n=16, davon 10 männlich, 6 weiblich), während die Gruppe BODE 3-4 23 Individuen beinhaltete (n=23, davon 14 männlich, 9 weiblich). Die Gruppe BODE 5-6 schloss schließlich 13 Patienten ein (n=13, davon 8 männlich, 5 weiblich). Des Weiteren erfolgte eine Unterteilung in Patienten mit stabilem und progressivem Verlauf. Ab einer Abnahme der FEV1 von > 100ml innerhalb von 12 Monaten, nach Ausschluss einer Exazerbation, wurde der Krankheitsverlauf als progressiv angesehen. Zu Ersteren zählten 15 Individuen (n=15, davon 10 männlich, 5 weiblich), zu Letzteren 51 Personen (n = 51, davon 30 männlich und 21 weiblich). Schließlich wurde zwischen COPD-Patienten mit und ohne Lungenemphysem unterschieden. Die Diagnose eines Emphysems wurde bei einer Abnahme der Diffusionskapazität nach der Single Breath Methode DCLOC SB sowie des Transferkoeffizienten DLCO/VA auf < 40% und einer Zunahme des Residualvolumens RV auf >190% mit einer totalen Lungenkapazität TLC >100% gestellt. Da sich die Entstehung eines Emphysems erst ab den Stadien GOLD 3/4 abzeichnete, wurden bezüglich dieses Kriteriums nur Patienten innerhalb dieser Stadien miteinander verglichen. Insgesamt wurden auf diese Weise 28 Individuen (n = 28, davon 14 männlich, 14 weiblich) in die Gruppe mit Emphysem und 20 Personen (n=20, davon 16 männlich, 4 weiblich) in die Gruppe ohne Emphysem eingeschlossen.

In Bezug auf das Alter fand sich bei Betrachtung der BODE-Gruppen sowie der Patienten mit progressivem und stabilem Verlauf kein signifikanter Unterschied. Ein
signifikantes Ergebnis (p<0,05) zeigte sich jedoch bezüglich der Emphysempatienten, wobei diese mit 62±10 Jahren signifikant jünger waren als Individuen ohne Emphysem, welche im Durchschnitt ein Alter von 67±8 Jahren besaßen. Auch im Hinblick auf vaskuläre Risikofaktoren unterschieden sich die Gruppen nicht. Der systolische und diastolische Blutdruck betrug bei BODE 1-2 126±13/76±10 mmHg, bei BODE 3-4 129±23/76±9 mmHg, bei BODE 5-6 123±16/75±10 mmHg und bei BODE 7-10 118±26/70±11 mmHg. Bei der Kontrollgruppe BODE 0 fand sich ein Wert von 128±15/78±13 mmHg. Die Messung der Patienten mit Emphysem ergab 124±21/76±9 mmHg, der Individuen ohne Emphysem 129±18/78±11 mmHg. Personen mit progressivem Verlauf besaßen einen Blutdruck von 133±17/76±9 mmHg, stabile Patienten zeigten einen Wert von 125±18/76±10 mmHg. Der HbA1c-Wert betrug bei BODE 1-2 6,1±1, bei BODE 3-4 5,3±1,7, bei BODE 5-6 5,8±0,7 sowie 5,4±0,2 bei BODE 7-10 und 6,1±0,8 bei BODE 0. In der Gruppe der Individuen mit und ohne Emphysem fand sich ein HbA1c von 6±0,7 sowie 6±1, beim Vergleich eines progressiven mit stabilem Krankheitsverlauf ein Wert von 5,8±0,1 und 5,9±1,3, so dass auch bezüglich dieses Parameters kein Unterschied festgestellt werden kann. Ebenso war die Anzahl der Pack Years sowie der Anteil der aktiven Raucher ohne signifikanten Unterschied gleichmäßig zwischen den Gruppen verteilt. 46±17 py mit einem Anteil von 15% an aktiven Rauchern fanden sich bei BODE1-2, 46±19 py und ein Anteil von 20% der aktiv Rauchenden bei BODE 3-4, 38±20 py mit 15% aktiv Rauchender bei BODE 5-6 und letztlich 60±25 py mit 13% aktiven Rauchern bei BODE 7-10. Bei BODE 0 fanden sich 41±18 py und ein Anteil von 10% an aktiven Rauchern. Innerhalb der Gruppe mit Emphysem ergaben sich 43±14 py mit 27% aktiven Rauchern, innerhalb der Gruppe ohne Emphysem 49±30 py mit 15% aktiv Rauchenden. 45±8 py mit 27% aktiver Raucher wiesen Patienten mit progressivem Verlauf auf. Individuen mit stabilem Verlauf besaßen durchschnittlich 42±25 py, wobei hier 18% aktiv rauchten. Ein signifikanter Unterschied (p<0,05) konnte bei Betrachtung des BMIs festgestellt werden. Dieser zeigte bei BODE 7-10 im Vergleich zu den anderen Gruppen einen signifikant niedrigeren Wert im Normalbereich, während in den anderen BODE-Gruppen ein leicht erhöhter BMI zu finden war. Mit 20±5 kg/m² war dieser bei BODE 7-10 signifikant niedriger als bei BODE 1-2 mit 28±5 kg/m², bei BODE 3-4 mit 26±5 kg/m² und BODE 5-6 mit 25±6 kg/m². Auch bei BODE 0 zeigte sich ein moderat erhöhter BMI von 28±8 kg/m². Ebenso fiel bei der Betrachtung dieses Wertes ein signifikanter Unterschied beim Vergleich der Patienten mit und ohne Lungenemphysem.
auf (p<0,05), wobei Individuen mit einem solchen mit 24±6 kg/m$^2$ einen signifikant niedrigeren Wert aufwiesen als Personen ohne Emphysem, welche einen BMI von 27±5 kg/m$^2$ besaßen. Kein Unterschied diesbezüglich wurde beim Vergleich eines progressiven und stabilen Krankheitsverlaufs gefunden. Erstere besaßen einen BMI von 27±6 kg/m$^2$, letztere von 26±6 kg/m$^2$.

