Klinische, endokrine und sonographische Untersuchungen zum Zyklus der ingraviden Stute

SARA LAUFKÖTTER

Inaugural-Dissertation zur Erlangung des Grades eines Dr. med. vet.
beim Fachbereich Veterinärmedizin der Justus-Liebig-Universität Gießen
Klinische, endokrine und sonographische Untersuchungen zum Zyklus der ingraviden Stute
Mit Genehmigung des Fachbereiches Veterinärmedizin
der Justus-Liebig-Universität Gießen

Dekan: Prof. Dr. Dr. h.c. M. Kramer

Gutachter/in: Prof. Dr. Axel Wehrend

PD Dr. Axel Schönfelder

Tag der Disputation: 01.04.2015
3.3.1 Sonographische Untersuchung..35
3.3.1.1 Ultraschallgerät und verwendete Einstellungen..37
3.3.1.2 Deskriptive Auswertung der sonographischen Befunde des Gelbkörpers....38
3.3.1.3 Festlegung der ROI’s und quantitative Graustufenanalyse (qGSA)40
3.3.2 Vaginoskopische Untersuchung ..42
3.3.3 Blutuntersuchung ..44
3.4 Untersuchungsintervalle..44
3.4.1 Untersuchung 1..44
3.4.2 Untersuchung 2..45
3.5 Statistische Methoden...46
3.5.1 Statistische Auswertungen..46
3.5.2 Synchronisation der Zyklen..47
3.5.3 Relativer Grauwert ...48
3.5.4 Transformierte Plasmaprogesteronkonzentration...48
3.5.5 Transformierte Plasma-Östradiol17β-Konzentration..49
4 ERGEBNISSE ..50
4.1 Vorversuche ..50
4.1.1 Sonographische Untersuchung an Schlachthoforganen50
4.1.2 Druckeinwirkung..51
4.1.3 Differenzierbarkeit von Ovargewebe und dem Corpus luteum in vivo52
4.2 Sonographische Untersuchung am lebenden Tier...55
4.2.1 Sonographische Darstellung des Corpus luteum im Verlauf des Zyklus55
4.2.2 Differenzierte Betrachtung der Corpora lutea im Verlauf des Zyklus57
4.2.2.1 Größe, Echogenität und Homogenität ...57
4.2.2.1.1 Durchgang 1..57
4.2.2.1.2 Durchgang 2..64
4.2.3 Grauwertanalyse über den Zyklusverlauf...67
4.2.3.1 Durchgang 1..67
4.2.3.2 Durchgang 2..71
4.3 Muttermund ..73
4.4 Hormoneller Verlauf ..75
4.4.1 Progesteronkonzentration im Blutplasma...75
4.4.2 Östradiol-17β im Blutplasma...81
4.5 Korrelationen..85
4.5.1 Durchgang 1 synchronisiert ... 85
4.5.1.1 Korrelation zwischen der qGSA und dem hormonellen Verlauf 85
4.5.1.2 Korrelation zwischen der qGSA und der Formation des äußeren Muttermundes .. 87
4.5.1.3 Korrelation zwischen der Plasmaprogesteronkonzentration und der Formation des äußeren Muttermundes ... 88
4.5.2 Durchgang 2 .. 90
4.5.2.1 Korrelation zwischen der qGSA und dem hormonellen Verlauf 90
4.5.2.2 Korrelation zwischen der qGSA und der Formation des äußeren Muttermundes ... 92
4.5.2.3 Korrelation zwischen der Progesteron- bzw. Östradiol-17β Konzentration im Blut und der Formation des äußeren Muttermundes 94
4.5.3 Durchgang 1 nicht synchronisiert .. 97
4.5.3.1 Korrelation zwischen der qGSA und dem hormonellen Verlauf 97
4.5.3.2 Korrelation zwischen der qGSA und der Formation des Muttermundes ... 100
4.5.3.3 Korrelation zwischen der Progesteron- bzw. der Östradiol-17β-Konzentration im Blut und der Formation des äußeren Muttermundes 101
5 DISKUSSION ... 105
5.1 Diskussion der Fragestellung ... 105
5.2 Diskussion der Methode .. 105
5.3 Diskussion der Ergebnisse .. 108
5.3.1 Vorversuche ... 108
5.3.2 Sonographische Untersuchung inklusive Graustufenanalyse 109
5.3.3 Muttermund ... 114
5.3.4 Hormoneller Verlauf ... 114
5.3.5 Korrelationen .. 116
6 ZUSAMMENFASSUNG ... 119
7 SUMMARY ... 121
8 LITERATURVERZEICHNIS ... 123
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>± s</td>
<td>Standardabweichung</td>
</tr>
<tr>
<td>µm</td>
<td>Mikrometer</td>
</tr>
<tr>
<td>ad us. vet.</td>
<td>ad usum veterinarium</td>
</tr>
<tr>
<td>AG</td>
<td>Aktiengesellschaft</td>
</tr>
<tr>
<td>A-Mode</td>
<td>Amplitudenmodulation</td>
</tr>
<tr>
<td>B-Mode</td>
<td>Brightness modulation</td>
</tr>
<tr>
<td>C.l.</td>
<td>Corpus luteum</td>
</tr>
<tr>
<td>E17β</td>
<td>Östradiol-17β</td>
</tr>
<tr>
<td>et al.</td>
<td>et alii</td>
</tr>
<tr>
<td>F</td>
<td>Follikel</td>
</tr>
<tr>
<td>Fa</td>
<td>Firma</td>
</tr>
<tr>
<td>FSH</td>
<td>Follikulin, follikelstimulierendes Hormon</td>
</tr>
<tr>
<td>GnRH</td>
<td>Gonadotropin Releasing Hormone</td>
</tr>
<tr>
<td>GSA</td>
<td>Graustufenanalyse</td>
</tr>
<tr>
<td>GW</td>
<td>Grauwert</td>
</tr>
<tr>
<td>Habil.-Schr.</td>
<td>Habilitationsschrift</td>
</tr>
<tr>
<td>hCG</td>
<td>human Chorion Gonadotropin</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>kHz</td>
<td>Kilohertz</td>
</tr>
<tr>
<td>lg</td>
<td>Logarithmus</td>
</tr>
<tr>
<td>LH</td>
<td>Lutropin, follikelstimulierendes Hormon</td>
</tr>
<tr>
<td>Lmean</td>
<td>Mittelwert der Grauwertverteilung, gemessener Grauwert</td>
</tr>
<tr>
<td>max</td>
<td>Maxima</td>
</tr>
<tr>
<td>MHz</td>
<td>Megahertz</td>
</tr>
<tr>
<td>Min</td>
<td>Minima</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>MW</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>Nall</td>
<td>Maximalwert von Grauwertpixeln</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogramm</td>
</tr>
<tr>
<td>Nmost</td>
<td>Modalwert der meist aufgefundenen Grauwertpixel</td>
</tr>
<tr>
<td>p</td>
<td>Wahrscheinlichkeit</td>
</tr>
</tbody>
</table>
P4 Progesteron
pg Pikogramm
PGF2α Prostaglandin F2α
PGFM 13,14-dihydro-15-keto-PGF2α
qGSA quantitative Graustufenanalyse
r Kreuzkorrelationskoeffizienten nach Pearson
resp. respektive
ROI(s) region(s) of interest
rs Rangkorrelationskoeffizient nach Spearman
SD Standardabweichung
U/min Umdrehungen pro Minute
x_a arithmetischer Mittelwert
1 EINLEITUNG UND FRAGESTELLUNG

In der vorliegenden Arbeit sollen daher folgende Fragen beantwortet werden:
- Lässt sich der equine Gelbkörper eindeutig mittels sonographischer quantitativer Grauwertanalyse darstellen?
- Verändert sich der Grauwert des Gelbkörpers im Verlauf des Zyklus der Stute?
- Kann aus dem Grauwert des Gelbkörpers auf den Zyklusstand rückgeschlossen werden?
- Lässt sich aus der sonographischen Darstellung von Lutealgewebe eine Aussage über dessen endokrine Potenz ableiten?
- Lässt sich aus der Form der Portio vaginalis cervicis auf die Aktivität eines Gelbkörpers schließen?
2 LITERATUR

2.1 ANATOMIE DER WEIBLICHEN GESCHLECHTSORGANE DER STUTE

Die im Folgenden beschriebenen Verhältnisse orientieren sich an einer nicht trächtigen, durchschnittlich schweren und großen, geschlechtsreifen Warmblutstute. Je nach Rasse, Alter oder Trächtigkeit können entsprechende Veränderungen in Größe und Lage auftreten.

2.1.1 VULVA, VESTIBULUM, VAGINA

Der weibliche Genitaltrakt wird nach außen durch die beiden Schamlippen, Labia vulvae (pudendi) begrenzt. Diese bilden die im Idealfall senkrecht stehende, geschlossene Schamspalte, Rima vulvae (pudendi) (BARTMANN et al., 2002). Bei der Stute ist der dorsale Schamwinkel spitz zulaufend und der ventrale abgerundet. Im ventralen Schamwinkel, in der Fossa clitoridis des Scheidenvorhofs verborgen, liegt der Kitzler (Clitoris) (KÖNIG und LIEBIG, 1999).

Die Grenze zwischen Scheide und Scheidenvorhof wird vom atavistischen Rest des Hymens gebildet, welcher unmittelbar kranial der Harnröhrenöffnung quer verlaufend am Boden der Scheide liegt (BARTMANN et al., 2002). Dieser Hymenrest bildet einen Verschluss der Scheide und ist eine wichtige Barriere gegen das Eindringen pathogener Keime in den Genitaltrakt (REIF, 2002). KLEIN et al. (2009) konnten nachweisen, dass am Hymenalring die stärkste Keimreduktion zwischen Scheide und Scheidenvorhof, nämlich um 60 %, stattfindet. Weiter kranial im Genitaltrakt wird die Anzahl an Keimen zwar weiter reduziert, aber nicht mehr in einem solchen Maß.

Die Scheide (Vagina) befindet sich dorsal der Harnblase unter dem Enddarm. Kranial liegt sie dem Peritoneum an, und zwar dorsal der Excavatio rectogenitalis und

2.1.2 GEBÄRMUTTER

An den Gebärmutterhörsnern befindet sich dorsal der Margo mesometricus und ventral der Margo liber. Das Gebärmuttergekröse ist am Margo mesometricus und seitlich am Corpus uteri bis zum Gebärmutterhals befestigt. Die Gebärmutterhörsner werden durch Darmanteile gegen die innere Lendenmuskulatur gedrängt und gehen in einem kranioventral konvexen Bogen in die Eileiter über (BARTMANN et al., 2002).

Die Wand der Gebärmutter besteht aus drei Schichten, dem Endometrium, dem Myometrium und dem Perimetrium (BARTMANN et al., 2002).

2.1.3 EILEITER

Die paarigen Eileiter sind etwa 20 bis 30 cm lang, verlaufen stark gewunden und englumig und werden in verschiedene Abschnitte eingeteilt. Das zum Ovar gewandte Ende des Eileiters, das Infundibulum tubae uterinae, ist trichterförmig und trägt auf der Innenfläche Schleimhautfalten mit Fimbriae tubae. Diese legen sich an das Ovar an und verkleben zum Teil auch mit dessen Oberfläche. An das Infundibulum schließt sich die Ampulla tubae uterinae an, ein geringfügig erweiterter Abschnitt des Eileiters, in dem die Befruchtung stattfindet und die Eizelle einige Tage verweilt. Es folgt der längere, gewundene enge Teil Isthmus tubae uterinae. Die Öffnung zum Uterus, das Ostium uterinum tubae, liegt bei der Stute auf einer Papille, die als Barriere gegen aufsteigende Keime dient (SCHUMMER und VOLLMERHAUS, 1987; BARTMANN et al., 2002; LIEBICH und KÖLLE, 2010).

2.1.4 EIERSTÖCKE

wird im Gegensatz dazu nicht so groß und dehnt sich mehr in das Innere des Organs aus. Er überragt die Oberfläche nicht und ist palpatorisch nicht zu erfassen (HOHENHAUS und LEHMANN, 1990; McCUE, 1998).

2.2 Zyklus der Stute

2.2.1 Folikelentwicklung und Ovulation

In der Zona parenchymatosa des Stutenovars befinden sich die Ovarialfollikel, bestehend aus Oozyte und Follikelzellen. Die Entwicklung eines Follikels zu einem sprungreifen Graaf-Follikel durchläuft vier Stadien, in der sich die Größe der Oozyte und der Grad der Entwicklung der Follikelhüllen ändern.

Die vier Stadien der Folikelentwicklung sind:

Follikel selbst ist bereits in einem Stadium, in dem er sich unabhängig von FSH unter Einfluss von LH entwickelt. Etwa acht Tage vor der Ovulation nimmt die Anzahl der LH-Rezeptoren im Follikelepithel zu, die der FSH-Rezeptoren ab (GINTHER et al., 2001; HANDLER und AURICH, 2009).

2.2.2 Entwicklung des Corpus Luteum

Der Gelbkörper ist eine temporäre endokrine Drüse, die Progesteron bildet (ALLEN et al., 1987; AURICH und KLUG, 1993). Solange keine Befruchtung erfolgt, unterliegt er zyklischen Auf- und Abbauphasen und man spricht vom Corpus luteum cyclicum. Bei erfolgreicher Befruchtung bleibt der Gelbkörper für die Dauer der Trächtigkeit als Corpus luteum graviditatis bestehen (LIEBICH und KÖLLE, 2010).

Vor Einführung der Ultraschalltechnik in der Stutengynäkologie nahm man an, dass ein Corpus luteum sich immer über ein Corpus haemorrhagicum entwickelt. Dabei wurde ein Corpus haemorrhagicum als ein Gelbkörper mit einem zentralen Anteil von Follikelflüssigkeit und Blutbestandteilen definiert. Nachfolgende Untersuchungen ergaben, dass nur bei etwa der Hälfte der Gelbkörper diese Eigenschaften

Bei Störungen des zyklischen Ablaufs am Ovar kommt es vor, dass der Gelbkörper persistiert, Corpus luteum persistens, oder zystös entartet und zur sogenannten Gelbkörperzyste wird (KÖNIG und LIEBIG, 1999; McCUE, 1998).

2.2.3 Rosseverhalten

Durch die hormonellen Veränderungen in der Rosse kommt es bei der Stute sowohl zu organischen Veränderungen als auch zu typischem Rosseverhalten. Dabei zeigt
sie besonders in der Nähe eines Hengstes aber auch bei anderen Pferden folgende Verhaltensweisen:

- Anheben oder zur Seite legen des Schweifes
- Kontraktionen der Labien und damit Blößlegen der Klitoris („blitzen“)
- Häufiges Absetzen von mit Harn vermengtem Schleim
- Entspannen und/oder nach vorne Spitzen der Ohren
- Dulden des Hengstes oder aktives Hindrängen
- Bei Kontakt mit dem Hengst breitbeiniges Hinstellen
- Beugen von Knien und Fesselgelenken, gleichzeitiges Absenken des Beckens
- Lautäußerungen („Quietschen“)

(McCue et al., 2011).

Ist die Stute nicht rossig, duldet sie keine Annäherung des männlichen Tieres und schlägt den Hengst aktiv ab (HANDLER und AURICH, 2009).

2.2.4 ENDOKRINE REGULATION DES ZYKLUS

Mit zunehmender Reifung bildet der Follikel vermehrt Östrogen und Inhibin, welche beide zusammen mit niedrigen Progesteronwerten die Sekretion von FSH hemmen (MEINECKE, 2000). Die Östrogenkonzentration steigt im Blut bis zu einem

Bei ausbleibender Konzeption führt das im Endometrium gebildete Prostaglandin F$_{2\alpha}$ (PGF$_{2\alpha}$) etwa ab dem 14. bis 16. Tag des Zyklus zur Rückbildung des Gelbkörpers (WEEMS et al., 2006; VANDERWALL, 2011). Die Freisetzung von PGF$_{2\alpha}$ erfolgt pulsativ über mehrere Tage. Innerhalb von 24 bis 48 Stunden nach Beginn der PGF$_{2\alpha}$-Sekretion fällt die Plasmprogesteronkonzentration auf Basalwerte (GINTEGRHER und BEG, 2009; WEEEMS et al., 2006). Bei der Stute muss PGF$_{2\alpha}$ über den gesamten Kreislauf zirkulieren, um zum Ovar zu gelangen (HANDLER und AURICH, 2009).