Bei Betrachtung der Medikation fiel hinsichtlich der verschiedenen BODE-Gruppen ein signifikanter Anstieg der Therapie mit Glukokortikoiden (p<0,01), β2-Mimetika (p<0,001) und Anticholinergika (p<0,005) mit steigender Krankheitsschwere auf. Innerhalb der Gruppe BODE 1-2 nahmen 63% Glukokortikoide, 94% β2-Mimetika und 88% Anticholinergika ein. Bei BODE 3-4 fand sich eine Einnahme von Glukortikoiden bei 87%, von β2-Mimetika bei 91% und von Anticholinergika bei 87% der Patienten. Innerhalb der Gruppen BODE 5-6 sowie 7-10 wurden 100% der Individuen mit Glukokortikoiden, β2-Mimetika und Anticholinergika therapiert. In der Gruppe BODE 0 wiesen 57% eine Einnahme von Glukokortikoiden, 43% von β2-Mimetika sowie 43% von Anticholinergika auf. Beim Vergleich der Patienten mit und ohne Emphysem, sowie der Individuen mit progressivem und stabilem Verlauf konnte diesbezüglich kein signifikanter Unterschied festgestellt werden. Auch im Hinblick auf die Therapie mit Theophyllin zeigten sich keine signifikanten Differenzen zwischen den Gruppen. In der Gruppe BODE 1-2 nahmen 6% der Patienten dieses Medikament ein, in der Gruppe BODE 3-4 14%, in der Gruppe BODE 5-6 30% und bei BODE 7-10 28%. Bei BODE 0 erhielten 14% eine Therapie mit Theophyllin. Innerhalb der Gruppe mit Emphysem wurden 14% auf diese Weise therapiert, während bei Individuen ohne Emphysem 30% dieses Medikament erhielten. Patienten mit einem stabilen Verlauf nahmen in 15% Theophyllin ein, bei einem progressiven Verlauf wurde diese Medikation nicht in Anspruch genommen.

Bezüglich der Parameter der Lungenfunktion ergaben sich in Abhängigkeit des BODE-Scores sowie der Präsenz eines Emphysems signifikante Unterschiede. Die Gruppen BODE 0 und BODE 1-2 erreichten eine FEV1 von 2,2±0,8 bzw. 2±0,7l/s. Die Gruppe BODE 3-4 erzielte noch 1,4±0,4 l/s, während die Gruppen BODE 5-6 und BODE 7-10 lediglich Werte von 0,9±0,3l/s und 0,8±0,3l/s erreichten. Insgesamt ergibt sich für die FEV1 so ein signifikanter Unterschied zwischen den BODE-Gruppen (p<0,0001). Bei Patienten ohne Lungenemphysem wurde eine FEV1 von 1,2±0,4 l/s gemessen. Bei
Vorliegen eines Emphysems wurde nur noch ein Wert von 0,9±0,3 erzielt, was einen signifikanten Unterschied zwischen diesen Gruppen bewirkte (p<0,05). Auch die Messung der Diffusionskapazität nach der Single Breath Methode (DLCOC) zeigte eine signifikante Abnahme mit steigendem BODE-Score (p<0,0001) sowie bei Vorliegen eines Emphysems (p<0,005). Bei Patienten der Gruppe BODE 1-2 ergab sich ein Wert von 57±14ml/min/mmHg, die der Gruppe BODE 3-4 erreichten 37±15ml/min/mmHg, BODE 5-6 27±7ml/min/mmHg und BODE 7-10 23±18ml/min/mmHg. Bei BODE 0 fand sich 60±19ml/min/mmHg. Innerhalb der Individuen ohne Emphysem wurde ein Wert von 38±12ml/min/mmHg erzielt, bei Patienten mit einem solchen ergab die DLCOC 27±8ml/min/mmHg. Der Vergleich eines progressiven mit einem stabilen Krankheitsverlauf zeigte bezüglich dieser Parameter keine Differenz. Ein signifikanter Unterschied (p<0,005) fällt außerdem bei der Bestimmung des Residualvolumens in Hinblick auf das Vorliegen eines Emphysems auf. Patienten mit einem solchen zeigten mit 6±1l einen signifikant erhöhten Wert im Vergleich zu Individuen ohne Emphysem, welche einen Wert von 5±1l erreichten.

Ein signifikanter Abfall des pO2-Wertes fällt bei Bestimmung der Blutgase ab der Gruppe BODE 3-4 auf, der mit steigender Krankheitsschwere progressiv ist (p<0,05). Die Kontrollgruppe BODE 0 erreichte 77±11 mmHg, die Gruppe BODE 1-2 68±7 mmHg. Ab BODE 3-4 fällt der pO2 signifikant fortschreitend auf 65±11 mmHg. BODE 5-6 erreichte 63±12 mmHg und die am schwersten betroffenen Gruppe BODE 7-10 lediglich noch 61±5 mmHg. Im Gegensatz hierzu konnte bei Betrachtung sowohl der Patienten mit und ohne Emphysem, als auch der Individuen mit progressivem und stabilen Verlauf diesbezüglich kein Unterschied festgestellt werden. Andere Blutgasparameter wie der Partialdruck für Kohlendioxid (pCO2) und der pH-Wert sowie der Wert für Hämoglobin (Hb) zeigten keine signifikanten Unterschiede zwischen den Gruppen.

Im Rahmen der Blutentnahme wurden außerdem das C-Reaktive Protein (CRP) sowie die Konzentration von Stickstoffmonoxid (NO) gemessen, wobei hier keine Differenz zwischen den Gruppen deutlich wurde. BODE 0 wies ein CRP von 5±5 mg/l und einen NO-Wert von 55±26µmol/l, BODE 1-2 ein CRP von 4±5 mg/l sowie einen NO-Wert von 54±28µmol/l, BODE 3-4 ein CRP von 10±13 mg/l und einen NO-Wert von 66±32 µmol/l auf. Bei BODE 5-6 fand sich ein CRP von 12±16mg/l mit einem NO-Wert von 53±21 µmol/l. Zuletzt wurde bei BODE 7-10 ein CRP von 9±10 mg/l und ein NO-Wert von 59±45 µmol/l gefunden. Die Messung dieser Werte ergab bei Patienten mit
Lungenemphysem ein CRP von $7 \pm 12$ mg/l sowie ein NO von $64 \pm 31$ µmol/l, bei Individuen ohne Emphysem betrug das CRP $14 \pm 17$ mg/l, das NO $64 \pm 37$ µmol/l. Der Vergleich eines progressiven mit einem stabilen Verlauf ergab $8,4 \pm 11$ mg/l und $8,6 \pm 13$ mg/l für das CRP sowie $47 \pm 23$ µmol/l und $64 \pm 30$ µmol/l für den NO-Wert. Insgesamt lag somit bei einem leicht erhöhten Wert für das CRP der NO-Wert in allen Gruppen im Normalbereich.