Lange Zeit war unklar, ob bei der Stute auch Oxytocin, entweder hypophysären oder lutealen Ursprungs, an der Induktion der Prostaglandinfreisetzung aus dem Endometrium beteiligt ist (KING und EVANS, 1987). Beim Wiederkäuer wird Oxytocin

2.3 KLINISCHE UNTERSUCHUNGSMÖGLICHKEITEN

Die spezielle gynäkologische Untersuchung der Stute beinhaltet eine klinische Allgemeinuntersuchung, die Adspektion der von außen sichtbaren Anteile der Geschlechtsorgane (Perineum, Vulva, Vestibulum, Vagina und Mamma), die Palpation und die sonographische Befunderhebung an Zervix, Uterus und Ovarien.
Je nach Fall folgen mikroskopische, bakteriologische und hormonanalytische Untersuchungen (HANDLER, 2009).

2.3.1 TRANSREKTALE PALPATION

2.3.2 Vaginoskopie

Die vaginale Untersuchung hilft bei der Beurteilung des Zyklusstandes und der Diagnose von Erkrankungen. Außerdem können mit ihrer Hilfe die inneren Verschlussmechanismen des weiblichen Genitaltraktes, Hymen und Zervix, beurteilt werden. Sie umfasst die Beurteilung von Vestibulum, Klitoris, Hymen,

Im Diöstrus ist die Vaginalschleimhaut physiologisch blass-rosa und eher trocken. Da die Schleimhaut durch das Einströmen der Luft während der Untersuchung vermehrt durchblutet wird, sollte ihre Farbe als erstes beurteilt werden, um Artefakte zu vermeiden. Der äußere Muttermund ist fest verschlossen, angespannt und ragt rosettenförmig in die Vagina vor, er liegt nicht auf dem Boden der Vagina.

Während des Östrus ist die Schleimhaut der Vagina gerötet und feucht glänzend, gelegentlich findet sich klares Sekret auf dem Boden der Vagina. Der äußere Muttermund ist relaxiert, ödematös, leicht gerötet, und liegt zerfließend auf dem Boden der Vagina.

In der Trächtigkeit ist die Zervix blass und fest. Die Schleimhaut wird in der späten Trächtigkeit mit einem trüben klebrigen Exsudat bedeckt (SCHMIDT, 1950; RÖDIGER und BOSTEDT, 2004; ZENT und STEINER, 2011).
2.4 **Sonographie**

2.4.1 **Physikalische Grundlagen**

Qualität und Eindringtiefe des Ultraschallbildes sind abhängig von der Frequenz. Bei niedrigen Frequenzen ist die Auflösung schlecht, aber die Schallwellen dringen tief in das Gewebe ein (z. B. 3 MHz über 20 cm). Bei hoher Frequenz findet mehr Absorption statt, so dass die Eindringtiefe geringer ist, aber die Auflösung besser (z. B. 7,5 MHz 5 cm). Bei einer Ultraschalluntersuchung muss also ein Kompromiss zwischen Eindringtiefe und Auflösung getroffen werden (Kramer, 2004).

Die dafür verwendeten Ultraschallgeräte bestehen aus Sonographen (Scanner) und Schallkopf (Transducer) (Brück, 1994). Im Schallkopf befinden sich piezoelektrische Kristalle, die sich bei Anlegen einer elektrischen Spannung mechanisch verformen. Im Schallkopf wird also elektrische Energie in mechanische Energie umgewandelt und dann in Form von Ultraschallwellen ins Gewebe gesendet. Wird Wechselspannung angeschlossen, werden Schallwellen einer bestimmten Frequenz erzeugt (Powis, 1998). Für diagnostische Zwecke wird gepulster Ultraschall verwendet, dabei wirken die piezoelektrischen Kristalle 0,1 % der Zeit als Sender und 99,9 % der Zeit als Empfänger (Frommhold und Koischwitz, 1991, Wigger und Kramer, 2008). Die reflektierten Ultraschallwellen kommen als mechanische Energie zum Transducer, der sie in elektrische Energie umwandelt und

2.4.2 VERHALTEN VON ULTRASCHALL IM GEWEBE

2.4.3 Bildwiedergabe und Abbildungsverfahren

2.4.4 Transrektale Sonographie des Ovars der Stute

Die ersten sonographischen Untersuchungen des Ovars der Stute stammen von PALMER und DRIANCOURT (1980). Die Untersuchungen wurden mit einem 3-MHz-Schallkopf durchgeführt. Man konnte damit Follikel ab einem Durchmesser von 7 mm erkennen. Gelbkörper konnten über einen Zeitraum von 5 Tagen als helle Areale
dargestellt werden (PALMER und DRIAN COURT, 1980). Mit dem gleichen Gerät fanden MERKT et al. (1983) an der Stelle, an der zuvor der Follikel dargestellt wurde, nach der Ovulation eine zunehmende Echodichte. MEIER et al. (1985) wiesen besonders auf die Vorzüge des Ultraschalls bei der Follikelkontrolle unter Praxisbedingungen hin. Sie konnten nachweisen, dass bei eindeutigem Rosseverhalten mindestens auf einem Ovar ein Follikel mit einem Durchmesser von etwa 30 mm vorhanden ist und dass dieser in den folgenden Tagen bis zu 10 mm pro Tag wächst. Etwa 24 Stunden vor der Ovulation wird das Wachstum deutlich langsamer oder stagniert. Weiter stellten die Autoren fest, dass der präovulatorische Follikel beginnt, sich abzuplatten, was sie auf eine verminderte Wandspannung und dadurch bedingte größere Verformbarkeit durch den Druck des Schallkopfes zurückführten. Ferner stellten sie fest, dass die Wandbeschaffenheit bei präovulatorischen Follikeln unregelmäßig wird. Da Artefakte gleiche Effekte hervorrufen können, konnte dies nicht genau gedeutet werden.

Verschiedene Autoren weisen auf die Indikationen der Ultraschalluntersuchung des Stutenovars hin:
- Diagnose der Geschlechtsreife (GINTHER, 1986)
- Überwachung der Ovulation (LEIDL et al., 1992; TESCHNER, 2008)
- Unterscheidung zweier nahe beieinander liegender Follikel, die bei Palpation als ein Follikel erscheinen (GINTHER, 1986)
- Darstellung der Bildung und Entwicklung eines Corpus luteum und damit Beurteilung des Zyklusstandes der Stute (GINTHER und PIERSON, 1984; KÄHN und LEIDL, 1987; MONTAVON, 1994; TESCHNER, 2008)
- Darstellung eines persistierenden Corpus luteum (GINTHER, 1988)
Unterscheidung eines frischen *Corpus luteum* von einem präovulatorischen Follikel (PALMER und DRIANCOURT, 1980; GINTHER und PIERSON, 1984)

- Diagnose von stiller Rosse mit Ovulation, anovulatorischer Rosse und Doppelovulationen (GINTEGR und PIERSON, 1984; HOHENHAUS und BOSTEDT, 1992)

- Diagnose der Regression des *Corpus luteum* während der Trächtigkeit (GINTEGR, 1988)

- Diagnose eines Follikelhämatoms (GINTEGR und PIERSON, 1984; KÄHN und LEIDL, 1987)

- Diagnose von Ovartumoren (GINTEGR und PIERSON, 1984; KÄHN und LEIDL, 1987)

2.4.5 Quantitative Graustufenanalyse in der Ultraschalldiagnostik

Bildpunkten hinsichtlich Helligkeit, Kontrast und Homogenität (DELORME und ZUNA, 1995).

Bei mehrdimensionalen Analysen wird auch die räumliche Verteilung der Grauwerte ausgewertet, so dass Aussagen über die Gewebetextur und die Quantität pathologischer Veränderungen gemacht werden können (PINAMONTI et al., 1989; LIEBACK et al., 1991).
2.4.6 Fehlerquellen der Graustufenanalyse

2.4.7 Einsatz der Graustufenanalyse

Verschiedene technische Entwicklungen waren Voraussetzung für die Einführung der Graustufenanalyse in die medizinische Diagnostik: Durch die Entwicklung der Computertechnologie war es möglich, die eindimensionale Häufigkeitsverteilung von Grauwerten eines B-Mode-Bildes zu generieren (GEISSLER et al., 1975). Das Real-Time-Verfahren ermöglichte eine artefaktfreie Auswahl von Ultraschallbildern, sodass die ROIs optimal positioniert werden konnten. Als Folge konnte die Variabilität der
Messungen gesenkt und deren Reproduzierbarkeit erhöht werden (GEBEL und KUBALE, 1982).

2.4.7.1 HUMANMEDIZIN

In der Kardiologie wird die Graustufenanalyse verwendet bei der
- Suche nach infarktgeschädigten Arealen (McPHerson et al., 1986),
- Klassifikation der Kardiomyopathien (SKORTON und COLLINS, 1988; LIEBACK et al., 1989),

Mit Hilfe mehrdimensionaler Analyseverfahren können
- perivaskulären Proteinablagerungen (myokardiale Amyloidose) (PINAMONTI et al., 1989),
- Myokardfibrose (FERDEGHINI et al., 1991),
- akute Myokarditis (LIEBACK et al., 1989) und
- beginnende Abstoßungsreaktionen bei der Herztransplantation (LIEBACK et al., 1991; HARDOUIN et al., 1994) diagnostiziert werden.

In der Inneren Medizin wird die Graustufenanalyse u. a. eingesetzt
- in der Diagnostik von Lebererkrankungen (RÄTH et al., 1984; LORENZ et al., 1984),
- bei Veränderungen des Milzgewebes (BLECK et al., 1997b),
- bei der Diagnose von Pankreaserkrankungen (KÖLBEL et al., 1987; WILDGRUBE und DEHWALD, 1990; BLECK et al., 1998) und
bei Schilddrüsenerkrankungen (ZIELKE et al., 1985; MÜLLER-GÄRTNER, 1986; BECKER et al., 1989).

visueller Parameter im Vergleich zur Graustufenanalyse. Bei subjektiv visueller Beurteilung gelang die Unterscheidung mit einer Spezifität von 75,8 % und einer Sensitivität von 72,7 %, mittels Graustufenanalyse mit Spezifität und Sensitivität von 90,5 %. Zu ähnlichen Ergebnissen kamen ZIELKE et al. (1985).

2.4.7.2 VETERINÄRMEDIZIN

Auch in der Veterinärmedizin kommt die Graustufenanalyse zunehmend zum Einsatz, hat jedoch bisher bei weitem nicht die Bedeutung wie in der Humanmedizin. RUBERTE et al. (1994) untersuchten Morphologie, Milchproduktion und Pathogenese von Erkrankungen an Eutern von Schafen mittels Graustufenanalyse und konnten Beurteilungskriterien zur anatomischen Struktur des Euters in vivo erstellen.

Gesamtfläche als Standard für die Echotexturanalyse des equinen Endometriums geeignet ist, da abhängig von der Platzierung der ROIs signifikante Unterschiede hinsichtlich der Einzelparameter auftreten.

mögliche Methode zur Quantifizierung von sonographisch darstellbaren Veränderungen dar (HÖHNE, 2002).
Im Gegensatz dazu stellte BANGEN (2011) fest, dass die quantitative Graustufenanalyse am Hengsthoden keinen zusätzlichen Informationsgewinn gegenüber der konventionellen B-Mode-Sonographie bringt. Die histologische Untersuchung einer Hodenbiopsie kann nicht durch die quantitative Graustufenanalyse ersetzt werden.
3 MATERIAL UND METHODEN

3.1 PROBANDENKOLLEKTIV

3.2 VORVERSUCHE

3.2.1 IDENTIFIZIERUNG DES CORPUS LUTEUM IN VITRO

Um festzustellen, ob Gelbkörper sicher mittels Ultraschall identifizierbar sind, wurden zwanzig Ovarien aus dem Schlachthof im Wasserbad mittels Ultraschall untersucht, aufgeschnitten und anschließend das Vorkommen eines Gelbkörpers mit den sonographischen Befunden verglichen.

3.2.2 DRUCKEINWIRKUNG

Um beschreiben und bewerten zu können, ob und wie der Aufsetzdruck des Schallkopfes auf das zu untersuchende Gewebe Einfluss auf die quantitative Graustufenanalyse nimmt, wurde bei fünf Stuten in insgesamt 10 Wiederholungen die Darstellung des Gelbkörpers jeweils mit den grob zu unterscheidenden Druckstufen
- vermindelter Druck,
- normaler Druck und
- erhöhter Druck

3.2.3 **DIFFERENZIERBARKEIT VON OVARGEWEBE UND DEM CORPUS LUTEUM**

Bei fünf Stuten wurde in einem Zyklus an den Tagen 5, 10 und 17 je eine Graustufenuntersuchung des Gelbkörpers und eine des Ovargewebes durchgeführt, dabei war Tag 1 der Tag nach der Ovulation. Das Ziel dieser Untersuchung bestand darin, zu untersuchen, ob sich Ovar- und Gelbkörpergewebe eindeutig mittels Graustufenanalyse in vivo unterscheiden lassen.

3.3 **UNTERSUCHUNGSMETHODEN**

3.3.1 **SONOGRAPHISCHE UNTERSUCHUNG**

Vor Beginn einer jeden sonographischen Untersuchung wurde ein Einmal-Handschuh (Eurofarm Veterinär-Einmalhandschuh Vet Top, Copolymer) angelegt und mittels Gleitgel (Bovi Concept® Gleitgel N, Albrecht GmbH, Aulendorf, Deutschland) schlüpfri...
Uterushörner bis zu den Eierstöcken verfolgt werden, so dass Follikel und Gelbkörper sonographisch dargestellt und eine Graustufenanalyse der Gelbkörper durchgeführt werden konnte. Die Dokumentation der erhobenen Befunde erfolgte in einem Untersuchungsbogen (Abbildung 1), der folgende Parameter aufnahm:

- Datum der Untersuchung
- Erhobene Grauwerte
- Beschreibung Follikel und Gelbkörper auf dem rechten bzw. linken Ovar
- Form der Portio vaginalis
- Auffälligkeiten im Verhalten oder sonstige äußere Gegebenheiten

Abbildung 1: Muster eines Untersuchungsbogens zur Dokumentation der erhobenen Befunde; Verwendete Abkürzungen: kl = kleine, F = Follikel, Ø = durchschnittliche Größe des Follikels, C.l. = Corpus luteum
3.3.1.1 Ultrasschallgerät und verwendete Einstellungen

Tabelle 1: Leistungsniveau des Ultrasschallgerätes Honda HS-1500V und verwendete Einstellungen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einstellungsvarianten</th>
<th>Verwendete Einstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betriebsmodus</td>
<td>B-, B/B-, B/M- Mode</td>
<td>B-Mode</td>
</tr>
<tr>
<td>Frequenz in MHz</td>
<td>5.0 / 7.5 / 10.0</td>
<td>7.5</td>
</tr>
<tr>
<td>Gesamtverstärkung</td>
<td>36-100 dB</td>
<td>65</td>
</tr>
<tr>
<td>Dynamikbereich</td>
<td>35-95 dB</td>
<td>75</td>
</tr>
<tr>
<td>Tiefenausgleich (TGC)</td>
<td>stufenlose Schieberegler</td>
<td>mittlere Position</td>
</tr>
<tr>
<td>Fokuseinstellung</td>
<td>kann entsprechend der Skala verändert werden</td>
<td>je nach Bild 4 oder 6 cm</td>
</tr>
<tr>
<td>Dynamischer Fokus</td>
<td>ein / aus</td>
<td>ein</td>
</tr>
<tr>
<td>Bild-/Zeilenkorrektur</td>
<td>hoch / niedrig / aus</td>
<td>hoch</td>
</tr>
<tr>
<td>γ-Korrektur</td>
<td>1 – 8</td>
<td>5</td>
</tr>
<tr>
<td>Graustufenanzeige</td>
<td>ein / aus</td>
<td>ein</td>
</tr>
<tr>
<td>Bildgröße R</td>
<td>40 – 120 mm</td>
<td>60 mm</td>
</tr>
</tbody>
</table>

Die Ultrasschallaufnahmen wurden während jedes Untersuchungstages in einem geräteinternen Flash-Speicher mit einer Kapazität von 60 Bildern gespeichert und nach Abschluss der Messungen über eine serielle Schnittstelle im jpg-Format auf einen PC übertragen.
3.3.1.2 Deskriptive Auswertung der sonographischen Befunde des Gelbkörpers

Die Beschreibung der sonographischen Darstellung der Gelbkörper verwendet folgende Parameter:
- Abgrenzbarkeit,
- Echogenität,
- Schallverhalten,
- Homogenität

(Tabelle 2).

Tabelle 2: Befundschema zur sonographischen Charakterisierung der Gelbkörper

<table>
<thead>
<tr>
<th>Abgrenzbarkeit</th>
<th>abgrenzbar, nicht abgrenzbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echogenität</td>
<td>echoreich, mittelechogen, echoarm, echofrei</td>
</tr>
<tr>
<td>Homogenität</td>
<td>homogen, inhomogen</td>
</tr>
<tr>
<td>Schallverhalten</td>
<td>neutral, Schallschwächung, Schallverstärkung</td>
</tr>
</tbody>
</table>

Die Abgrenzbarkeit ist die sichere Trennbarkeit des untersuchten vom umliegenden Gewebes (Abbildung 2).

Die Echogenität beschreibt die Eigenschaft der Gewebe Ultraschallwellen zu reflektieren und zu streuen, so dass entsprechende Echos auf dem Bildschirm zu sehen sind. Es werden echofreie (d.h. gleichmäßig schwarze Flächen), echoarme (feine, vereinzelte, schwache Einzelechos), mittelechogene und echogene (weiß oder hellgraue) Bereiche unterschieden.

Die Homogenität beschreibt die Verteilung der Einzelechos, wobei die gleichmäßige (homogene, Abbildung 2) und ungleichmäßige (inhomogene, Abbildung 3) Verteilung unterschieden wird.

Das Schallverhalten beschreibt die Schallauslöschung, den Schallschatten oder die Schallverstärkung. Diese sind als sonographische Artefakte zu deuten, die durch Brechung oder Reflexion entstehen (Abbildung 4).
Abbildung 2: Ultrasonographische Bilder verschiedener equiner Gelbkörper, a: homogen, eindeutig abgrenzbar; b: homogen, nicht eindeutig abgrenzbar

Abbildung 3: Ultrasonographische Bilder zweier equiner inhomogener Gelbkörper
3.3.1.3 Festlegung der ROI’s und quantitative Graustufenanalyse (QGSA)

Nach Erzielung der optimalen Darstellung des Corpus luteum wurde das Echtzeitbild auf dem Monitor fixiert und auf folgende Weise zwei ROI’s (Region of Interest) festgelegt. Pro Bild (pro Gelbkörper) wurden im Fokusbereich an zwei artefaktfreien, visuell möglichst hellen homogenen Stellen innerhalb des Corpus luteum je ein 5 x 5 mm großes Quadrat als ROI markiert. Pro ROI wird die Grauwertanalyse durchgeführt (Abbildung 5). Die Werte werden in jedem Standbild eingeblendet. Um eine möglichst große Fläche des Gelbkörpers in die Graustufenanalyse einzubeziehen, wurden unter Einhalten der Organgrenzen zwei 5 x 5 mm große Quadrate auf dem Gelbkörper gewählt und die Ergebnisse anschließend gemittelt. Die Auswahl von 3 oder noch mehr Quadraten ließ das zur Verfügung stehende Ultraschallgerät technisch nicht zu. Stattdessen bestand noch die Option, den Gelbkörper insgesamt zu umfahren, um so noch mehr Fläche in die Bewertung einzubeziehen. Diese Möglichkeit wurde verworfen, da die Grenzen des Gelbkörpers nicht immer eindeutig vom umgebenden Gewebe zu unterscheiden sind. Nach dieser
Entscheidung wurden die beiden Analysefenster (ROI's) so platziert, dass sie sicher auf dem Gelbkörper lagen.

Für die ROI errechnete das Ultraschallgerät die Grauwertnormalverteilung in Form eines Funktionsgraphen, den Mittelwert der Grauwertverteilung (Lmean), die Standardabweichung (SD), den Modalwert (Nmost) und den Quotienten aus Nmost und Nall. Dabei ist Nall ein durch das Gerät festgelegter Maximalwert von Grauwertpixeln, der je nach Einstellung des Gerätes variieren kann.

Der Mittelwert der aus den zwei ROI’s gewonnen Mittelwerte der Grauwertverteilung (Lmean) wird fortan in der gesamten Arbeit „(gemessener) Grauwert“ genannt.

Abbildung 5: Ultrasonographische Bilder zweier equiner Gelbkörper mit eingezeichneten ROI und Graustufenanalyse
Nach sorgfältiger Reinigung der Vulva erfolgte die Vaginoskopie mittels sterilisiertem Polanski-Spekulum. Bei der Beurteilung der Form der Portio vaginalis wurde die Einteilung nach HANDLER (2009) zugrunde gelegt:

- Zapfenförmig (4), d. h. die Portio vaginalis ragt deutlich in die Vagina hinein (Abbildung 6)
- Rosettenförmig (3), d. h. der äußere Muttermund nimmt die Form einer Rosette an mit eher straffen Falten (Abbildung 7)
- Schlaff (2), d. h. die Rosettenform ist zwar noch erkennbar, aber die Falten hängen bereits lappig über (Abbildung 8)
- Verlaufend (1), d. h. der äußere Muttermund liegt am Boden der Vagina und die Falten verlaufen ineinander (Abbildung 9).

In die Tabelle wurden nicht die Merkmalsausprägungen, sondern die in Klammern angegebenen Verschlüsselungen eingetragen.

Abbildung 6: Portio vaginalis einer Stute, welcher der Form zapfenförmig zugeordnet wurde
Abbildung 7: Portio vaginae einer Stute, welcher der Form rosettenförmig zugeordnet wurde

Abbildung 8: Portio vaginae einer Stute, welcher der Form schlaff zugeordnet wurde

Abbildung 9: Portio vaginae einer Stute, welcher der Form verlaufend zugeordnet wurde
3.3.3 **BLUTUNTERSUCHUNG**

3.4 **UNTERSUCHUNGSINTERVALLE**

Während der Voruntersuchungen wurden die Stuten an jedem zweiten Tag etwa zur gleichen Tageszeit untersucht, ab einer Follikelgröße von 3 cm und gleichzeitiger Ausprägung der Radspeichenstruktur der Gebärmutter täglich. Als Tag eins des Versuchsdurchgangs gilt der Tag, an dem die Ovulation palpatorisch und sonographisch nachgewiesen wurde.

3.4.1 **DURCHGANG 1**

Es wurde bei den Stuten während der Dauer eines Zyklus täglich eine Graustufenmessung des *Corpus luteum* durchgeführt und eine Blutprobe entnommen zur Prüfung, ob der Grauwert des Gelbkörpers mit dem Progesterongehalt, dem Östrogengehalt und dem Progesteron-Östrogen-Quotienten korreliert. Weiter wurde in diesem Durchgang an jedem zweiten Tag die Portio vaginalis beurteilt, um ebenfalls eine Korrelation mit der Progesteronkonzentration
der Östrogenkonzentration und dem Progesteron-Östrogen-Quotienten zu untersuchen.

Bei drei der sieben Stuten wurde aus folgenden Gründen je ein zweiter Zyklus erfasst.

– Stute 1: Es sollte ausgeschlossen werden, dass die großen Schwankungen der Graustufenaanalyse auf Fehlern während der Untersuchungen beruhen;
– Stute 4: Ausbildung von zwei Gelbkörpern, von denen sich einer nach 7 Tagen zurückbildete;
– Stute 5: der Gelbkörper änderte Form und Konsistenz auf eine Weise, dass eine Auswertung nicht möglich schien.

Diese Zyklen sind im Abschnitt 4.2, 4.3 und 4.4 beschrieben. Sie wurden aus Gründen der Vergleichbarkeit jedoch von der statistischen Auswertung ausgeschlossen.

Stute 4 wurde aufgrund einer Verletzung der rektalen Schleimhaut am Tag 4 am darauffolgenden Tag nicht untersucht.

Bei Stute 6 wurde an Tag 29 des ersten Durchgangs ein persistierendes Corpus luteum angenommen und der Zyklus durch eine einmalige intramuskuläre Gabe von 5 mg Prostaglandin F\textsubscript{2}α (1 ml Dinolytic® ad us. vet, Pfizer AG) nach 31 Tagen abgebrochen.

3.4.2 Durchgang 2

Es wurde bei jeder Stute an den Tagen 1, 5, 10, 15 und 20 des Zyklus eine Graustufenmessung des Corpus luteum vorgenommen, eine Blutprobe entnommen und der äußere Muttermund beurteilt.
3.5 Statistische Methoden

3.5.1 Statistische Auswertungen

Bei der Bewertung der Signifikanzen wurde das Signifikanzniveau $\alpha = 0,05$ angesetzt.

Signifikanzattribute:

- $p \leq 0,001$ hoch signifikant,
- $p \leq 0,01$ signifikant,
- $p \leq 0,05$ schwach signifikant,
- $p > 0,05$ nicht signifikant.

Für die Deskription der Daten wurden arithmetische Mittelwerte (x_a), Standardabweichungen ($\pm s$), Minima (Min) und Maxima (Max) berechnet. Lag keine Normalverteilung vor, wurden die Daten logarithmisch transformiert und als geometrischer Mittelwert mit Streufaktor dargestellt. Dieser Sachverhalt lag bei der Auswertung der Grauwertanalyse im Zyklusverlauf und der Plasmakonzentration von Progesteron und Östradiol-17β vor.

Um die Zeitabhängigkeit des Grauwertes bzw. der Plasmaprogesteronkonzentration zu beschreiben, wurde eine einfaktorielle Varianzanalyse durchgeführt.

Die Korrelationen zwischen dem Grauwert einerseits und der Plasmaprogesteronkonzentration bzw. der Plasmaöstradiol-17β-Konzentration bzw. dem Progesteron-Estradiol-17β-Quotienten andererseits wurden mittels des Kreuzkorrelationskoeffizienten nach Pearson bestimmt. Zur Angabe der Korrelation zwischen der Formation des äußeren Muttermundes zum einen und dem Grauwert bzw. der Plasmaprogesteronkonzentration bzw. der Plasmaöstradiol-17β-
Konzentration zum anderen wurde der Rangkorrelationskoeffizient nach Spearman angewandt.
Der fehlende Messwert von Stute 7 im ersten Zyklus wurde interpoliert.

3.5.2 **SYNCHRONISATION DER ZYKLEN**

Die Zyklusdauer der Stute differiert von Tier zu Tier und auch beim einzelnen Individuum in Folgezyklen. Zur Verbesserung der Vergleichbarkeit wurden daher die in die vorliegende Untersuchung aufgenommenen Zyklen des Durchganges 1 hinsichtlich der Anzahl der in die Auswertung aufgenommenen Messpunkte vereinheitlicht und synchronisiert.

Aus jedem Zyklus wurden 15 Messpunkte in die Vergleichsuntersuchung aufgenommen. Da die deutlichsten Veränderungen der Hormonkonzentration und des Grauwertes eines Gelbkörpers am Anfang und am Ende eines Zykls auftreten, wurde festgelegt, von jedem Zyklus die ersten und letzten 5 Tage zu analysieren und die übrigen 5 Messpunkte äquidistant auf die im jeweiligen Zyklus verbleibende Zeitspanne zu verteilen.

Abbildung 10: Graphische Darstellung der Synchronisation eines Zykls von 24 Tagen Dauer
3.5.3 RELATIVER GRAUWERT

In einigen Darstellungen der vorliegenden Arbeit wird statt des tatsächlich gemessenen Grauwertes der „Relative Grauwert“ verwendet. Zu seiner Bestimmung wird zunächst der Mittelwert aller im Zyklus dieser Stute gemessenen Grauwerte gebildet. Es ergibt sich:

\[
\text{Relativer Grauwert} = \frac{\text{Grauwert} - \text{Mittelwert}}{\text{Mittelwert}} \times 100
\]

d. h.

\[
\text{Relativer Grauwert} = \frac{\text{Abweichung vom Mittelwert}}{\text{Mittelwert}} \text{ in Prozent vom Mittelwert.}
\]

Durch diese Definition werden bei jeder Stute die Grauwerte auf den Mittelwert null zentriert und die Abweichungsdifferenzen prozentual normiert. Auf diese Weise wird der Einfluss der unterschiedlichen Werteneiveaus der Stuten eliminiert und die Vergleichbarkeit der Grauwertangaben aller Stuten hergestellt.

3.5.4 TRANSFORMIERTE PLASMAPROGESTERONKONZENTRATION

In einigen Abbildungen der Arbeit wird statt (des gemessenen Wertes) der Plasmaprogesteronkonzentration diese Variable logarithmiert und dann zentriert, d. h. die logarithmierte Variable wird so transformiert, dass sie den Mittelwert Null hat. Der gemessene Wert wird also ersetzt durch den Logarithmus dieses Wertes abzüglich des Mittelwertes der Logarithmen aller über dem Zyklus gemessenen Werte dieser Stute.

3.5.5 Transformierte Plasma-Östradiol17β-Konzentration

4 ERGEBNISSE

4.1 VORVERSUCHE

4.1.1 SONOGRAPHISCHE UNTERSUCHUNG AN SCHLACHTHOFORGANEN

Abbildung 11: Sonographische Darstellung des Gelbkörpers einer Stute im Wasserbad.

Typisch für die sonographische Struktur des Gelbkörpers ist die Echogenität seiner Schnittfläche. Sie zeigt Graustufen, die für Reflexionen von mäßig dichtem Gewebe charakteristisch sind. Durch eine dünne echoschwache Begrenzungslinie wird der Gelbkörper zum umgebenden Ovarparenchym abgegrenzt, das durch seine höhere Dichte meist ein etwas intensiveres Echo zeigt und von echolosen Follikeln durchsetzt ist.
4.1.2 DRUCKEINWIRKUNG

Nach Verminderung des Druckes waren nur 2 von 20 ROI's (10 %) der Gelbkörper auswertungsfähig darstellbar. In diesen beiden Fällen wurde der Grauwert gegenüber dem bei Normaldruck annähernd halbiert.

Bei Erhöhung des Aufsetzdrucks waren 11 von 20 ROI's (55 %) auswertbar. Bei den vergleichbaren Messungen (gleiches Tier zur gleichen Zeit) ergab sich ein
durchschnittlicher Abfall des Grauwertes um 5 % bei Erhöhung des Drucks, es ergaben sich jedoch sowohl Erhöhungen als auch Verringerungen des Grauwertes.

Tabelle 3: Grauwerte bei unterschiedlichem Druck der Ultraschallsonde auf das zu untersuchende Gewebe (n. a. = keine auswertbare Darstellung des Gelbkörpers möglich)

<table>
<thead>
<tr>
<th>Tag</th>
<th>erhöhter Druck Mittelwert</th>
<th>normaler Druck Mittelwert</th>
<th>verminderner Druck Mittelwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12,1 11,5 11,8</td>
<td>12,6 12,3 12,45</td>
<td>n. a. n. a. n. a.</td>
</tr>
<tr>
<td>2</td>
<td>6,4 n. a. 6,4</td>
<td>10,5 10 10,25</td>
<td>n. a. n. a. n. a.</td>
</tr>
<tr>
<td>3</td>
<td>n. a. n. a. n. a.</td>
<td>15,4 15,9 15,65</td>
<td>8,8 n. a. 8,8</td>
</tr>
<tr>
<td>4</td>
<td>11,8 n. a. 11,8</td>
<td>10,6 10,6 10,6</td>
<td>n. a. n. a. n. a.</td>
</tr>
<tr>
<td>5</td>
<td>22,9 26 24,45</td>
<td>22,6 22,6 22,6</td>
<td>n. a. n. a. n. a.</td>
</tr>
<tr>
<td>6</td>
<td>22,3 20,3 21,3</td>
<td>18,4 18,3 18,35</td>
<td>n. a. n. a. n. a.</td>
</tr>
<tr>
<td>7</td>
<td>10,2 n. a. 10,2</td>
<td>12,9 13 12,95</td>
<td>7,3 n. a. 7,3</td>
</tr>
<tr>
<td>8</td>
<td>n. a. n. a. n. a.</td>
<td>17,2 17,1 17,15</td>
<td>n. a. n. a. n. a.</td>
</tr>
<tr>
<td>9</td>
<td>12 12,1 12,05</td>
<td>11,9 12,8 12,35</td>
<td>n. a. n. a. n. a.</td>
</tr>
<tr>
<td>10</td>
<td>n. a. n. a. n. a.</td>
<td>11,1 11,2 11,15</td>
<td>n. a. n. a. n. a.</td>
</tr>
</tbody>
</table>

4.1.3 DIFFERENZIERBARKEIT VON OVARGEWEBE UND DEM CORPUS LUTEUM IN VIVO

Abbildung 13: Ovarium von Stute 1 am Tag 5 im Zyklus. Bild a zeigt die Graustufenanalyse des Gelbkörpers, Bild b die des Ovargewebes.
Tabelle 4: Grauwerte von Ovar und Corpus luteum (C. l.) von 5 Stuten an den Tagen 5, 10 und 17 im Zyklus (n. a. = nicht ausreichend Ovargewebe für eine zweite Graustufenanalyse darstellbar)