Eine Zusammenfassung der Ergebnisse der klinischen Untersuchung zeigen die Tabellen 1,2 und 3

Tab. 1: Charakteristika der Patienten nach deren BODE-Score. Das Signifikanzniveau wird mit $p < 0,05$ angenommen.

<table>
<thead>
<tr>
<th>BODE</th>
<th>BODE</th>
<th>BODE</th>
<th>BODE</th>
<th>BODE</th>
<th>Statistik</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1-2</td>
<td>3-4</td>
<td>5-6</td>
<td>7-10</td>
<td></td>
</tr>
<tr>
<td>Patientenanzahl/ Frauen</td>
<td>7/3</td>
<td>16/6</td>
<td>23/9</td>
<td>13/5</td>
<td>7/3</td>
</tr>
<tr>
<td>Alter [Jahre]</td>
<td>55±15</td>
<td>60±10</td>
<td>62±8</td>
<td>64±10</td>
<td>60±11</td>
</tr>
<tr>
<td>BMI [kg/m²]</td>
<td>28±8</td>
<td>28±5</td>
<td>26±5</td>
<td>25±6</td>
<td>20±5</td>
</tr>
<tr>
<td>Packyears [Jahre]</td>
<td>41±18</td>
<td>46±17</td>
<td>46±19</td>
<td>38±20</td>
<td>60±25</td>
</tr>
<tr>
<td>Aktive Raucher [%]</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>RR systol. [mmHg]</td>
<td>128±15</td>
<td>126±13</td>
<td>129±23</td>
<td>123±16</td>
<td>118±26</td>
</tr>
<tr>
<td>RR diastol. [mmHg]</td>
<td>78±13</td>
<td>76±10</td>
<td>76±9</td>
<td>75±10</td>
<td>70±11</td>
</tr>
<tr>
<td>HbA1c [%]</td>
<td>6,1±0,8</td>
<td>6,1±1,0</td>
<td>5,3±1,7</td>
<td>5,8±0,7</td>
<td>5,4±0,2</td>
</tr>
<tr>
<td>Therapie mit inhal. Glukokortikoiden [%]</td>
<td>57</td>
<td>63</td>
<td>87</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Therapie mit inhal. langwirksamen β2-Agonisten [%]</td>
<td>43</td>
<td>94</td>
<td>91</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Therapie mit retadiertem Theophyllin [%]</td>
<td>14</td>
<td>6</td>
<td>14</td>
<td>30</td>
<td>28</td>
</tr>
<tr>
<td>Therapie mit Anticholinergika [%]</td>
<td>43</td>
<td>88</td>
<td>87</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Variable</td>
<td>Progression</td>
<td>Keine Progression</td>
<td>Statistik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patientenanzahl/Frauen</td>
<td>15/5</td>
<td>51/21</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alter [Jahre]</td>
<td>64±11</td>
<td>64±11</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI [kg/m²]</td>
<td>27±6</td>
<td>26±6</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BODE</td>
<td>3±2</td>
<td>3±2</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packyears [Jahre]</td>
<td>45±8</td>
<td>42±25</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aktive Raucher [%]</td>
<td>27</td>
<td>18</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RR systol. [mmHg]</td>
<td>133±17</td>
<td>125±18</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RR diastol. [mmHg]</td>
<td>76±9</td>
<td>76±10</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HbA1c [%]</td>
<td>5,8±0,1</td>
<td>5,9±1,3</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Therapie mit inhal. Glukokortikoiden [%]</td>
<td>93</td>
<td>75</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Therapie mit inhal. langwirksamen B2-Agonisten [%]</td>
<td>100</td>
<td>85</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Therapie mit retadiertem Theophyllin [%]</td>
<td>-</td>
<td>15</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Therapie mit Anticholinergika [%]</td>
<td>100</td>
<td>84</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Emphysem</td>
<td>Kein Emphysem</td>
<td>Statistik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV1 [l/s]</td>
<td>1,4±0,7</td>
<td>1,5±0,7</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLCO/ SB [ml/min/mmHg]</td>
<td>45±18</td>
<td>45±20</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pO2 [mmHg]</td>
<td>63±9</td>
<td>67±11</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pCO2 [mmHg]</td>
<td>42±7</td>
<td>40±6</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>7,4±0,03</td>
<td>7,4±0,03</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hb [g/l]</td>
<td>140±11</td>
<td>142±15</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO [µmol/l]</td>
<td>47±23</td>
<td>64±30</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRP-Spiegel [mg/l]</td>
<td>8,4±11</td>
<td>8,6±13</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 3: Charakteristika der Patienten entsprechend der Unterteilung in Personen mit und ohne Lungenemphysem. Das Signifikanzniveau wird mit p < 0,05 angenommen.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Emphysem</th>
<th>Kein Emphysem</th>
<th>Statistik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patientenanzahl/Frauen</td>
<td>28/14</td>
<td>20/4</td>
<td>-</td>
</tr>
<tr>
<td>Alter [Jahre]</td>
<td>62±10</td>
<td>67±8</td>
<td>*</td>
</tr>
<tr>
<td>BMI [kg/m²]</td>
<td>24±6</td>
<td>27±5</td>
<td>*</td>
</tr>
<tr>
<td>BODE</td>
<td>5</td>
<td>5</td>
<td>n.s.</td>
</tr>
<tr>
<td>GOLD</td>
<td>4</td>
<td>3</td>
<td>*</td>
</tr>
<tr>
<td>Packyears [Jahre]</td>
<td>43±14</td>
<td>49±30</td>
<td>n.s.</td>
</tr>
<tr>
<td>Aktive Raucher [%]</td>
<td>27</td>
<td>15</td>
<td>n.s.</td>
</tr>
<tr>
<td>RR systol. [mmHg]</td>
<td>124±21</td>
<td>129±18</td>
<td>n.s.</td>
</tr>
<tr>
<td>RR diastol. [mmHg]</td>
<td>76±9</td>
<td>78±11</td>
<td>n.s.</td>
</tr>
<tr>
<td>HbA1c [%]</td>
<td>6±0,7</td>
<td>6±1</td>
<td>n.s.</td>
</tr>
<tr>
<td>Therapie mit inhal. Glukokortikoiden [%]</td>
<td>96</td>
<td>85</td>
<td>n.s.</td>
</tr>
</tbody>
</table>
### 3.2) Evozierte visuelle Potentiale