<table>
<thead>
<tr>
<th>Tiernummer</th>
<th>Tag im Zyklus</th>
<th>Ovar</th>
<th>Ovar gemittelt</th>
<th>Ovar</th>
<th>Ovar gemittelt</th>
<th>C. l.</th>
<th>C. l.</th>
<th>C. l. gemittelt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>11,6</td>
<td>n. a.</td>
<td>11,6</td>
<td>16</td>
<td>16,1</td>
<td>16,05</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>7,6</td>
<td>n. a.</td>
<td>7,6</td>
<td>14,4</td>
<td>15</td>
<td>14,7</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td>7,8</td>
<td>n. a.</td>
<td>7,8</td>
<td>12,6</td>
<td>12,3</td>
<td>12,45</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>9,7</td>
<td>n. a.</td>
<td>9,7</td>
<td>18,3</td>
<td>17,4</td>
<td>17,85</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>5,7</td>
<td>n. a.</td>
<td>5,7</td>
<td>15,4</td>
<td>15,9</td>
<td>15,65</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>5,2</td>
<td>8,9</td>
<td>7,05</td>
<td>11,4</td>
<td>10,4</td>
<td>10,9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6,8</td>
<td>9,4</td>
<td>8,1</td>
<td>13,5</td>
<td>13,9</td>
<td>13,7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>10,7</td>
<td>n. a.</td>
<td>10,7</td>
<td>15,5</td>
<td>15,3</td>
<td>15,4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>7,3</td>
<td>n. a.</td>
<td>7,3</td>
<td>10,4</td>
<td>8,9</td>
<td>9,65</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>10,2</td>
<td>7,3</td>
<td>8,75</td>
<td>24,5</td>
<td>25,7</td>
<td>25,1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>8,0</td>
<td>9,6</td>
<td>8,8</td>
<td>17,2</td>
<td>17,1</td>
<td>17,15</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>17</td>
<td>9,1</td>
<td>10,6</td>
<td>9,85</td>
<td>16,7</td>
<td>18,5</td>
<td>17,6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>6,9</td>
<td>n. a.</td>
<td>6,9</td>
<td>11,5</td>
<td>11,1</td>
<td>11,3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>9,9</td>
<td>8,5</td>
<td>9,2</td>
<td>11,9</td>
<td>12,8</td>
<td>12,35</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>17</td>
<td>10,9</td>
<td>7,6</td>
<td>9,25</td>
<td>11,1</td>
<td>11,2</td>
<td>11,15</td>
<td></td>
</tr>
</tbody>
</table>

Die Mittelwerte der Grauwerte des Ovars der 5 Stuten an den Tagen 5, 10 und 17 unterscheiden sich statistisch signifikant (p = 0,01) von den Mittelwerten der Grauwerte der Gelbkörper. Die Unterschiede zwischen den einzelnen Tagen sind statistisch nicht signifikant (p = 0,108) (Abbildung 14).
Abbildung 14: Mittelwerte (MW) der Grauwerte (GW) des Ovars bzw. des Gelbkörpers (C. l.) von 5 Stuten an den Tagen 5, 10 und 17 im Zyklus

4.2 **Sonographische Untersuchung am lebenden Tier**

4.2.1 **Sonographische Darstellung des Corpus luteum im Verlauf des Zyklus**

Die Dauer der Zyklen im Durchgang 1 variierte zwischen 17 und 36 Tagen, im Durchschnitt 23,1 Tage, die Standardabweichung beträgt 5,1 Tage (Tabelle 5). Bei Stute 6 wurde ein persistierendes Corpus luteum angenommen und der Zyklus durch eine einmalige Gabe von Prostaglandin F₂α (1 ml Dinolytic® ad us. vet, Pfizer AG) nach 31 Tagen abgebrochen. Ohne diesen Zyklus liegt die durchschnittliche Dauer der Zyklen bei 21,6 Tagen, die Standardabweichung bei 2,5 Tagen.
<table>
<thead>
<tr>
<th>Pferd</th>
<th>Dauer des ersten Zyklus (Tage)</th>
<th>Dauer des zweiten Zyklus (Tage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stute 1</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>Stute 2</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Stute 3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Stute 4</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>Stute 5</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>Stute 6</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Stute 7</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

Von den 10 Zyklen konnte bei vier Zyklen der Gelbkörper über den gesamten Zyklus dargestellt werden (Tabelle 6). In einem Zyklus (Stute 4) konnte auf dem linken Ovar ein Gelbkörper von Tag 1 bis 7 dargestellt werden. Auf dem rechten Ovar konnte ein weiterer Gelbkörper von Tag 4 bis Tag 19 dargestellt werden. Dieser Zyklus dauerte insgesamt 19 Tage.

In den verbleibenden 5 Zyklen konnte der Gelbkörper nicht über den gesamten Zyklus dargestellt werden, der Gelbkörper bildete sich jeweils in einem Zeitraum von 4 - 7 Tagen vor Beginn des neuen Zyklus zurück (Tabelle 6).

Tabelle 6: Sonographische Darstellung des *Corpus luteum* im Zyklusverlauf. In Klammern ist jeweils die Gesamtdauer des Zyklus angegeben und auf welchem Ovar das *Corpus luteum* darstellbar war (re = rechtes Ovar, li = linkes Ovar.

<table>
<thead>
<tr>
<th>Pferd</th>
<th>Zyklus 1</th>
<th>Zyklus 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stute 1</td>
<td>1 - 17 (re; 23)</td>
<td>1 - 20 (re; 24)</td>
</tr>
<tr>
<td>Stute 2</td>
<td>1 - 17 (re; 17)</td>
<td></td>
</tr>
<tr>
<td>Stute 3</td>
<td>1 - 20 (li; 20), 1 - 13 (re; 20)</td>
<td></td>
</tr>
<tr>
<td>Stute 4</td>
<td>1 - 7 (li; 19), 4 - 19 (re; 19)</td>
<td>1 - 22 (li; 22), 1 - 16 (re; 22)</td>
</tr>
<tr>
<td>Stute 5</td>
<td>1 - 22 (re; 22)</td>
<td>1 - 18 (re; 24)</td>
</tr>
<tr>
<td>Stute 6</td>
<td>1 - 32 (re; 36)</td>
<td></td>
</tr>
<tr>
<td>Stute 7</td>
<td>1 - 17 (li; 24)</td>
<td></td>
</tr>
</tbody>
</table>

4.2.2 **DIFFERENZIERTE BETRACHTUNG DER **CORPORA LUTEA** **IM VERLAUF DES ZYKLUS**

4.2.2.1 **GRÖßE, ECHOGENITÄT UND HOMOGENITÄT**

4.2.2.1.1 **DURCHGANG 1**

In diesem Durchgang bildete Stute 4 auf beiden Ovarien je einen Gelbkörper. Bei allen Stuten schwankte der Durchmesser der Gelbkörper zwischen 1,5 und 4 cm. Er nahm, ausgenommen bei Stute 6, bei allen Stuten im Verlauf des Zyklus ab. Dabei begann die Größenabnahme bei den Stuten 1, 2, 3 und 5 innerhalb der ersten fünf Tage. Bei Stute 4 begann die Größenabnahme des linken Gelbkörpers ebenfalls innerhalb der ersten fünf Tage, die des rechten Gelbkörpers am zwölften Tag. Bei Stute 7 verringerte sich die Größe des Gelbkörpers ab dem zwölften Tag (Abbildung 15).
Durchmesser des Corpus luteum in cm

Tag im Zyklus

Stute 1

Stute 2

Stute 3
Durchmesser des Corpus luteum in cm

Tag im Zyklus

Stute 4

C. l. links

C. l. rechts

Stute 5
Abbildung 15: Größenentwicklung der *Corpora lutea* der Stuten im ersten Durchgang, ausgenommen Stute 6, dargestellt an den Tagen, an denen der Gelbkörper eindeutig vom umgebenden Ovargewebe abgrenzbar war. Abgebildet ist jeweils der gesamte Zyklus. Tag 0 entspricht dem Tag der Ovulation.

Bei Stute 6 entwickelte sich der Durchmesser des Gelbkörpers in den ersten sieben Tagen von 2,5 cm zu 2 cm am Tag 8. Am Tag 9 konnte ein Gelbkörper mit einem Durchmesser von 3,5 cm dargestellt werden. Im weiteren Verlauf des Zyklus verringerte sich der Durchmesser auf 3 cm und in den letzten Tagen auf 2,5 bzw. 2 cm (Abbildung 16).
Abbildung 16: Größenentwicklung des Corpus luteum von Stute 6 im ersten Durchgang, dargestellt an den Tagen, an denen der Gelbkörper eindeutig vom umgebenden Ovargewebe abgrenzbar war.

Im Verlauf der Zyklen erschienen die Gelbkörper überwiegend mittelechogen. Zum Ende der Gelbkörperphase und bei abnehmender Größe verringerte sich die Echogenität von mittelechogen zu echoarm (Tabelle 7).

Tabelle 7: Echogenität der Gelbkörper in Versuchsdurchgang 1 (2 = echoarm (orange unterlegt), 3 = mittelechogen (gelb unterlegt), aufgeführt an den Tagen, an denen der Gelbkörper darstellbar war.

<table>
<thead>
<tr>
<th>Tag im Zyklus</th>
<th>Stute 1</th>
<th>Stute 2</th>
<th>Stute 3</th>
<th>Stute 4 links</th>
<th>Stute 4 rechts</th>
<th>Stute 5</th>
<th>Stute 6</th>
<th>Stute 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Die Homogenität der Gelbkörper änderte sich je nach Stute unterschiedlich (Tabelle 8). Bei den Stuten 1 und 2 war der Gelbkörper während des gesamten Zyklus homogen. Bei den Stuten 3 und 4 zeigte er sich zu Beginn homogen, in den letzten 7 (Stute 3) bzw. 9 Tagen (Stute 4) nahmen Größe und Homogenität zugleich ab. Bei Stute 5 erschien er in den ersten zwei Tagen inhomogen, im weiteren Verlauf

<table>
<thead>
<tr>
<th></th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

| | 2 |

Die Homogenität der Gelbkörper änderte sich je nach Stute unterschiedlich (Tabelle 8). Bei den Stuten 1 und 2 war der Gelbkörper während des gesamten Zyklus homogen. Bei den Stuten 3 und 4 zeigte er sich zu Beginn homogen, in den letzten 7 (Stute 3) bzw. 9 Tagen (Stute 4) nahmen Größe und Homogenität zugleich ab. Bei Stute 5 erschien er in den ersten zwei Tagen inhomogen, im weiteren Verlauf

Tabelle 8: Homogenität der Gelbkörper in Durchgang 1, (1 = homogen (lila unterlegt), 2 = inhomogen (türkis unterlegt)) aufgeführt an den Tagen, an denen der Gelbkörper darstellbar war

<table>
<thead>
<tr>
<th>Tag im Zyklus</th>
<th>Stute 1</th>
<th>Stute 2</th>
<th>Stute 3 links</th>
<th>Stute 4 rechts</th>
<th>Stute 5</th>
<th>Stute 6</th>
<th>Stute 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
4.2.2.1.2 DURCHGANG 2

Bei den Stuten 1 bis 6 konnte der Gelbkörper an den Tagen 1, 5, 10 und 15 dargestellt werden, einzig bei Stute 7 auch an Tag 20. Bei Stute 3 hatte an Tag 20 bereits ein neuer Zyklus begonnen.

Der Durchmesser der Gelbkörper der Stuten 1, 2, 3, 6 und 7 verringerte sich im Verlauf der Zyklen (Abbildung 17). Bei Stute 4 und Stute 5 änderte sich die Größe nicht. Der Gelbkörper von Stute 2 war an keinem der Untersuchungstage eindeutig abgrenzbar.
Abbildung 17: Größenentwicklung der Gelbkörper aller Stuten im zweiten Versuchsdurchgang, ausgenommen Stute 2, dargestellt an den Tagen, an denen der Gelbkörper eindeutig vom umgebenden Ovargewebe abgrenzbar war.

Die Echogenität der Gelbkörper war im Verlauf der Zyklen mittelechogen, einzig bei Stute 2 und Stute 4 an Tag 1 echoarm. An Tag 15 war sie bei den Stuten 1, 3, 5 und 7 echoarm. Am Tag 20 konnte bei den Stuten 1 bis 6 kein Gelbkörper mehr nachgewiesen werden. Der Gelbkörper von Stute 7 zeigte sich echoarm (Tabelle 9).
Tabelle 9: Echogenität der Gelbkörper in Durchgang 2 (2 = echoarm (orange unterlegt), 3 = mittelechogen (gelb unterlegt), aufgeführt an den Tagen, an denen der Gelbkörper darstellbar war.

<table>
<thead>
<tr>
<th>Tag im Zyklus</th>
<th>Stute 1</th>
<th>Stute 2</th>
<th>Stute 3</th>
<th>Stute 4</th>
<th>Stute 5</th>
<th>Stute 6</th>
<th>Stute 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Die Homogenität der Gelbkörper veränderte sich je nach Stute unterschiedlich (Tabelle 10). Bei den Stuten 1 und 2 zeigte er sich am Tag 1 inhomogen und im weiteren Verlauf homogen. Bei Stute 3 erschien er am Tag 1 homogen, im weiteren Verlauf dann inhomogen. Die Gelbkörper der Stuten 4 und 5 waren im gesamten Zyklus homogen, die der Stuten 6 und 7 inhomogen.

Tabelle 10: Homogenität der Gelbkörper in Durchgang 2, (1 = homogen (lila unterlegt), 2 = inhomogen (türkis unterlegt) aufgeführt an den Tagen, an denen der Gelbkörper darstellbar war.

<table>
<thead>
<tr>
<th>Tag im Zyklus</th>
<th>Stute 1</th>
<th>Stute 2</th>
<th>Stute 3</th>
<th>Stute 4</th>
<th>Stute 5</th>
<th>Stute 6</th>
<th>Stute 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
4.2.3 GRAUWERTANALYSE ÜBER DEN ZYKLUSVERLAUF

4.2.3.1 DURCHGANG 1

In Abbildung 18 sind für jede Stute die Werte der Graustufenanalyse über der Zeitachse in Zyklustagen eingetragen und durch lineare Interpolation zu stetigen Funktionsgraphen ergänzt. Tabelle 11 enthält die zugehörigen numerischen Analysewerte.

Mit Ausnahme von Stute 3 kommt es bei allen Tieren zu einer Steigerung des quantitativen Grauwertes vom ersten zum zweiten Tag. Bei den Stuten 1, 3, 4 und 6 fällt der Grauwert bereits am dritten Tag ab. Bei den Stuten 2, 5 und 7 steigt der Grauwert bis zum dritten Tag und fällt dann am vierten Tag ab, das heißt es kommt zu Beginn des Zyklus zu einer Steigerung des Grauwertes, der dann im Verlauf des Zyklus abfällt (Tabelle 11, Abbildung 18). Mit Ausnahme von Stute 1 fällt der Grauwert bei allen Stuten in den letzten ein bis zwei Tagen ab, an denen der Gelbkörper noch darstellbar war.

Es fällt auf, dass bei qualitativ annähernd gleichem Verlauf die Werte von Tier zu Tier in der Höhe (Maximal- und Minimalwert) und in der Schwankungsbreite unterschiedlich sind.

Zusammengefasst lässt sich auf diese Weise mit Ausnahme des Zyklus von Stute 3 stets derselbe idealisierte Funktionsverlauf erkennen. Die Veränderungen des Grauwertes über die Zeit waren statistisch signifikant (p = 0,0066) (Abbildung 19).
Stute 2: Zyklus 1 vollständig

Stute 2: Zyklus 1 synchronisiert

Stute 3: Zyklus 1 vollständig

Stute 3: Zyklus 1 synchronisiert

Stute 4: Zyklus 1 vollständig

Stute 4: Zyklus 1 synchronisiert

Stute 5: Zyklus 1 vollständig

Stute 5: Zyklus 1 synchronisiert

Tabelle 11: Quantitative Graustufenanalyse der Gelbkörper aller Stuten im Durchgang 1

<table>
<thead>
<tr>
<th>Tag im Zyklus</th>
<th>Stute 1</th>
<th>Stute 2</th>
<th>Stute 3</th>
<th>Stute 4</th>
<th>Stute 5</th>
<th>Stute 6</th>
<th>Stute 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12,40</td>
<td>18,25</td>
<td>16,15</td>
<td>11,40</td>
<td>20,85</td>
<td>12,25</td>
<td>8,10</td>
</tr>
<tr>
<td>2</td>
<td>26,10</td>
<td>24,40</td>
<td>15,40</td>
<td>22,60</td>
<td>21,85</td>
<td>22,15</td>
<td>11,95</td>
</tr>
<tr>
<td>3</td>
<td>24,10</td>
<td>26,60</td>
<td>11,75</td>
<td>18,85</td>
<td>24,95</td>
<td>13</td>
<td>12,25</td>
</tr>
<tr>
<td>4</td>
<td>15,95</td>
<td>20,50</td>
<td>12,35</td>
<td>18,35</td>
<td>21,05</td>
<td>17,15</td>
<td>15,95</td>
</tr>
<tr>
<td>5</td>
<td>16,80</td>
<td>23,35</td>
<td>9,85</td>
<td>15</td>
<td>16,05</td>
<td>16,35</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7,65</td>
<td>24,05</td>
<td>12,95</td>
<td>13,35</td>
<td>19,85</td>
<td>14,75</td>
<td>10,15</td>
</tr>
<tr>
<td>7</td>
<td>18,55</td>
<td>19,10</td>
<td>12</td>
<td>15,35</td>
<td>15,65</td>
<td>13,90</td>
<td>14,70</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>17,95</td>
<td>10,30</td>
<td>13,20</td>
<td>22,85</td>
<td>7,20</td>
<td>15,15</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>14,75</td>
<td>16</td>
<td>15,35</td>
<td>20</td>
<td>18,30</td>
<td>19,70</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>-------</td>
<td>----</td>
<td>-------</td>
<td>----</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>10</td>
<td>14</td>
<td>20,45</td>
<td>10,45</td>
<td>12,95</td>
<td>18</td>
<td>12,60</td>
<td>13,20</td>
</tr>
<tr>
<td>11</td>
<td>14,75</td>
<td>13,10</td>
<td>11,80</td>
<td>14,35</td>
<td>16</td>
<td>13,20</td>
<td>11,35</td>
</tr>
<tr>
<td>12</td>
<td>18,05</td>
<td>11,60</td>
<td>15,05</td>
<td>14,80</td>
<td>21,75</td>
<td>14,85</td>
<td>10,25</td>
</tr>
<tr>
<td>13</td>
<td>14,30</td>
<td>12,80</td>
<td>13,25</td>
<td>15,45</td>
<td>21,15</td>
<td>18,85</td>
<td>12,15</td>
</tr>
<tr>
<td>14</td>
<td>17,10</td>
<td>11,90</td>
<td>10,85</td>
<td>10,30</td>
<td>21,75</td>
<td>15,30</td>
<td>10,75</td>
</tr>
<tr>
<td>15</td>
<td>16,25</td>
<td>11</td>
<td>15,80</td>
<td>13,60</td>
<td>20,40</td>
<td>20,20</td>
<td>12,60</td>
</tr>
<tr>
<td>16</td>
<td>15,85</td>
<td>13,5</td>
<td>12,95</td>
<td>11,60</td>
<td>20,35</td>
<td>17,35</td>
<td>17,90</td>
</tr>
<tr>
<td>17</td>
<td>11,30</td>
<td>12,45</td>
<td>13</td>
<td>12,40</td>
<td>16,20</td>
<td>14,25</td>
<td>15,50</td>
</tr>
<tr>
<td>18</td>
<td>12,05</td>
<td>9,05</td>
<td>12,45</td>
<td></td>
<td></td>
<td>17,55</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>14,25</td>
<td>10,25</td>
<td>11,10</td>
<td></td>
<td></td>
<td>16,15</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>10,05</td>
<td>14,65</td>
<td></td>
<td></td>
<td></td>
<td>10,70</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13,80</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>10,45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15,50</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16,90</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15,45</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13,65</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14,65</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16,55</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15,65</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13,10</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11,80</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11,10</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8,60</td>
<td></td>
</tr>
</tbody>
</table>

4.2.3.2 DURCHGANG 2

Abbildung 20: Darstellung der quantitativen Graustufenanalyse (qGSA) des Gelbkörpers der einzelnen Stuten im Durchgang 2.
Tabelle 12: Quantitative Graustufenanalyse der Gelbkörper aller Stuten im Durchgang 2

<table>
<thead>
<tr>
<th>Tag im Zyklus</th>
<th>Stute 1</th>
<th>Stute 2</th>
<th>Stute 3</th>
<th>Stute 4</th>
<th>Stute 5</th>
<th>Stute 6</th>
<th>Stute 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11,10</td>
<td>12,20</td>
<td>13,50</td>
<td>12,95</td>
<td>18,40</td>
<td>9,50</td>
<td>13,55</td>
</tr>
<tr>
<td>5</td>
<td>16,05</td>
<td>13,80</td>
<td>12,95</td>
<td>13,70</td>
<td>25,10</td>
<td>11,30</td>
<td>14,30</td>
</tr>
<tr>
<td>10</td>
<td>14,70</td>
<td>8,45</td>
<td>9,95</td>
<td>15,40</td>
<td>17,15</td>
<td>12,35</td>
<td>14,85</td>
</tr>
<tr>
<td>15</td>
<td>12,45</td>
<td>13,30</td>
<td>10,95</td>
<td>16,60</td>
<td>16,95</td>
<td>15,40</td>
<td>10,70</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12,55</td>
</tr>
</tbody>
</table>

Abbildung 21: Arithmetische Mittelwerte und Standardabweichungen der Grauwerte (qGSA) aller Stuten im Versuchsdurchgang 2

4.3 MUTTERMUND

Zur besseren Vergleichbarkeit wird Durchgang 1 in der synchronisierten Version beschrieben.

In diesem Durchgang wird die Portio vaginalis cervix bei allen Stuten in den Tagen vor der Rosse zunehmend weich und schlaff bis verlaufend und nach der Rosse schnell fester. Dabei unterscheiden sich die einzelnen Stuten hinsichtlich der

Tabelle 13: Formation der Zervix im Verlauf des synchronisierten Durchgangs 1 (1 = verlaufend, 2 = schlaff, 3 = rosettenförmig, 4 = zapfenförmig)

<table>
<thead>
<tr>
<th>Tag im Zyklus</th>
<th>Stute 1</th>
<th>Stute 2</th>
<th>Stute 3</th>
<th>Stute 4</th>
<th>Stute 5</th>
<th>Stute 6</th>
<th>Stute 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Auch im zweiten Durchgang wurde einzig bei Stute 6 die Zervix zapfenförmig und bei nahender Rosse schlaff aber nicht verlaufend. Im Gegensatz dazu ist die Zervix von Stute 3 im gesamten zweiten Versuchsdurchgang ausschließlich rosettenförmig. Die Zervix von Stute 2 ist sowohl in zeitlicher Nähe zur Rosse als auch in der Mitte des Zyklus verlaufend. Bei den Stuten 1, 4, 5 und 7 ist die Zervix bei nahender Rosse schlaff oder verlaufend und in der Mitte des Zyklus rosettenförmig (Tabelle 14).
Tabelle 14: Formation der Zervix im Verlauf des Versuchsdurchgangs 2 (1 = verlaufend, 2 = schlaff, 3 = rosettenförmig, 4 = zapfenförmig)

<table>
<thead>
<tr>
<th>Tag im Zyklus</th>
<th>Stute 1</th>
<th>Stute 2</th>
<th>Stute 3</th>
<th>Stute 4</th>
<th>Stute 5</th>
<th>Stute 6</th>
<th>Stute 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>1</td>
<td></td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

4.4 Hormoneller Verlauf

Da die Auswertung der endokrinologischen Daten eine rechtsschiefe Verteilung ergibt, wird nachfolgend der geometrische Mittelwert und der Streufaktor angegeben.

4.4.1 Progesteronkonzentration im Blutplasma

Die Progesteronwerte im Blutplasma liegen am ersten Tag des Durchgang 1 bei den Stuten 1, 4, 5, 6 und 7 unter 1 ng/ml, bei Stute 2 bei 6,19 ng/ml und bei Stute 3 bei 1,27 ng/ml. Im Laufe der folgenden 3 bis 5 Tage zeigt sich bei allen Stuten ein Anstieg auf Werte zwischen 5 und 20 ng/ml. Es folgt eine Plateauphase mit Werten zwischen 5 und 20 ng/ml, einzig bei Stute 6 bis 25 ng/ml. Diese Phase variiert je nach Stute in der Dauer. Mit beginnender Luteolyse fallen die Werte bei gleichzeitiger Größenabnahme und Verringerung der Echogenität des Gelbkörpers ab und bleiben in den letzten Tagen der Zyklen bei unter 1 ng/ml, leicht erhöht bei Stute 4 bis 2 ng/ml (Abbildung 22, Tabelle 15).

Der geometrische Mittelwert der Progesteronkonzentrationen aller sieben Stuten ändert sich im synchronisierten Zyklus im Verlauf des Zyklus statistisch hoch signifikant (p < 0,0001) (Abbildung 24).
Abbildung 22: Plasma-Progesteronkonzentrationen (ng/ml) der 7 Stuten im Verlauf des Durchgang 1

Tabelle 15: Plasma-Progesteronkonzentrationen (ng/ml) der 7 Stuten im Verlauf des Durchgang 1

<table>
<thead>
<tr>
<th>Tag im Zyklus</th>
<th>Stute 1</th>
<th>Stute 2</th>
<th>Stute 3</th>
<th>Stute 4</th>
<th>Stute 5</th>
<th>Stute 6</th>
<th>Stute 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,54</td>
<td>6,19</td>
<td>1,27</td>
<td>0,98</td>
<td>0,13</td>
<td>0,27</td>
<td>0,10</td>
</tr>
<tr>
<td>2</td>
<td>1,61</td>
<td>5,44</td>
<td>3,96</td>
<td>2,59</td>
<td>0,82</td>
<td>1,50</td>
<td>0,83</td>
</tr>
<tr>
<td>3</td>
<td>2,62</td>
<td>5,55</td>
<td>5,70</td>
<td>7,55</td>
<td>2,79</td>
<td>4,26</td>
<td>2,23</td>
</tr>
<tr>
<td>4</td>
<td>6,66</td>
<td>6,11</td>
<td>8,62</td>
<td>9,47</td>
<td>5,12</td>
<td>4,84</td>
<td>5,21</td>
</tr>
<tr>
<td>5</td>
<td>5,62</td>
<td>12,22</td>
<td>12,26</td>
<td>10,71</td>
<td>6,45</td>
<td>10,17</td>
<td>6,08</td>
</tr>
<tr>
<td>6</td>
<td>8,24</td>
<td>11,31</td>
<td>13,40</td>
<td>15,61</td>
<td>8,59</td>
<td>5,15</td>
<td>7,82</td>
</tr>
<tr>
<td>7</td>
<td>7,10</td>
<td>13,26</td>
<td>9,22</td>
<td>16,03</td>
<td>8,15</td>
<td>15,19</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>6,98</td>
<td>14,48</td>
<td>14,60</td>
<td>18,62</td>
<td>9,66</td>
<td>15,45</td>
<td>12,66</td>
</tr>
<tr>
<td>9</td>
<td>8,91</td>
<td>13,68</td>
<td>13,93</td>
<td>17,30</td>
<td>9,13</td>
<td>19,43</td>
<td>8,49</td>
</tr>
<tr>
<td>10</td>
<td>8,08</td>
<td>8,80</td>
<td>14</td>
<td>17,55</td>
<td>10,02</td>
<td>17,12</td>
<td>11,25</td>
</tr>
<tr>
<td>11</td>
<td>8,37</td>
<td>5,52</td>
<td>14,66</td>
<td>19,01</td>
<td>10,90</td>
<td>19,24</td>
<td>11,32</td>
</tr>
<tr>
<td>12</td>
<td>7,75</td>
<td>3,02</td>
<td>12,51</td>
<td>19,97</td>
<td>9,83</td>
<td>18,38</td>
<td>9,88</td>
</tr>
<tr>
<td>13</td>
<td>7,74</td>
<td>0,84</td>
<td>11,97</td>
<td>16,37</td>
<td>9,27</td>
<td>22,95</td>
<td>9,16</td>
</tr>
</tbody>
</table>
Zur besseren Vergleichbarkeit zeigen die folgende Abbildung und Tabelle (Abbildung 23, Tabelle 16) den Durchgang 1 in synchronisierter Form.
Abbildung 23: Plasma-Progesteronkonzentrationen (ng/ml) der 7 Stuten im Verlauf des synchronisierten Durchgangs 1

Tabelle 16: Plasma-Progesteronkonzentrationen (ng/ml) der 7 Stuten im Verlauf des synchronisierten Durchgangs 1

<table>
<thead>
<tr>
<th>Tag im Zyklus</th>
<th>Stute 1</th>
<th>Stute 2</th>
<th>Stute 3</th>
<th>Stute 4</th>
<th>Stute 5</th>
<th>Stute 6</th>
<th>Stute 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,54</td>
<td>6,19</td>
<td>0,31</td>
<td>0,98</td>
<td>0,13</td>
<td>0,27</td>
<td>0,1</td>
</tr>
<tr>
<td>2</td>
<td>1,61</td>
<td>5,44</td>
<td>1,27</td>
<td>2,59</td>
<td>0,82</td>
<td>1,5</td>
<td>0,83</td>
</tr>
<tr>
<td>3</td>
<td>2,62</td>
<td>5,55</td>
<td>3,96</td>
<td>7,55</td>
<td>2,79</td>
<td>4,26</td>
<td>2,23</td>
</tr>
<tr>
<td>4</td>
<td>6,66</td>
<td>6,11</td>
<td>5,7</td>
<td>9,47</td>
<td>5,12</td>
<td>4,84</td>
<td>5,21</td>
</tr>
<tr>
<td>5</td>
<td>5,62</td>
<td>12,22</td>
<td>8,62</td>
<td>10,71</td>
<td>6,45</td>
<td>10,17</td>
<td>6,08</td>
</tr>
<tr>
<td>6</td>
<td>6,98</td>
<td>11,31</td>
<td>13,4</td>
<td>16,03</td>
<td>9,66</td>
<td>17,12</td>
<td>12,66</td>
</tr>
<tr>
<td>7</td>
<td>8,08</td>
<td>14,48</td>
<td>14,6</td>
<td>17,3</td>
<td>10,02</td>
<td>21,05</td>
<td>11,25</td>
</tr>
<tr>
<td>8</td>
<td>7,74</td>
<td>13,68</td>
<td>14</td>
<td>19,97</td>
<td>9,27</td>
<td>21,21</td>
<td>9,16</td>
</tr>
<tr>
<td>9</td>
<td>4,89</td>
<td>8,8</td>
<td>12,51</td>
<td>16,91</td>
<td>10,44</td>
<td>15,74</td>
<td>6,86</td>
</tr>
<tr>
<td>10</td>
<td>1,01</td>
<td>3,02</td>
<td>5,75</td>
<td>3,21</td>
<td>6,95</td>
<td>17,16</td>
<td>0,23</td>
</tr>
<tr>
<td>11</td>
<td>0,98</td>
<td>0,84</td>
<td>0,63</td>
<td>1,65</td>
<td>0,49</td>
<td>0,93</td>
<td>0,1</td>
</tr>
<tr>
<td>12</td>
<td>0,65</td>
<td>0,68</td>
<td>0,86</td>
<td>1,4</td>
<td>0,31</td>
<td>0,53</td>
<td>0,1</td>
</tr>
<tr>
<td>13</td>
<td>0,55</td>
<td>0,45</td>
<td>0,67</td>
<td>1,27</td>
<td>0,22</td>
<td>0,4</td>
<td>0,1</td>
</tr>
<tr>
<td>14</td>
<td>0,77</td>
<td>0,34</td>
<td>0,15</td>
<td>1,42</td>
<td>0,11</td>
<td>0,36</td>
<td>0,1</td>
</tr>
<tr>
<td>15</td>
<td>0,1</td>
<td>0,29</td>
<td>0,18</td>
<td>1,32</td>
<td>0,15</td>
<td>0,3</td>
<td>0,36</td>
</tr>
</tbody>
</table>
Abbildung 24: Geometrische Mittelwerte und Streufaktoren der Plasma-Progesteronkonzentrationen (ng/ml) der 7 Stuten im synchronisierten Durchgang 1

Zu Beginn des Durchgangs 2 ist die Plasma-Progesteronkonzentration der Stuten unter 1 ng/ml, leicht erhöht bei Stute 4 bei 1,67 ng/ml. Es folgt an den Tagen 5, 10 und 15 jeweils ein Plateau mit Konzentrationen zwischen 4 und 15 ng/ml. Am Tag 20 ist die Plasma-Progesteronkonzentration bei den Stuten 1, 2, 3, 5 und 7 wieder unter 1 ng/ml, bei Stute 4 bei 2,18 ng/ml und bei Stute 6 bei 9,9 ng/ml (Abbildung 25, Tabelle 17).