Die Auswertung der visuell evozierten Potentiale ergab kein signifikantes Ergebnis. Es zeigte sich weder ein Unterschied zwischen der Kontrollgruppe BODE 0 und den übrigen BODE-Gruppen noch innerhalb der einzelnen BODE-Gruppen. Darüber hinaus ließ sich keine Abweichung bezüglich des Krankheitsverlaufs feststellen. Keine Differenz fand sich außerdem beim Vergleich der Gruppe der COPD-Patienten mit und ohne Emphysem. Die Amplitude des VEPs betrug bei BODE 1-2 12±13 µV, bei BODE 3-4 11±5 µV, bei BODE 5-6 9±7 µV und bei BODE 7-10 11±7 µV. Bei BODE 0 ergab diese 11±8 µV. Individuen mit einem stabilen Krankheitsverlauf besaßen eine Amplitude von 10±8 µV, Patienten mit progressivem Geschehen von 9±6 µV. Bei den

<table>
<thead>
<tr>
<th>Therapie mit Anticholinergika [%]</th>
<th>100</th>
<th>90</th>
<th>n.s.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEV1 [l/s]</td>
<td>0,9±0,3</td>
<td>1,2±0,4</td>
<td>*</td>
</tr>
<tr>
<td>DLCOC SB [ml/min/mmHg]</td>
<td>27±8</td>
<td>38±12</td>
<td>**</td>
</tr>
<tr>
<td>RV [l]</td>
<td>6±1</td>
<td>5±1</td>
<td>**</td>
</tr>
<tr>
<td>RV%TLC [%]</td>
<td>184</td>
<td>157</td>
<td>**</td>
</tr>
<tr>
<td>ITGV</td>
<td>6,1±1,4</td>
<td>5,0±1,0</td>
<td>**</td>
</tr>
<tr>
<td>pO2 [mmHg]</td>
<td>62±10</td>
<td>64±12</td>
<td>n.s.</td>
</tr>
<tr>
<td>pCO2 [mmHg]</td>
<td>42±6</td>
<td>43±8</td>
<td>n.s.</td>
</tr>
<tr>
<td>pH</td>
<td>7,43±0,03</td>
<td>7,43±0,03</td>
<td>n.s.</td>
</tr>
<tr>
<td>Hb [g/l]</td>
<td>144±14</td>
<td>142±14</td>
<td>n.s.</td>
</tr>
<tr>
<td>NO [µmol/l]</td>
<td>64±31</td>
<td>64±37</td>
<td>n.s.</td>
</tr>
<tr>
<td>CRP-Spiegel [mg/l]</td>
<td>7±12</td>
<td>14±17</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

BMI=Body Mass Index; RR-systol.=systolischer Blutdruck gemessen nach Riva-Rocci; RR-diastol.=diastolischer Blutdruck gemessen nach Riva-Rocci; HbA1c=Hämoglobin A1c; FEV1=forciertes exspiratorisches Volumen in einer Sekunde; DLCOC SB=Diffusionskapazität nach der Single Breath Methode; pO2=Partialdruck für Sauerstoff; pCO2=Partialdruck für Kohlendioxid; pH=Säure-Basen-Status; Hb=Hämoglobin; NO=Stickstoffmonoxid; CRP=C-reaktives Protein; ns=nicht signifikant; *=p<0,05; **=p<0,005; ***p<0,0001.

In den Tabellen 4,5 und 6 sind die Ergebnisse des ANOVA-Tests für die VEPs und die Fourieranalyse aller Gruppen aufgeführt.

3.3) Evozierte Flussgeschwindigkeiten:

Ruheflussgeschwindigkeit, Verstärkung, Eigenfrequenz, Dämpfung und Vorhaltezeit ergaben in allen Gruppen keinen signifikanten Unterschied. Bezüglich der Aufteilung nach BODE zeigte sich die Ruheflussgeschwindigkeit in allen Gruppen ähnlich mit 53±4 cm/s bei BODE 0, 44±8 cm/s bei BODE 1-2, 45±8 cm/s bei BODE 3-4, 40±5 cm/s bei BODE 5-6 sowie 54±18 cm/s bei BODE 7-10. Die Verstärkung betrug bei
BODE 0 14±3%, bei BODE 1-2 15±5%, bei BODE 3-4 18±6%, bei BODE 5-6 15±5% und bei BODE 7-10 14±5%. Die Eigenfrequenz ergab bei BODE 0 0,2±0,06 l/s, bei BODE 1-2 0,18±0,04 l/s, bei BODE 3-4 0,21±0,05 l/s, bei BODE 5-6 0,2±0,02 l/s und bei BODE 7-10 0,2±0,07 l/s. Die Dämpfung war bei BODE 0 0,5±0,2, bei BODE 1-2 0,49±0,2, bei BODE 3-4 0,42±0,14, bei BODE 5-6 0,4±0,09 und bei BODE 7-10 0,5±0,14. Die Vorhaltezeit lag bei BODE 0 bei 3,1±2,2s, bei BODE 1-2 bei 3,9±2,5s, bei BODE 3-4 bei 3,0±1,7 s, bei BODE 5-6 bei 3,6±1,0 s und bei BODE 7-10 bei 2,8±1,8 s. Die genannten vaskulären Parameter weisen also im Vergleich der verschiedenen BODE-Gruppen untereinander und mit der Kontrollgruppe BODE 0 keinen statistisch signifikanten Unterschied auf. Ebenso konnte bei der Gegenüberstellung der Patienten mit und ohne Emphysem sowie mit stabilem und progressivem Verlauf keine Differenz festgestellt werden. Bei Individuen mit Emphysem fand sich eine Ruheflussgeschwindigkeit von 41±8 cm/s, bei Patienten ohne Emphysem von 46±12 cm/s. Der Vergleich eines progressiven mit stabilem Verlauf ergab 49±8 cm/s sowie 44±10 cm/s. Die Verstärkung betrug 18±6% bei Individuen mit und 15±5% ohne Emphysem. Bei einem progressiven Geschehen fand sich diesbezüglich 16±6% sowie 15±5% bei einem stabilen Verlauf. Die Eigenfrequenz betrug bei den Emphysempatienten 0,2±0,04 l/s, bei der Vergleichsgruppe 0,2±0,05 l/s. Progressive sowie stabile Patienten zeigten hier 0,2±0,05 l/s. Bei Vorliegen eines Emphysems betrug die Dämpfung 0,5±0,1, ohne Emphysem fand sich 0,5±0,2. Der Vergleich eines progressiven mit stabilem Verlauf ergab 0,5±0,1 sowie 0,4±0,2. Die Vorhaltezeit betrug 3,2±1,5 s bei Patienten mit sowie 3,1±2,1 s bei Individuen ohne Emphysem. Bei Personen mit einem progressivem Verlauf ergab sich 4,2±2,2 s bei den stabilen Individuen 2,7±1,6 s.

Eine Zusammenfassung der Ergebnisse des ANOVA-Tests für die Regelkreisparameter des transkraniellen Dopplers zeigen die Tabellen 4,5, und 6.
Tab. 4: Ergebnisse der neurovaskulären Kopplung sowie der Fourieranalyse bezogen auf die BODE-Stadien.

<table>
<thead>
<tr>
<th></th>
<th>BODE 0</th>
<th>BODE 1-2</th>
<th>BODE 3-4</th>
<th>BODE 5-6</th>
<th>BODE 7-10</th>
<th>Statistik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruheflussgeschwindigkeit [cm/s]</td>
<td>53±4</td>
<td>44±8</td>
<td>45±8</td>
<td>40±5</td>
<td>54±18</td>
<td>n.s.</td>
</tr>
<tr>
<td>Verstärkung [%]</td>
<td>14±3</td>
<td>15±5</td>
<td>18±6</td>
<td>15±5</td>
<td>14±5</td>
<td>n.s.</td>
</tr>
<tr>
<td>Eigenfrequenz [l/s]</td>
<td>0,2±0,06</td>
<td>0,18±0,04</td>
<td>0,21±0,05</td>
<td>0,2±0,02</td>
<td>0,2±0,07</td>
<td>n.s.</td>
</tr>
<tr>
<td>Dämpfung</td>
<td>0,5±0,2</td>
<td>0,49±0,2</td>
<td>0,42±0,14</td>
<td>0,4±0,09</td>
<td>0,5±0,14</td>
<td>n.s.</td>
</tr>
<tr>
<td>Vorhaltezeit [s]</td>
<td>3,1±2,2</td>
<td>3,9±2,5</td>
<td>3,0±1,7</td>
<td>3,6±1</td>
<td>2,8±1,8</td>
<td>n.s.</td>
</tr>
<tr>
<td>N75-P100-Amplitude [µV]</td>
<td>11±8</td>
<td>12±13</td>
<td>11±5</td>
<td>9±7</td>
<td>11±7</td>
<td>n.s.</td>
</tr>
<tr>
<td>EEG-Delta-Band [%]</td>
<td>25±12</td>
<td>29±18</td>
<td>21±13</td>
<td>30±14</td>
<td>20±10</td>
<td>n.s.</td>
</tr>
<tr>
<td>EEG-Theta-Band [%]</td>
<td>13±5</td>
<td>12±5</td>
<td>20±13</td>
<td>15±9</td>
<td>15±7</td>
<td>n.s.</td>
</tr>
<tr>
<td>EEG-Alpha-Band [%]</td>
<td>34±15</td>
<td>36±14</td>
<td>38±13</td>
<td>30±14</td>
<td>43±12</td>
<td>n.s.</td>
</tr>
<tr>
<td>EEG-Beta-Band [%]</td>
<td>28±5</td>
<td>23±7</td>
<td>21±9</td>
<td>25±11</td>
<td>22±10</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

Tab. 5: Ergebnisse der neurovaskulären Kopplung sowie der Fourier-Analyse entsprechend der Unterteilung in progressiven und stabilen Verlauf.

<table>
<thead>
<tr>
<th></th>
<th>Progressiver Verlauf</th>
<th>Kein progressiver Verlauf</th>
<th>Statistik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruheflussgeschwindigkeit [cm/s]</td>
<td>49±8</td>
<td>44±10</td>
<td>n.s.</td>
</tr>
<tr>
<td>Verstärkung [%]</td>
<td>16±6</td>
<td>15±5</td>
<td>n.s.</td>
</tr>
<tr>
<td>Eigenfrequenz [l/s]</td>
<td>0,2±0,05</td>
<td>0,2±0,05</td>
<td>n.s.</td>
</tr>
<tr>
<td>Dämpfung</td>
<td>0,5±0,1</td>
<td>0,4±0,2</td>
<td>n.s.</td>
</tr>
<tr>
<td>Vorhaltezeit [s]</td>
<td>4,2±2,2</td>
<td>2,7±1,6</td>
<td>n.s.</td>
</tr>
<tr>
<td>N75-P100-Amplitude [µV]</td>
<td>9±6</td>
<td>10±8</td>
<td>n.s.</td>
</tr>
<tr>
<td>EEG-Delta-Band [%]</td>
<td>26±15</td>
<td>26±15</td>
<td>n.s.</td>
</tr>
<tr>
<td>EEG-Theta-Band [%]</td>
<td>14±5</td>
<td>16±10</td>
<td>n.s.</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>EEG-Alpha-Band [%]</td>
<td>36±11</td>
<td>35±15</td>
<td>n.s.</td>
</tr>
<tr>
<td>EEG-Beta-Band [%]</td>
<td>24±7</td>
<td>23±10</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

Tab. 6: Ergebnisse der neurovaskulären Kopplung bezüglich der Unterteilung in Patienten mit und ohne Lungenemphysem.