Der geometrische Mittelwert der Progesteronkonzentration aller 7 Stuten ändert sich im Verlauf des Durchgang 2 statistisch hoch signifikant (p < 0,0001) (Abbildung 26).
Abbildung 25: Plasma-Progesteronkonzentration (ng/ml) aller 7 Stuten an den Tagen 1, 5, 10, 15 und 20 des Durchgangs 2

Tabelle 17: Plasma-Progesteronkonzentration (ng/ml) aller 7 Stuten an den Tagen 1, 5, 10, 15 und 20 des Durchgangs 2

<table>
<thead>
<tr>
<th>Tag im Zyklus</th>
<th>Stute 1</th>
<th>Stute 2</th>
<th>Stute 3</th>
<th>Stute 4</th>
<th>Stute 5</th>
<th>Stute 6</th>
<th>Stute 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,44</td>
<td>0,45</td>
<td>0,34</td>
<td>1,67</td>
<td>0,25</td>
<td>0,53</td>
<td>0,36</td>
</tr>
<tr>
<td>5</td>
<td>4,76</td>
<td>6,81</td>
<td>10,08</td>
<td>8,66</td>
<td>7,51</td>
<td>12,05</td>
<td>10,24</td>
</tr>
<tr>
<td>10</td>
<td>5,6</td>
<td>9,41</td>
<td>8,61</td>
<td>13,75</td>
<td>9,46</td>
<td>13,51</td>
<td>11,79</td>
</tr>
<tr>
<td>15</td>
<td>4,84</td>
<td>12,54</td>
<td>0,31</td>
<td>10,72</td>
<td>9,25</td>
<td>10,98</td>
<td>3,75</td>
</tr>
<tr>
<td>20</td>
<td>0,14</td>
<td>0,81</td>
<td>0,26</td>
<td>2,18</td>
<td>0,83</td>
<td>9,9</td>
<td>0,1</td>
</tr>
</tbody>
</table>
Abbildung 26: Geometrische Mittelwerte und Streufaktoren der Plasmaprogesteronkonzentration (ng/ml) aller 7 Stuten im Durchgang 2

4.4.2 Östradiol-17β im Blutplasma

Die Zu- und Abnahme von Östradiol-17β schwankt im Verlauf des Durchgang 1 zwischen 2,5 pg/ml und 10 pg/ml. Einzig bei Stute 3 liegt der niedrigste Wert bei 1,6 pg/ml am Tag 3 und bei Stute 7 der höchste Wert bei 12,8 pg/ml am Tag 5. In den letzten ein bis zwei Tagen vor der Ovulation steigt die Konzentration bei den Stuten auf über 15 pg/ml, ausgenommen Stute 2 bis 11,2 pg/ml (Abbildung 27, Tabelle 18).
Abbildung 27: Plasma-Östradiol-17β-Konzentration (pg/ml) der 7 Stuten in Durchgang 1

Tabelle 18: Plasma-Östradiol-17β-Konzentration (pg/ml) der 7 Stuten in Durchgang 1

<table>
<thead>
<tr>
<th>Tag im Zyklus</th>
<th>Stute 1</th>
<th>Stute 2</th>
<th>Stute 3</th>
<th>Stute 4</th>
<th>Stute 5</th>
<th>Stute 6</th>
<th>Stute 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7,2</td>
<td>4,8</td>
<td>10,8</td>
<td>9,2</td>
<td>7,2</td>
<td>8,4</td>
<td>9,6</td>
</tr>
<tr>
<td>3</td>
<td>4,8</td>
<td>6,8</td>
<td>1,6</td>
<td>9,2</td>
<td>4</td>
<td>10</td>
<td>9,2</td>
</tr>
<tr>
<td>5</td>
<td>4,8</td>
<td>6,8</td>
<td>4</td>
<td>7,2</td>
<td>4,4</td>
<td>6,4</td>
<td>12,8</td>
</tr>
<tr>
<td>7</td>
<td>5,6</td>
<td>8,8</td>
<td>7,6</td>
<td>4,8</td>
<td>4,4</td>
<td>7,2</td>
<td>9,2</td>
</tr>
<tr>
<td>9</td>
<td>3,2</td>
<td>5,6</td>
<td>9,2</td>
<td>4,8</td>
<td>2,8</td>
<td>6,8</td>
<td>7,6</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>7,6</td>
<td>8</td>
<td>5,2</td>
<td>6,8</td>
<td>8</td>
<td>5,2</td>
</tr>
<tr>
<td>13</td>
<td>4,8</td>
<td>9,2</td>
<td>10,4</td>
<td>6</td>
<td>5,6</td>
<td>6</td>
<td>2,8</td>
</tr>
<tr>
<td>15</td>
<td>5,6</td>
<td>9,6</td>
<td>10</td>
<td>10,8</td>
<td>5,6</td>
<td>5,2</td>
<td>8,4</td>
</tr>
<tr>
<td>17</td>
<td>6,8</td>
<td>11,2</td>
<td>11,6</td>
<td>8,8</td>
<td>5,2</td>
<td>6,4</td>
<td>6,8</td>
</tr>
<tr>
<td>19</td>
<td>7,6</td>
<td>19,6</td>
<td>9,6</td>
<td>7,6</td>
<td>4,8</td>
<td>3,6</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>17,6</td>
<td>17,6</td>
<td>10,4</td>
<td>6</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>14,8</td>
<td></td>
<td></td>
<td></td>
<td>16,8</td>
<td>5,2</td>
<td>15,6</td>
</tr>
</tbody>
</table>
Im Durchgang 2 liegt die Plasma-Östradiol-17ß-Konzentration am Tag 1 zwischen 4 pg/ml und 12 pg/ml, bei Stute 3 bei 16 pg/ml. An den Tagen 5, 10 und 15 schwanken die Werte der Stuten 1, 2, 4, 5 und 7 zwischen 4 pg/ml und 10 pg/ml. Die Konzentration von Stute 6 liegt am Tag 5 bei 12,8 pg/ml, an den Tagen 10 und 15 zwischen 4 und 10 pg/ml. Die Werte von Stute 3 sind in diesen Tagen stets über 10 ng/ml. Am Tag 20 steigen die Werte der Stuten auf 8 bis 16 pg/ml mit Ausnahme des Wertes von Stute 5: er fällt auf 3,6 pg/ml ab (Abbildung 28, Tabelle 19).
Der geometrische Mittelwert der Plasma-Östradiol-17ß-Konzentration aller Stuten ändert sich im Verlauf des Durchgang 2 statistisch nicht signifikant (p = 0,2658) (Abbildung 29).

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td>6,8</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td>7,6</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td>14,8</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td>17,2</td>
</tr>
</tbody>
</table>
Abbildung 28: Plasma-Östradiol-17β-Konzentration (pg/ml) der 7 Stuten im Durchgang 2, gemessen an den Tagen 1, 5, 10, 15 und 20

Tabelle 19: Plasma-Östradiol-17β-Konzentration (pg/ml) der 7 Stuten im Durchgang 2, gemessen an den Tagen 1, 5, 10, 15 und 20

<table>
<thead>
<tr>
<th>Tag im Zyklus</th>
<th>Stute 1</th>
<th>Stute 2</th>
<th>Stute 3</th>
<th>Stute 4</th>
<th>Stute 5</th>
<th>Stute 6</th>
<th>Stute 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>8,8</td>
<td>16</td>
<td>10,8</td>
<td>11,6</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>7,6</td>
<td>4,4</td>
<td>14,4</td>
<td>8,4</td>
<td>5,2</td>
<td>12,8</td>
<td>5,6</td>
</tr>
<tr>
<td>10</td>
<td>8,4</td>
<td>6,4</td>
<td>10,4</td>
<td>9,6</td>
<td>4,4</td>
<td>6</td>
<td>8,8</td>
</tr>
<tr>
<td>15</td>
<td>2,8</td>
<td>5,2</td>
<td>26,4</td>
<td>8</td>
<td>4,8</td>
<td>5,6</td>
<td>8</td>
</tr>
<tr>
<td>20</td>
<td>10,4</td>
<td>11,2</td>
<td>16,8</td>
<td>14,8</td>
<td>3,6</td>
<td>8,8</td>
<td>16</td>
</tr>
</tbody>
</table>
Abbildung 29: Geometrischer Mittelwert und Streufaktor der Plasma-Östradiol-17β-Konzentration (pg/ml) der 7 Stuten im Durchgang 2

4.5 KORRELATIONEN

4.5.1 DURCHGANG 1 SYNCHRONISIERT

4.5.1.1 KORRELATION ZWISCHEN DER qGSA UND DEM HORMONELLEN VERLAUF

Der Kreuzkorrelationskoeffizient zwischen dem Grauwert und dem Logarithmus der Plasmaprogesteronkonzentration in ng/ml beträgt \(r = 0,301 \). Dieser Zusammenhang ist statistisch signifikant (\(p = 0,006 \)), sodass von einem positiven Zusammenhang des Grauwertes und der Plasmaprogesteronkonzentration ausgegangen werden kann. Mit hoher Wahrscheinlichkeit ist also die Plasmaprogesteronkonzentration hoch (resp. niedrig), wenn der Grauwert hoch (resp. niedrig) ist (Abbildung 30).
Abbildung 30: Korrelation zwischen dem Grauwert und dem Logarithmus der Plasmaprogesteronkonzentration (lg P4 ng/ml). Der Zusammenhang zwischen dem relativen Grauwert und der transformierten Plasmaprogesteronkonzentration ist ebenfalls statistisch signifikant ($r = 0,333, p = 0,002$) (Abbildung 31).

Abbildung 31: Korrelation zwischen der transformierten Plasmaprogesteronkonzentration (lg P4 ng/ml zentriert) und dem relativen Grauwert
4.5.1.2 Korrelation zwischen der qGSA und der Formation des äußeren Muttermundes

Die Korrelationsanalyse des Grauwertes und der Formation des äußeren Muttermundes lieferte keinen signifikanten Zusammenhang ($rs = 0,1635, p = 0,2889$) (Abbildung 32). Betrachtet man den relativen Grauwert anstelle des gemessenen Grauwertes, zeigt sich ein signifikanter Zusammenhang ($rs = 0,3665, p = 0,0144$) (Abbildung 33).

Abbildung 32: Korrelation zwischen dem Grauwert und der Formation des äußeren Muttermundes (1 = verlaufend, 2 = schlaff, 3 = rosettenförmig, 4 = zapfenförmig)
4.5.1.3 Korrelation zwischen der Plasma-Progesteronkonzentration und der Formation des äußeren Muttermundes

Aus den Ergebnissen der Korrelationsanalyse kann auf einen statistisch hoch signifikanten Zusammenhang zwischen der logarithmierten Plasmaprogesteronkonzentration und der Formation des äußeren Muttermundes geschlossen werden ($p < 0,0001$, $r_s = 0,7239$) (Abbildung 34). Eine niedrige Plasmaprogesteronkonzentration korreliert mit einem schlaffen oder verlaufenden Muttermund, bei hohen Konzentrationen ist der Muttermund fester, also rosetten- bzw. zapfenförmig.

Abbildung 33: Korrelation zwischen dem relativen Grauwert und der Formation des äußeren Muttermundes (1 = verlaufend, 2 = schlaff, 3 = rosettenförmig, 4 = zapfenförmig)
Abbildung 34: Korrelation zwischen dem Logarithmus der Plasmaprogesteronkonzentration (lg P4 ng/ml) und der Formation des äußeren Muttermundes (1 = verlaufend, 2 = schlaff, 3 = rosettenförmig, 4 = zapfenförmig)

Nach der Korrelationsanalyse besteht ein statistisch signifikanter Zusammenhang zwischen der transformierten Plasmaprogesteronkonzentration und der Formation des äußeren Muttermundes ($r_s = 0,6456$, $p < 0,0001$) (Abbildung 35).

Abbildung 35: Korrelation zwischen der transformierten Plasmaprogesteronkonzentration (lg P4 ng/ml zentriert) und der Formation des äußeren Muttermundes (1 = verlaufend, 2 = schlaff, 3 = rosettenförmig, 4 = zapfenförmig)
4.5.2 DURCHGANG 2

4.5.2.1 KORRELATION ZWISCHEN DER qGSA UND DEM HORMONELLEN VERLAUF

Die Auswertung der Korrelationsanalyse an den Tagen 1, 5, 10, 15 und 20 zwischen dem Grauwert und dem Logarithmus der Plasmaprogesteronkonzentration in ng/ml ergibt keinen statistisch signifikanten Zusammenhang ($r = 0,192, \ p = 0,317$) (Abbildung 36). Auch der Zusammenhang zwischen dem Grauwert und dem Logarithmus der Plasmakonzentration von E17β ist statistisch nicht signifikant ($r = -0,237, \ p = 0,215$) (Abbildung 37).

Abbildung 36: Korrelation zwischen dem Grauwert und dem Logarithmus der Plasmaprogesteronkonzentration in ng/ml (lg P4 ng/ml) an den Tagen 1, 5, 10, 15 und 20
Abbildung 37: Korrelation zwischen dem Grauwert und dem Logarithmus der Plasmakonzentration E17β (lg E17 β) an den Tagen 1, 5, 10, 15 und 20

Zwischen der transformierten Plasmaprogesteronkonzentration und dem relativen Grauwert \((r = 0,251, p = 0,190)\) (Abbildung 38) bzw. der transformierten Plasmaöstradiol-17β-Konzentration und dem relativen Grauwert \((r = -0,087, p = 0,652)\) (Abbildung 39) besteht kein statistisch signifikanter Zusammenhang.

Abbildung 38: Korrelation zwischen der transformierten Plasmaprogesteronkonzentration (lg P4 ng/ml zentriert) und dem relativen Grauwert
4.5.2.2 **KORRELATION ZWISCHEN DER qGSA UND DER FORMATION DES ÄUßEREN MUTTERMUNDES**

Sowohl die Korrelationsanalyse zwischen dem gemessenen Grauwert und der Formation des äußeren Muttermundes \((r_s = 0,0864, p = 0,6558) \) (Abbildung 40), als auch die Korrelationsanalyse zwischen dem relativen Grauwert und der Formation des äußeren Muttermundes \((r_s = 0,3170, p = 0,0938) \) (Abbildung 41) ergab keinen statistisch signifikanten Zusammenhang.
Abbildung 40: Korrelation zwischen gemessenem Grauwert und der Formation des äußeren Muttermundes (1 = verlaufend, 2 = schlaff, 3 = rosettenförmig, 4 = zapfenförmig)

Abbildung 41: Korrelation zwischen dem relativen Grauwert und der Formation des äußeren Muttermundes (1 = verlaufend, 2 = schlaff, 3 = rosettenförmig, 4 = zapfenförmig)
4.5.2.3 **KORRELATION ZWISCHEN DER PROGESTERON- BZW. ÖSTRADIOL-17ß KONZENTRATION IM BLUT UND DER FORMATION DES ÄUßEREN MUTTERMUNDES**

Der Zusammenhang zwischen dem Logarithmus der Plasmaprogesteronkonzentration und der Formation des äußeren Muttermundes ist statistisch schwach signifikant ($r_s = 0,4112$, $p = 0,0157$) (Abbildung 42). Zwischen der transformierten Plasmaprogesteronkonzentration und der Formation des äußeren Muttermundes besteht ein schwach signifikanter Zusammenhang ($r_s = 0,3679$, $p = 0,0323$) (Abbildung 43).

Der Zusammenhang zwischen der Plasma-Östradiol-17ß-Konzentration und der Formation des äußeren Muttermundes ist statistisch nicht signifikant ($r_s = 0,3126$, $p = 0,719$) (Abbildung 44). Auch zwischen der transformierten Plasma-Östradiol-17ß-Konzentration und der Formation des äußeren Muttermundes besteht kein statistisch signifikanter Zusammenhang ($r_s = 0,0786$, $p = 0,6587$) (Abbildung 45).

Die Korrelationsanalyse zwischen dem Progesteron-Östradiol-17ß-Quotienten und der Formation des äußeren Muttermundes ergibt keinen statistisch signifikanten Zusammenhang ($r_s = 0,1609$, $p = 0,3633$) (Abbildung 46).

![Abbildung 42: Korrelation zwischen dem Logarithmus der Plasmaprogesteronkonzentration (lg P₄ ng/ml) und der Formation des äußeren Muttermundes (1 = verlaufend, 2 = schlaff, 3 = rosettenförmig, 4 = zapfenförmig)]
Abbildung 43: Korrelation zwischen der transformierten Plasmaprogesteronkonzentration (lg P4 ng/ml zentriert) und der Formation des äußeren Muttermundes (1 = verlaufend, 2 = schlaff, 3 = rosettenförmig, 4 = zapfenförmig)

Abbildung 44: Korrelation zwischen dem Logarithmus der Plasma-Östradiol-17β-Konzentration (lg E17β pg/ml) und der Formation des äußeren Muttermundes (1 = verlaufend, 2 = schlaff, 3 = rosettenförmig, 4 = zapfenförmig)
Abbildung 45: Korrelation zwischen der transformierten Plasma-Östradiol-17β-Konzentration (lg E17β pg/ml zentriert) und der Formation des äußeren Muttermundes (1 = verlaufend, 2 = schlaff, 3 = rosettenförmig, 4 = zapfenförmig)

Abbildung 46: Korrelation zwischen dem Progesteron-Östradiol-17β-Quotienten Quotienten der Plasmaprogesteron-Östradiol-17β-Konzentration (q P4/E17β) und der Formation des äußeren Muttermundes (1 = verlaufend, 2 = schlaff, 3 = rosettenförmig, 4 = zapfenförmig)
4.5.3 **DURCHGANG 1 NICHT SYNCHRONISIERT**

In den folgenden Korrelationsanalysen ging es nicht um eine vergleichende Betrachtung der Zyklen aller Stuten, sondern um Zusammenhänge in den einzelnen Datenpaaren. Daher konnte auf die Synchronisation der Zyklen vorab verzichtet und auf die original gemessenen Datenpaare zurückgegriffen werden.