<table>
<thead>
<tr>
<th></th>
<th>Emphysem</th>
<th>Kein Emphysem</th>
<th>Statistik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruheflussgeschwindigkeit [cm/s]</td>
<td>41±8</td>
<td>46±12</td>
<td>n.s.</td>
</tr>
<tr>
<td>Verstärkung [%]</td>
<td>18±6</td>
<td>15±5</td>
<td>n.s.</td>
</tr>
<tr>
<td>Eigenfrequenz [l/s]</td>
<td>0,2±0,04</td>
<td>0,2±0,05</td>
<td>n.s.</td>
</tr>
<tr>
<td>Dämpfung</td>
<td>0,5±0,1</td>
<td>0,5±0,2</td>
<td>n.s.</td>
</tr>
<tr>
<td>Vorhaltezeit [s]</td>
<td>3,2±1,5</td>
<td>3,1±2,1</td>
<td>n.s.</td>
</tr>
<tr>
<td>N75-P100-Amplitude [µV]</td>
<td>13±6</td>
<td>11±4</td>
<td>n.s.</td>
</tr>
<tr>
<td>EEG-Delta-Band [%]</td>
<td>22±13</td>
<td>25±13</td>
<td>n.s.</td>
</tr>
<tr>
<td>EEG-Theta-Band [%]</td>
<td>17±10</td>
<td>17±10</td>
<td>n.s.</td>
</tr>
<tr>
<td>EEG-Alpha-Band [%]</td>
<td>39±15</td>
<td>35±14</td>
<td>n.s.</td>
</tr>
<tr>
<td>EEG-Beta-Band [%]</td>
<td>22±11</td>
<td>23±8</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

n.s.=nicht signifikant
4.) Diskussion

4.1) Ergebnisdiskussion


Letzteres stellt ein bekanntes Phänomen im Verlauf der Erkrankung dar, wobei eine dysfunktionelle NVC zu einer cerebralen Minderperfusion mit konsekutivem Untergang aktiver Neurone und somit zur Neurodegeneration führen kann.

Durch die Unterteilung der Patienten anhand des Bode-Stadiums und in Individuen mit stabilem und progressivem Verlauf sowie in Personen mit und ohne Lungenemphysem wurde sowohl der Einfluss der Krankheitsschwere und des Krankheitsverlaufs, als auch eines Emphysems auf die NVC sowie neurofunktionelle Parameter wie visuell evozierte Potentiale und die prozentuale Verteilung der EEG-Bänder untersucht.

Interessanterweise konnte in der vorliegenden Studie, trotz der systemischen Auswirkungen, die durch die COPD hervorgerufen werden, kein Einfluss der Erkrankung auf neurofunktionelle Parameter sowie die NVC festgestellt werden. Weder der Schweregrad der Erkrankung gemessen am BODE-Index noch die Entwicklung eines Emphysems riefen diesbezüglich eine Änderung hervor. Auch die Progredienz der Erkrankung hatte hierauf keinen Einfluss. In den folgenden Abschnitten sollen die
Ergebnisse und Methodik diskutiert und denkbare Erklärungsansätze hierfür gegeben werden.

4.1.1) Diskussion der klinischen Untersuchungsergebnisse

ein Abfall der Diffusionskapazität sowie ab BODE 3-4 ein Rückgang des pO₂ festgestellt werden. Auch die Emphysempatienten erreichten eine signifikant niedrigere FEV1 und eine Abnahme der DLCOC SB, was mit den Ergebnissen von Boschetto und Kollegen übereinstimmt (Boschetto und Mitarbeiter, 2003). Im Gegensatz zu dieser, konnte in der vorliegenden Studie außerdem eine Zunahme des Residualvolumens festgestellt werden, was einen weiteren typischen Befund bei Vorliegen eines Emphysems darstellt (Silbernagel 2005).

4.1.2) Neurofunktionelle Daten

gezeigt werden konnte, dass wiederholte Aufgaben, die zu subjektiver Müdigkeit der Probanden führten, einen Anstieg des Alpha-Bandes hervorriefen (Higuchi und Mitarbeiter, 2001). Fatigue kommt häufig im Verlauf der COPD vor (Ream & Richardson 1997). Dennoch ließen sich in der vorliegenden Studie keine Abweichungen des EEGs bezüglich der Verteilung der Frequenzbänder feststellen, so dass postuliert werden kann, dass die untersuchten Individuen nicht schwer von dieser Symptomatik betroffen waren.

4.1.3) Neurovaskuläre Daten

In der vorliegenden Studie konnte keine Dysfunktion der neurovaskulären Kopplung bei COPD-Patienten weder in Bezug auf den Schweregrad noch auf die Progredienz der Erkrankung festgestellt werden. Auch das Vorliegen eines Emphysems zeigte hierauf keinen Einfluss. In Hinblick auf die COPD als systemische inflammatorische Erkrankung stellt dies auf den ersten Blick ein unerwartetes Ergebnis dar, welches im Folgenden weiter diskutiert werden soll.


mit den normwertigen NO-Konzentrationen ließ sich eine aktuelle Inflammation der Patienten ausschließen, was eine Aktivierung der iNOS und daraus folgend einen Anstieg des NO-Wertes nach sich ziehen hätte können.


Des Weiteren stellt der pH-Wert einen bedeutenden Einflussfaktor auf die Gefäßweite dar. Hyper- oder normokapnische Azidose bewirken eine Vasodilatation mit konsekutivem Anstieg des Blutflusses. Alkalose hingegen führt zu Vasokonstriktion (Celotto und Mitarbeiter, 2008) (Lindauer und Mitarbeiter, 2003). Bei allen Studienteilnehmern zeigte sich ein ausgeglichener Säure-Basen-Status, so dass auch dies keine Änderung des Ruheblutflusses nach sich zog. Über eine Veränderung des pH-Wertes bewirkt ferner die Konzentration der Blutgase O₂ und CO₂ einen Einfluss auf die Gefäßweite und somit die cerebrale Durchblutung. Akute Hypoxie führt zu Vasodilatation. Es kommt jedoch erst ab Werten von unter 50mmHg des pO₂ zum Anstieg der cerebralen Perfusion (Johnston und Mitarbeiter, 2003). Ebenso bewirkt Hyperkapnie eine Weitstellung der Gefäße mit Erhöhung des Blutflusses. Beim Menschen steigt die cerebrale Durchblutung bei Inhalation von 5% CO₂ um 50% an, Inhalation von 7% CO₂ führt zu einem Anstieg von 100%. Bei Hypokapnie hingegen kommt es zu Vasokonstriktion mit Abfall des Blutflusses (Borgström und Mitarbeiter, 1975)(Bor-Seng-Shu und Mitarbeiter, 2012). Der pO₂ der Patienten der Gruppen BODE 1-2 bis 7-10 lag bei 60-70 mmHg, bei den Patienten mit und ohne Emphysem bei 62 sowie 64 mmHg. Bei Individuen mit einem progredienten Verlauf ergab sich 63 mmHg, die stabilen Patienten zeigten ein pO₂ von 67 mmHg. Insgesamt Werte, welche noch keinen Anstieg der Perfusion nach sich ziehen. Ferner befand sich der pCO₂ in allen Gruppen im Normalbereich, so dass sich die gemessenen Blutgaspарамет er dieser Studie in Einklang mit den normwertigen Ruheblutflussgeschwindigkeiten der Patienten befinden.
Ein Einfluss der Medikation auf die NVC konnte außerdem nicht festgestellt werden. Obwohl bereits einige Patienten der Gruppe BODE 0 medikamentös therapiert wurden, bestand dennoch ein signifikanter Unterschied des medikamentösen Therapieplans im Vergleich zu schwerer betroffenen Individuen. Im Gegensatz zu den anderen bestand eine homogene Therapie aller Patienten der Gruppen BODE 5-6 und 7-10 mit Anticholinergika, Glukokortikoiden und β2-Mimetika. Dennoch stellten sich keine Unterschiede bezüglich der NVC zwischen den Gruppen dar.


4.2.) Methodendiskussion


4.3) Schlussfolgerung und Ausblick

Der aktuelle Stand der Forschung geht davon aus, dass sich die COPD nicht, wie lange angenommen, nur auf die Lungen auswirkt, sondern in deren Verlauf vielmehr der gesamte Organismus involviert wird. Es kommt zu systemischen Konsequenzen, welche auch das Gehirn betreffen. Sowohl Änderungen der cerebralen Durchblutung als auch kognitive Defizite der Patienten können im Verlauf der Erkrankung entstehen.


Der Stellenwert einer optimalen Therapie der Patienten, welche ein weiteres Fortschreiten der Erkrankung und somit das Auftreten cerebraler Konsequenzen verhindern oder abschwächen kann wird dennoch deutlich. In weiteren Studien sollten außerdem Patienten mit stärkerer Inflammation im Rahmen der COPD untersucht werden, um so den Einfluss dieser gesteigerten im Gegensatz zu einer moderat erhöhten Inflammation auf die NVC zu untermauern.

Den wichtigsten Risikofaktor für die Entwicklung einer COPD stellt Tabakrauch dar. Laut dem statistischen Bundesamt gaben im Jahr 2009 30,5% der Männer und 21,2%
der Frauen an aktive Raucher zu sein (Statistisches Bundesamt 2009). Ein bedeutender Faktor der Prävention ist somit die Aufklärung über die nachteiligen Effekte des Rauchens z.B. in Form von Antiraucherkampagnen, welche einen Beginn des Tabakrauchkonsums verhindern oder Raucher zum Beenden veranlassen können.

Der Anteil aktiver Raucher in der vorliegenden Studie lag bei nur 10-20%. Im Gegensatz zu einer publizierten Studie an jungen Rauchern unter Verwendung des gleichen Paradigmas (Oláh und Mitarbeiter, 2008) konnte in der vorliegenden keine neurovaskuläre Entkopplung festgestellt werden. Es kann also postuliert werden, dass eine Beendigung des Tabakkonsums zu einer Verbesserung der NVC führt.


Der cerebrale Blutfluss im Rahmen der NVC wird von exakt und fein abgestimmten Mediatoren beeinflusst, wobei das genaue Zusammenspiel der beteiligten Transmitter bis heute noch nicht vollständig aufgeklärt ist. Weitere Studien für ein besseres Verständnis der NVC sollten somit folgen.
5.) Zusammenfassung


Als Untersuchungsmethode fungierte eine Kombination aus transkranieller Dopplersonographie und Ableitung eines EEGs. Die Untersuchungen interferieren nicht miteinander und sind außerdem seit vielen Jahren bewährt. Mittels Ultraschall wurde die Blutflussgeschwindigkeit (CBF) in der Arteria cerebri posterior (ACP) gemessen. Gleichzeitig wurden durch visuelle Stimulation visuell evozierte Potentiale (VEPs) im visuellen Kortex hervorgerufen, von welchen die N75-P100 Amplitude analysiert wurde. Zur Erzeugung dieser diente ein Kontrast-Umkehr-Film, mittels welchem ein Muster-Umkehr-Reiz dargestellt wurde. Mit Hilfe eines mathematischen Modells zweiter Ordnung mit den Parametern Dämpfung, Verstärkung, Eigenfrequenz und Vorhaltezeit konnten die gemessenen Werte ausgewertet und anschließend beurteilt werden. Verglichen mit anderen geläufigen Auswertungsverfahren stellt diese, durch simultane Erfassung beider an der NVC beteiligten Seiten, eine geeignete Methode zur Beschreibung der Neurovaskulären Kopplung (NVC) dar, mit welcher darüber hinaus eine Dysfunktion der NVC frühzeitig erkannt werden kann, was zeitnahe therapeutische Konsequenzen erlaubt.

Die Untersuchungen wurden im Zeitraum von 2009 bis 2011 in der COPD-Ambulanz der pneumologischen Klinik des Universitätsklinikums Gießen an COPD-Patienten durchgeführt. Insgesamt wurden 66 Patienten in die Studie miteingeschlossen. Es erfolgte eine Unterteilung in vier Gruppen anhand der BODE-Stadien, wobei Individuen, bei denen im weiteren Verlauf eine COPD ausgeschlossen wurde, als Kontrollgruppe BODE 0 fungierten. Außerdem erfolgte eine Aufteilung in Patienten

6.) Summary

By a rising prevalence, morbidity and mortality the COPD gets more and more important in our increasing aging population. Beside pulmonal effects the COPD causes also important systemic consequences, which finally affect the brain too. On the one side there are coming up aberrations of cerebral blood flow, on the other side cognitive disorders of the patients are recognized- a pathology especially hypoxic patients are affected of. In this clinical trial we wanted to examine the influence of the disease on the neurovascular coupling (NVC) respective to the severity and the course of the ailment as well as the presence of emphysema.

As examination method functioned a combination of transcranial Doppler sonography and EEG recording- both methods, which don’t interfere with each other and are established for years. By ultrasound blood flow velocity (CBFV) in the Arteria cerebri posterior (ACP) was measured. Simultaneously visual stimulation generated visual evoked potentials, of which the N75-P100 amplitude was analysed. To create the VEPs a modified checkerboard test was used. The measured values could be analysed with the aid of a mathematical model of second order with the parameters gain, rate time, natural frequency and attenuation.