4.5.3.1 **KORRELATION ZWISCHEN DER qGSA UND DEM HORMONELLEN VERLAUF**

Bei der Korrelationsanalyse zwischen dem Logarithmus der Plasmaprogesteronkonzentration und dem gemessenen Grauwert zeigt sich ein schwach signifikanter Zusammenhang ($r = 0.190, p = 0.023$) (Abbildung 47). Wird die transformierte Plasmaprogesteronkonzentration ausgewertet, zeigt sich ein signifikanter Zusammenhang zum relativen Grauwert ($r = 0.235, p = 0.005$) (Abbildung 48).

![Abbildung 47: Korrelationen zwischen dem Grauwert und dem Logarithmus der Plasmaprogesteronkonzentration (lg P4 ng/ml)](image-url)

Abbildung 47: Korrelationen zwischen dem Grauwert und dem Logarithmus der Plasmaprogesteronkonzentration (lg P4 ng/ml)
Abbildung 48: Korrelation zwischen der transformierten Plasmaprogesteronkonzentration (lg P4 ng/ml zentriert) und dem relativen Grauwert

Auch bei der Korrelationsanalyse zwischen dem Logarithmus der Östradiol-17β-Konzentration im Plasma und dem Grauwert konnte ein schwach signifikanter Zusammenhang festgestellt werden ($r = -0.291, p = 0.013$) (Abbildung 49). Die Korrelation zwischen der transformierten Plasmaöstradiol-17β-Konzentration und dem relativen Grauwert ergibt keinen signifikanten Zusammenhang ($r = -0.167, p = 0.158$) (Abbildung 50).
Abbildung 49: Korrelation zwischen dem Logarithmus der Plasmakonzentration Östradiol-17β (lg E 17 β) und dem Grauwert

Abbildung 50: Korrelation zwischen der transformierten Plasmaöstradiol-17β-Konzentration (lg E 17β pg/ml zentriert) und dem relativen Grauwert

Die Untersuchung der Korrelation zwischen dem Logarithmus des Progesteron-Östradiol-17β-Quotienten und dem gemessenen Grauwert liefert einen statistisch signifikanten Zusammenhang (r = 0,328, p = 0,005) (Abbildung 51).

Abbildung 51: Korrelation zwischen dem Logarithmus des Progesteron-Östradiol-17β-Quotienten (lg q P4/E17β) und dem Grauwert
4.5.3.2 **Korrelation zwischen der qGSA und der Formation des Muttermundes**

Die Korrelationsanalyse zwischen dem gemessenen Grauwert und der Formation des äußeren Muttermundes ergibt keinen signifikanten Zusammenhang ($r_s = -0.0347$, $p = 0.7709$) (Abbildung 52). Bei der Korrelationsanalyse zwischen dem relativen Grauwert und der Formation des äußeren Muttermundes kann ein schwach signifikanter Zusammenhang dargestellt werden ($r_s = 0.2781$, $p = 0.0172$) (Abbildung 53).

Abbildung 52: Korrelation zwischen dem Grauwert und der Formation des äußeren Muttermundes (1 = verlaufend, 2 = schlaff, 3 = rosettenförmig, 4 = zapfenförmig)
4.5.3.3 Korrelation zwischen der Progesteron- bzw. der Östradiol-17β-Konzentration im Blut und der Formation des äußeren Muttermundes

Zwischen dem Logarithmus der Plasmaprogesteronkonzentration und der Formation des äußeren Muttermundes besteht ein hoch signifikanter Zusammenhang ($r_s = 0.5098$, $p < 0.0001$) (Abbildung 54). Der Zusammenhang zwischen der transformierten Plasmaprogesteronkonzentration und der Formation des äußeren Muttermundes ist ebenfalls hoch signifikant ($r_s = 0.3964$, $p = 0.0002$) (Abbildung 55).

Im Gegensatz dazu besteht zwischen dem Logarithmus der Plasma-Östradiol17β-Konzentration und der Formation des äußeren Muttermundes kein statistisch signifikanter Zusammenhang ($r_s = -0.1497$, $p = 0.1742$) (Abbildung 56). Der Zusammenhang zwischen der transformierten Plasma-Östradiol17β-Konzentration und der Formation des äußeren Muttermundes ist schwach signifikant ($r_s = -0.2775$, $p = 0.0106$) (Abbildung 57).

Die Korrelationsanalyse zwischen dem Logarithmus des Progesteron-Östradiol-17β-Quotienten und der Formation des äußeren Muttermundes ergibt einen statistisch hoch signifikanten Zusammenhang ($r_s = 0.4610$, $p < 0.001$) (Abbildung 58).
Abbildung 54: Korrelation zwischen dem Logarithmus der Plasmaprogesteronkonzentration (lg P4 ng/ml) und der Formation des äußeren Muttermundes (1 = verlaufend, 2 = schlaff, 3 = rosettenförmig, 4 = zapfenförmig)

Abbildung 55: Korrelation zwischen der transformierten Plasmaprogesteronkonzentration (lg P4 ng/ml zentriert) und der Formation des äußeren Muttermundes (1 = verlaufend, 2 = schlaff, 3 = rosettenförmig, 4 = zapfenförmig)
Abbildung 56: Korrelation zwischen dem Logarithmus der Plasma-Östradiol-17β-Konzentration (\(\text{lg E17}_\beta \text{ pg/ml} \)) und der Formation des äußeren Muttermundes (1 = verlaufend, 2 = schlaff, 3 = rosettenförmig, 4 = zapfenförmig)

Abbildung 57: Korrelation zwischen der transformierten Plasma-Östradiol-17β-Konzentration (\(\text{lg E17}_\beta \text{ pg/ml zentriert} \)) und der Formation des äußeren Muttermundes (1 = verlaufend, 2 = schlaff, 3 = rosettenförmig, 4 = zapfenförmig)
Abbildung 58: Korrelation zwischen dem Logarithmus des Progesteron-Östradiol-17β-Quotienten ($\lg q \frac{P4}{E17\beta}$) und der Formation des äußeren Muttermundes (1 = verlaufend, 2 = schlaff, 3 = rosettenförmig, 4 = zapfenförmig)
5 DISKUSSION

5.1 DISKUSSION DER FRAGESTELLUNG

5.2 DISKUSSION DER METHODE

Zur Durchführung der Arbeit mussten die Stuten für die Dauer von mindestens zwei Zyklen einmal täglich für die Untersuchungen zur Verfügung stehen. Weiterhin war es von Vorteil, die Probanden bereits vor Beginn der Untersuchungen an die Räumlichkeiten, die Instrumente und die Untersucherin zu gewöhnen.
Ein wesentlich größeres Patientenkollektiv war unter den gegebenen Umständen aus personellen und räumlichen Gründen nur schwer zu realisieren.

Da in der vorliegenden Arbeit die sonographische Entwicklung des Gelbkörpers über den gesamten Zyklus betrachtet werden sollte, wurden die Untersuchungen durchgängig im 24-Stunden-Rhythmus durchgeführt. Die Plasmaprogesteronkonzentration wurde stets zum gleichen Zeitpunkt erhoben, um Aussagen über die funktionellen Eigenschaften des Gelbkörpers zu treffen.

In den Untersuchungen zur vorliegenden Arbeit wurde ein Vorversuch durchgeführt, mittels dem gezeigt werden konnte, dass sich Ovar- und Gelbkörpergewebe eindeutig mittels Graustufenanalyse unterscheiden lässt. Für die Platzierung der ROI’s wurden im Fokusbereich zwei artefaktfreie, visuell möglichst helle homogene Stellen ausgewählt und je ein 5 x 5 mm großes Quadrat als ROI markiert. So konnte gewährleistet werden, dass die ROI’s zweifelsfrei auf dem Corpus luteum lagen.

In der vorliegenden Arbeit war die Analyse einer größeren Fläche durch Umfahren des Gelbkörpers nicht sinnvoll, da die Organgrenzen nicht immer eindeutig erkennbar waren.

In der Humanmedizin kommt in verschiedenen Bereichen sowohl die eindimensionale als auch die mehrdimensionale Graustufenanalyse zum Einsatz.

5.3 DISKUSSION DER ERGEBNISSE

5.3.1 VORVERSUCHE

In einem weiteren Vorversuch sollte der Einfluss des Drucks durch den Schallkopf auf das zu untersuchende Ovargewebe und auf das Corpus luteum im Hinblick auf die Graustufenanalyse untersucht werden.

Für die Untersuchungen war es wichtig zu klären, ob sich Ovargewebe vom Corpus luteum mittels Graustufenanalyse eindeutig differenzieren lässt. Da sich die Mittelwerte der Grauwerte des Ovars statistisch signifikant (p = 0,01) von den Mittelwerten der Grauwerte der Gelbkörper unterscheiden, kann davon ausgegangen werden, dass eine Differenzierung möglich ist. Die Unterschiede der Messungen am Ovargewebe zwischen den Tagen 5, 10 und 17 sind statistisch nicht signifikant (p = 0,108). Dies deutet darauf hin, dass sich der Grauwert des Ovargewebes im Verlauf des Zyklus nicht gravierend ändert.

5.3.2 Sonographische Untersuchung inklusive Graustufenanalyse

Die mittlere Dauer des Zyklus bei der Stute wird in der Literatur mit 21 bis 22 Tagen angegeben (PIERSON und GINTHER, 1985a; BUSCH und BADER, 2006; HANDLER und AURICH, 2009; McCUE et al., 2011) und wurde in der vorliegenden Arbeit ebenfalls in dieser Länge, im Durchschnitt von 21,6 Tagen mit einer
Standardabweichung von 2,5 Tagen, festgestellt. Allerdings weichen einzelne Zyklen mit 17 oder 24 Tagen davon stark ab.

Der Zyklus von Stute 6 wurde z.T. gesondert ausgewertet, da diese Stute ein persistierendes Corpus luteum zeigte und der Zyklus medikamentös abgebrochen wurde.

über den gesamten Zeitraum darstellbar war, kann darauf zurückzuführen sein, dass alle Untersuchungen stets von derselben Person durchgeführt wurden, wodurch der Gelbkörper auch bei vermindertem Größe leichter wiederauffindbar war. Außerdem verwendeten PIERSOEN und GINTHER (1985a) eine 5 MHz-Ultraschallsonde, in den Untersuchungen zur vorliegenden Arbeit wurde eine Frequenz von 7,5 MHz gewählt mit der Folge einer höheren Detailerkennbarkeit.

Bisher gibt es keine Veröffentlichungen zur Größenentwicklung des Gelbkörpers im Verlauf des gesamten Zyklus beim Pferd.

In den Untersuchungen zur vorliegenden Arbeit konnte keine Zunahme der Größe des Gelbkörpers festgestellt werden. Allerdings wurde die Größe nur bei eindeutig
abgrenzbarem Gelbkörper erfasst. Da dies oft erst an Tag 3 oder 4 der Untersuchungen gegeben war, ist es möglich, dass die Größe des Gelbkörpers in den ersten Tagen zunahm, dies aber nicht festgehalten wurde.

Bei 5 von 7 Gelbkörpern verringerte sich die Größe innerhalb der ersten 5 Tage des Zyklus. Bei den übrigen 2 Gelbkörpern begann die Reduzierung der Größe erst am Tag 12 des Zyklus.

Die Echogenität änderte sich jeweils zum Ende der Gelbkörperphase von mittelechogen zu echoarm, allerdings variierte der Zeitraum, in dem der Gelbkörper echoarm darstellbar war, von Stute zu Stute deutlich. Es lassen sich also aus Änderungen der Echogenität nicht unmittelbar Aussagen über den Zeitpunkt der Luteolyse ableiten.

Die Ergebnisse der Grauwertanalysen im ersten Versuchsdurchgang in synchronisierter Form zeigen eine statistisch signifikante Steigerung des Grauwertes von Tag 1 zu Tag 2 und in den folgenden Tagen des Zyklus eine Verminderung des

5.3.3 Muttermund

Trotz der großen Bedeutung der equinen Zervix für die Reproduktion ist diese bisher nur wenig erforscht (KATILA, 2012).

5.3.4 Hormoneller Verlauf

TOWNSON et al. (1989) beschreiben den Anstieg der Plasmaprogesteronkonzentration in den ersten 96 Stunden der Gelbkörperentwicklung als statistisch signifikant. In den Untersuchungen zur vorliegenden Arbeit änderte sich sowohl im synchronisierten Zyklus des Durchgangs 1 als auch im Durchgang 2 der geometrische Mittelwert der Progesteronkonzentrationen aller 7 Stuten im Verlauf des gesamten Zyklus statistisch signifikant (p < 0,0001) und bestätigt somit die Ergebnisse von TOWNSON et al. (1989).

Die Plasmaprogesteronwerte der Stuten 2 und 3 lagen bereits am ersten Tag der Untersuchungen über 1 ng/ml (Stute 2: 6,19 ng/ml, Stute 3: 1,27 ng/ml). Ursache dafür könnte eine bereits weit fortgeschrittene Luteinisierung der Granulosazellen des Follikels zum Zeitpunkt der Untersuchungen sein. KAISER (1998) konnte in ihren
Untersuchungen ähnliche Streuungen der Steroidkonzentrationen im Serum bei Stuten mit persistierenden Follikeln beobachten. Die Follikel der beiden oben genannten Stuten ovulierten allerdings normal.

Bei den zwei Zyklen mit Doppelovulationen erfolgte einmal eine beidseitig asynchrone und einmal eine beidseitig synchrone Ovulation. Bei der asynchronen Ovulation bildete sich der Gelbkörper aus der ersten Ovulation bereits nach 7 Tagen zurück. Die Plasmaprogesteronkonzentration reduzierte sich deutlich von 12,8 ng/ml an Tag 6 auf 3,47 ng/ml an Tag 8 des Zyklus und stieg im weiteren Verlauf des Zyklus nicht mehr über 3,62 ng/ml.

Bei der beidseitig synchronen Ovulation konnte der eine Gelbkörper bis Tag 16, der andere bis Tag 22 und somit über den gesamten Zyklus dargestellt werden. Auch in diesem Zyklus verringerte sich die Plasmaprogesteronkonzentration nach Luteolyse des ersten Gelbkörpers deutlich von 11,14 ng/ml auf 3,21 ng/ml an Tag 16 und unter 2 ng/ml ab Tag 17 des Zyklus. In diesem Zyklus war die maximale Plasmaprogesteronkonzentration mit 19,97 ng/ml höher als in den Zyklen der anderen Stuten (maximale Plasmaprogesteronkonzentrationen zwischen 8,91 ng/ml und 14,66 ng/ml). Eine Ausnahme bildet der Zyklus von Stute 6 mit persistierendem Gelbkörper, in diesem Zyklus wurden Werte bis 24,76 ng/ml gemessen.

Die Untersuchung zur vorliegenden Arbeit lassen vermuten, dass die Bildung eines zweiten Gelbkörpers zu höheren Plasmaprogesteronkonzentrationen im Zyklus führt, als bei Vorhandensein eines einzelnen Gelbkörpers.

5.3.5 KORRELATIONEN

Die Ergebnisse der Untersuchungen der vorliegenden Arbeit zeigen, dass bei der Stute eine positive Korrelation zwischen dem Grauwert und der Plasmaprogesteronkonzentration besteht. Dies zeigte sich sowohl im synchronisierten Zyklus, als auch bei der Betrachtung aller Daten des ersten Durchgangs. Zwischen dem relativen Grauwert und der transformierten Plasmaprogesteronkonzentration ist die Korrelation noch signifikanter. Dieser
Umstand erhöht die Wahrscheinlichkeit des positiven Zusammenhangs zwischen Grauwert und Plasmaprogesteronkonzentration.