The examinations were realized on COPD patients in the COPD ambulance of the university hospital of Gießen in a period of 2009 to 2011. According to their BODE Score patients were divided into four groups, individuals with a BODE Score of 0 were regarded as reference group. Furthermore patients were grouped in individuals with and without emphysema as well as in patients with progressive and stable cours.

Surprisingly no dysfunction of the NVC in COPD patients could be noted. The patients having been examined were in a stable condition of the disease with only a moderate inflammation and without severe hypoxia. On the one hand this leads to the conclusion that rather a more distinct inflammation causes an impairment of the NVC, as shown in patients with acute pneumonia. For this study a representative sample of COPD patients in all stages of the disease was examined. With an unimpaired NVC in all patients there is no evidence for a correlation between a dysfunction of the NVC and the known cerebral aberrations of COPD patients.
The $pO_2$ of all patients was in an area with no increase of cerebral blood flow. Further trials on COPD patients with a higher degree of hypoxia should follow to prove the influence concerning to this on the COPD.
Abkürzungsverzeichnis

ACM Arteria cerebri media
ACP Arteria cerebri posterior
ANOVA Analysis of variance, univariate Varianzanalyse
ATS American Thoracic Society
BMI Body Mass Index
CBFV cerebral blood flow velocity, cerebrale Blutflussgeschwindigkeit
COPD Chronic obstructive lung disease, Chronisch obstruktive Lungenerkrankung
CRP C-Reaktives Protein
DALY Disability adjusted life year
DLCOC SB Diffusionskapazität nach der Single Breath Methode
DLCOC/VA Diffusionskapazität nach dem Transferkoeffizienten
EEG Elektroenzephalographie
eNOS endotheliale Stickstoffmonoxidsynthase
FEV$_1$ Forciertes exspiratorisches Volumen in einer Sekunde
fMRT funktionelle Magnetresonanztomographie
GOLD Global Initiative for Obstructive Lung Disease
Hb Hämoglobin
HbA1c Hämoglobin A1c
iNOS induzierbare Stickstoffmonoxidsynthase
NO Stickstoffmonoxid
nNOS neuronale Stickstoffmonoxidsynthase
NVC Neurovaskuläre Kopplung
pCO$_2$ Partialdruck für Kohlendioxid
pO$_2$ Partialdruck für Sauerstoff
py Pack Year
PET Positronen-Emissions-Tomographie
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROI</td>
<td>Region of Interest</td>
</tr>
<tr>
<td>RV</td>
<td>Reservevolumen</td>
</tr>
<tr>
<td>SPECT</td>
<td>Single Photon Emission Computertomographie</td>
</tr>
<tr>
<td>TCD</td>
<td>Transkranielle Dopplersonographie</td>
</tr>
<tr>
<td>TLC</td>
<td>Totale Lungenkapazität</td>
</tr>
<tr>
<td>VC</td>
<td>Vitalkapazität</td>
</tr>
<tr>
<td>VEP</td>
<td>Visuell evoziertes Potential</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

Abb. 1: Schematische Darstellung des Prinzips der Neurovaskulären Kopplung  -11-
Abb. 2: Darstellung der Position und Richtung der Dopplersonde zur  -17-
    Untersuchung des P2-Segments der ACP
Abb. 3: Schematische Darstellung der Kombination EEG-fTCD im visuellen  -21-
    Kortex
Abb. 4: Versuchsaufbau mit Film des Musterumkehrstimulus  -22-
Tabellenverzeichnis

Tab. 1: Charakteristika der Patienten bezüglich des BODE-Scores. -30-
Tab. 2: Charakteristika der Patienten entsprechend der Unterteilung in Individuen mit progressivem und stabilem Verlauf. -31-
Tab. 3: Charakteristika der Patienten entsprechend der Unterteilung in Personen mit und ohne Lungenemphysem. -32-
Tab. 4: Ergebnisse der neurovaskulären Kopplung sowie der Fourieranalyse bezogen auf die BODE-Stadien. -36-
Tab. 5: Ergebnisse der neurovaskulären Kopplung sowie der Fourieranalyse entsprechend der Unterteilung in progressiven und stabilen Verlauf. -36-
Tab. 6: Ergebnisse der neurovaskulären Kopplung bezüglich der Unterteilung in Patienten mit und ohne Lungenemphysem -37-
Literaturverzeichnis


Dannhardt, V., 2012, Einfluss eines cholinergen Defizits auf die neurovaskuläre Kopplung: eine simulatene EEG-Doppler-Studie an Parkinson-Patienten, p.19


Silbernagel S., 2005, *Taschenatlas der Pathophysiologie*, Thieme Verlag, p. 78


Neurovascular coupling and EEG band distribution in patients with chronic obstructive pulmonary disease: Prof. Dr. Bernhard Rosengarten, Melanie Schmid, Anna Steinmann, Dr. Tobias Gessler, Dr. Stefan Kuhnert; international Journal of clinical neurosciences and mental health, 2013
Eidesstattliche Erklärung


………………………….………………………….
Ort Unterschrift

………………………….
Datum

XVIII
Danksagung:


Mein ganz besonderer Dank gilt außerdem Herrn Prof. Rosengarten, unter dessen Leitung diese Arbeit entstand und der ein zu jeder Zeit zu erreichender Ansprechpartner war. Vielen Dank für die gute Betreuung und die stets konstruktive Kritik.

Außerdem danke ich allen Patienten, die sich bereit erklärt haben an dieser Studie teilzunehmen für deren Geduld. Ohne sie wäre die vorliegende Arbeit nicht möglich gewesen.

Mein großer Dank gilt des Weiteren meiner Familie, die mich während des ganzen Medizinstudiums zu jeder Zeit unterstützt und motiviert hat. Insbesondere meiner Schwester möchte ich für die wertvolle Korrektur und Formatierung dieser Arbeit danken.

Danken möchte ich außerdem Matthias M., der mir stets mit großer Geduld zur Seite stand und mir durch seinen Glauben an mich immer die nötige Kraft zur Anfertigung dieser Arbeit gab.

Schließlich danke ich meinen Freunden und Kommilitonen für die Unterstützung während dieser Arbeit.