Im zweiten Durchgang korrelierten die beiden Größen nicht. Ein Grund dafür könnte sein, dass ohne Rücksicht auf die unterschiedliche Länge der Zyklen der einzelnen Stuten an den Zyklustagen 1, 5, 10, 15 und 20 untersucht und somit unterschiedliche Entwicklungsstadien der Gelbkörper miteinander verglichen wurden. Es ist offensichtlich wichtig, bei der Auswertung eines jeden Zyklus die individuellen Parameter (Gesamtdauer, Werteniveaus etc.) zu berücksichtigen.

Eine weitere Hypothese war, dass der Grauwert des Gelbkörpers mit der Formation des Muttermundes korreliert. Dies konnte bei Betrachtung aller Daten des ersten Durchgangs und des relativen Grauwertes bestätigt werden. Der gemessene Grauwert des Gelbkörpers korreliert im Durchgang 1 weder bei Betrachtung aller Daten noch in synchronisierter Form mit der Formation des Muttermundes. Wird also durch die Bildung des relativen Grauwertes der Einfluss der unterschiedlichen Werteniveaus der Stuten eliminiert und somit die Vergleichbarkeit der Grauwertangaben aller Stuten hergestellt, kann diese Hypothese bestätigt werden.
6 ZUSAMMENFASSUNG

Für die Untersuchungen standen 7 Stuten im Alter von drei bis siebzehn Jahren unterschiedlicher Rassenzugehörigkeit zur Verfügung. Da die Zyklusdauer von Stute zu Stute und von Zyklus zu Zyklus stark differiert, wurden die Zyklen für einen Teil der Auswertung hinsichtlich der Anzahl der in die Auswertung aufgenommenen Tage vereinheitlicht und synchronisiert.

Folgende relevante Ergebnisse wurden erzielt:

- Die Mittelwerte der Grauwerte von Ovar- und Gelbkörpergewebe unterscheiden sich an den Zyklustagen 5, 10 und 17 statistisch signifikant (*p* = 0,01). Der Grauwert des Gelbkörpergewebes ändert sich in dieser Zeit, der des Ovargewebes nicht (*p* = 0,108). Ovar- und Gelbkörpergewebe lassen sich also sicher mittels Graustufenanalyse unterscheiden.

- Der Grauwert des equinen Gelbkörpers kann im Verlauf des Zyklus bestimmt werden. Einzelne Messwerte eines Tieres lassen sich jedoch nicht einem bestimmten Zyklusstand zuordnen.

- Der Druck, der durch den Untersuchenden bei der sonographischen Untersuchung aufgewendet wird, spielt für das Ergebnis der Grauwertanalyse am equinen Ovar nur eine untergeordnete Rolle, da weder bei einem sehr hohem noch bei sehr niedrigem Druck ein auswertbares Bild erstellt werden kann. Dabei bewirkt eine Verminderung des Druckes die Abnahme der Echogenität, so dass der Gelbkörper nicht mehr eindeutig identifizierbar ist. Bei Erhöhung des Druckes kann das Ovar nicht ausreichend fixiert werden und entgleitet der untersuchenden Hand.
- Bei Änderungen von Größe und Echogenität des Gelbkörpers können nicht zwangsläufig Rückschlüsse auf den Beginn der Luteolyse getroffen werden.
- Der Grauwert des equinen Corpus luteum zeigt eine signifikante Steigerung von Tag 1 zu Tag 2 des Zyklus und verringert sich in den folgenden Tagen des Zyklus. Die Veränderungen des Grauwertes über die Zeit sind statistisch signifikant (p = 0,0066).
- Der Muttermund der Stute ist während des Östrus relaxiert und im Diöstrus kontrahiert, allerdings mit individueller Ausprägung.
- Die Ergebnisse der Korrelationsanalysen ergaben einen statistisch signifikanten positiven Zusammenhang zwischen dem Grauwert des Gelbkörpers und der Plasmaprogesteronkonzentration (r = 0,301, p = 0,006). Ein ebenfalls hoch signifikanter Zusammenhang besteht zwischen der Formation des äußeren Muttermundes und der Plasmaprogesteronkonzentration (rs = 0,7239, p < 0,0001), wobei eine niedrige Plasmaprogesteronkonzentration mit einem schlaffen oder verlaufenden Muttermund, hohe Konzentrationen mit festem, also rosetten- bzw. zapfenförmigem Muttermund korrelieren.
- Der Zusammenhang zwischen Progesteron/Östradiol-17β-Quotienten und der Formation des Muttermundes erwies sich als hoch signifikant (p = 0,005), es korreliert ein niedriger Progesteron/Östradiol-17β-Quotient mit schlaffem oder verlaufendem Muttermund, ein hoher Progesteron/Östradiol-17β-Quotient mit rosetten- bzw. zapfenförmigem Muttermund.

Es konnte gezeigt werden, dass sich der Gelbkörper der Stute durch sonographische Grauwertanalyse sicher vom umgebenden Ovargewebe differenzieren lässt. Bisher ist es jedoch nicht gelungen, anhand einzelner im Zyklus erhobener Grauwerte den Zyklusstand der Stute zu ermitteln.

120
7 SUMMARY

The objective of this study was to analyze whether it is possible to perform an objectification of ultrasonically collected data of the corpus luteum of a female horse via quantitative ultrasonographic gray-scale analysis and thus draw a conclusion on the state of oestrus cycle. Additionally, the connection between the value of the gray-scale analysis of the corpus luteum and the plasma concentration of progesterone and oestradiol-17β, as well as the gray-scale value and the formation of the portio vaginalis cervicis should be determined. Finally, the connection between the plasma concentration of progesterone and oestradiol-17β and the formation of the cervix should be analyzed.

For the examination seven female horses of different race and with an age of three to seventeen years were used.

Since the cycle duration differs strongly between each mare and each individual cycle, the cycles were standardized and synchronized regarding the number of days included in the evaluation.

The following relevant results were obtained:

- The difference of the mean gray-scale values of ovarian and corpus luteum tissue are statistically significant on cycle days 5, 10 and 17 ($p = 0.01$). The gray-scale value of the corpus luteum tissue changes over this time, whereas the ovarian tissue does not ($p = 0.108$). Thus, ovarian and corpus luteum tissue may be safely distinguished via gray-scale analysis.

- The gray-scale value of the equine corpus luteum can be determined during the course of the cycle. Individually measured values of an animal however, cannot be correlated to a certain state of oestrus cycle.

- The pressure invested by the examiner during an ultrasonic examination plays a minor role for the result of the gray-scale analysis on the equine ovary, as no evaluable picture can be generated using either very high or very low pressure. Here, a reduction of pressure leads to a decrease of echogenicity so that the corpus luteum cannot be clearly identified. When pressure is increased, the ovary may not be retained sufficiently and thus slips from the examiner’s hands.

- The cycles of the individual mares vary in length and the time frame of presentability of the corpora lutea. The appearance of the corpora lutea is also
highly variable and may already differ significantly between two consecutive cycles of the same mare.

- Changes in size and echogenicity of the corpus luteum do not necessarily give evidence for an initiation of luteolysis.

- The gray-scale value of the equine corpus luteum displays a significant increase from day 1 to day 2 of the cycle and decreases over the following days. The changes of the gray-scale value over time are statistically significant (p = 0.0066).

- The cervix of the female horse is relaxed during the oestrus and contracted during the dioestrus, but with individual changes.

- The results of the correlation studies displayed a statistically significant positive correlation between the gray-scale value of the corpus luteum and the plasma concentration of progesterone (r = 0.301, p = 0.006). Furthermore, there is a highly significant correlation between the formation of the portio vaginalis cervicis and the plasma concentration of progesterone (rs = 0.7239, p < 0.0001). Here, a low progesterone concentration correlates with a flaccid or completely relaxed cervix and a high concentration with a firm, rosette- or cone shaped cervix.

- The correlation of the progesterone/oestradiol-17β quotient and the formation of the cervix proved to be highly significant (p = 0.005), a low progesterone/oestradiol-17β quotient correlates with a flaccid or completely relaxed cervix and a high progesterone/oestradiol-17β quotient with a firm, rosette- or cone shaped cervix.

It could be demonstrated that the corpus luteum of the mare can be differentiated from the surrounding ovarian tissue by ultrasonic gray-scale analysis. So far it was not possible to determine the state of oestrus cycle by means of single gray-scale values collected during the cycles.
8 LITERATURVERZEICHNIS

Ultrasonic appearance of the equine *corpus haemorrhagicum*
Veterinary Record 121, 422-423

Secretion rates and short-term patterns of gonadotrophin-releasing hormone, FSH and LH throughout the periovulatory period in the mare
Journal of Endocrinology 114, 351-362

Möglichkeiten der Zyklussteuerung beim Pferd
Der Praktische Tierarzt 11, 1001-1008

Endokrinologie des Sexualzyklus beim Pferd
Der Praktische Tierarzt 10, 889-895

A light microscopic and ultrastructural study on the presence and location of oxytocin in the equine endometrium
Theriogenology 60, 909-921

Texturanalyse: Ein neues Verfahren zur Beurteilung sonographisch darstellbarer Herdbefunde der Mamma
Bildgebung 61, 284-290

Does texture analysis improve breast ultrasound precision?
BANGEN, M. (2011)
Sonomorphologische Untersuchung des Hengsthodens zur Überprüfung des Fertilitätsstatus
Gießen, Justus-Liebig-Universität, Dissertation

Weibliche Geschlechtsorgane, Milchdrüse, Euter und Harnröhre
In: WISSDORF, H.; GERHARDS, H.; HUSKAMP, B.; DEEGEN, E. (Hrsg.)
Praxisorientierte Anatomie und Propädeutik des Pferdes, 2. Auflage
Verlag M.&H. Schaper, Hannover, Kapitel 15, 779-807

Bedeutung der quantitativen Grauwertanalyse des Sonogramms bei „diffusen“ Erkrankungen der Schilddrüse
Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren 150, 66-71

Oxytocin-neurophysin I mRNA abundance in equine uterine endometrium
Domestic Animal Endocrinology 16, 183-192

Relationships between FSH surges and follicular waves during the estrous cycle in mares
Theriogenology Vol. 39, 781-796

BERTMANN, J. (2005)
Untersuchungen über den uterinen Blutfluss und die endometriale Echostruktur während der Frühgravidität des Rindes unter Berücksichtigung der Stickstoffmonoxid-Synthase-mRNA-Expression
München, Ludwig-Maximilians-Universität, Dissertation
Parametric ultrasound of the pancreas: Changes of textural parameters dependent on clinical stages
Gastroenterology 114, A442

Ansätze zur Objektivierung der Gewebeunterscheidbarkeit von Ultraschallgeräten als Beitrag zur Qualitätssicherung
Ultraschall in der Medizin 18, 238-243

Parametric ultrasound in several forms of splenomegaly relevant for gastroenterology
Gastroenterology 112, 1228

Quantitative Sonographie
Der Internist 41, 10-16

BÖHM, J. (2013)
Einfluss einer perinatalen Zearalenonbelastung auf die körperliche Entwicklung sowie labordiagnostische und spermatologische Parameter von Ebern
Gießen, Justus-Liebig-Universität, Dissertation

Direct rectal palpation
Equine Reproduction Second Edition
Wiley-Blackwell, 1904-1913
Assessment of endometrial edema and echotexture in natural and hormonally manipulated estrus in mares
Theriogenology 58, 507-510

dtv-Atlas Physik, Band 2
Deutscher Taschenbuchverlag, München, 95-101

BRÜCK, I. (1994)
Ultraschalldiagnostik am Genitaltrakt der Stute
Pferdeheilkunde 10, 161-172

Weibliche Geschlechtsorgane
In: BUDRAS, K-D.; RÖCK, S.
Atlas der Anatomie des Pferdes, 6. Auflage
Verlag Schlütersche Verlagsgesellschaft mbH & Co KG, Kapitel 9, 72-87

Computerized ultrasonic image analysis for placental characterization in normal and hypertensive pregnancies
International journal of bio-medical computing 21, 95-111

Fortpflanzungsstörungen bei der Stute und Krankheiten der weiblichen Geschlechtsorgane
In: DIETZ, O.; HUSKAMP, B.
Handbuch Pferdepraxis, 3. Auflage
Enke Verlag, Stuttgart, Kapitel 30, 590-619

CHANDOLIA, R. K.; HONARAMOOG, A.; ORNEKE, B. C.; PIERSON, R.; BEARD,
Assessment of development of the testes and accessory glands by ultrasonography in bull calves and associated endocrine changes
Theriogenology 48, 119-132

Texture analysis of breast tumors on sonograms
Seminars in Ultrasound, CT and MRI 21, 308–316

CLAUSSEN, C.; LOCHNER B. (1985)
Dynamic computed tomography
Springer Verlag, Berlin, S. 3, 4, 11

Risk factors for the development of haemorrhagic anovulatory follicles in the mare
Reproduction in Domestic Animals 45, 473-480

Ultrasound confirmation of ovulation in mares: a normal corpus luteum or a haemorrhagic anovulatory follicle?
Reproduction in Domestic Animals 48(1), 105-111

Quantitative Auswerteverfahren in der B-Bild- und Farbdopplersonographie
Ultraschall in Klinik und Praxis 10, 50-61

DÖCKE, F. (1982)
Neurohormonale Grundlagen der Fortpflanzung beim Pferd
Monatshefte für Veterinärmedizin 37, 185-192

EBERSPÄCHER, J. (1991)
Ultraschall in der bildgebenden Diagnostik
Der Praktische Tierarzt 9, 739-744
Auch bei Stuten: Fruchtbarkeitsüberwachung durch den Progesterontest
Tierzüchter 33, 16-19

Serum concentrations of FSH, LH and progesterone during the oestrous cycle and early pregnancy in the mare
Journal of Reproduction and Fertility, Suppl. 23, 193-200

Changes in circulating hormone concentrations, testes histology and testes ultrasonography during sexual maturation in beef bulls
Theriogenology 46, 345-357

FAY, J. E.; DOUGLAS, R. H. (1987)
Changes in thecal and granulosa cell LH and FSH receptor content associated with follicular fluid and peripheral plasma gonadotropin and steroid hormone concentrations in preovulatory follicles of mares

Prostatasonographie: Computergestützte Bildanalyse
Ultraschalldiagnostik 84, 146-147

Assessment of normal testis growth by quantitative texture analysis of 2-D echo images
Medical Engineering and Physics 17, 523-528

Quantitative texture analysis in echocardiography: Application to the diagnosis of myocarditis
Journal of Clinical Ultrasound 19, 263-270

FERREIRA-DIAS, G. M.; SKARZYNSKI, D. J. (2008)
Some aspects of regulation of luteal function and luteolysis in equine corpora lutea
Pferdeheilkunde 24, 10-14

Changes in LH pulse frequency and amplitude in intact mares during the transition into the breeding season

Differential release of LH and FSH in cyclic mares in response to synthetic GnRH
Journal of Reproduction and Fertility 56, 567-672

Sonographie des Abdomens. Radiologische Diagnostik Band VII
2. Auflage, Verlag Thieme, Stuttgart

Improving the distinction between benign and malignant breast lesions: the value of sonographic texture analysis
Ultrasonic Imaging 15, 267-285

Geräteunabhängige Ultraschall-Gewebecharakterisierung von Hoden und Prostata
Der Radiologe 38, 424-433
Digitale Verarbeitung von Ultraschall-Parallel-Scan-Bildern
Ultraschalldiagnostik 84, 384-385

Neue Möglichkeiten zur Klassifikation diffuser Lebererkrankungen
Ultraschalldiagnostik 81, 119-120

Digitale Erfassung und Analyse der Echosignale des A- und B-Scans bei
Ultraschalluntersuchungen
Biomedizinische Technik 2, 235-236

Physikalische und technische Grundlagen der Sonographie
In: FRITSCH, R.; GERWING, M. (Hrsg.)
Sonographie bei Hund und Katze
Ferdinand Enke Verlag, Stuttgart, 2-27

GERTSCH, U. (1997)
Bildanalytische Untersuchungen zur Bestimmung der Ödematisierung des Uterus bei
der Stute
Universität Bern, Veterinärmedizinische Fakultät, Dissertation

Wellen
in: GIESE, W. (Hrsg.):
Kompendium der Physik für Veterinärmediziner
Verlag Enke, Berlin, 81-94

GINTHER, O. J. (1979)
Reproductive biology of the mare. Basic and applied aspects
McNaughton & Gunn, Ann Arbor, Michigan, 133-216

GINThER, O. J. (1986)
Ultrasonic imaging and reproductive events in the mare
Equiservices, 434 Garfoot Road.; Wisconsin, USA

GINThER, O. J. (1988)
Ultrasonic imaging of equine ovarian follicles and corpora lutea
Veterinary Clinics of North America: Equine Practice 4, 197-213

GINThER, O. J. (1995)
Ultrasonic imaging and animal reproduction: Fundamentals, Book 1
Verlag Equiservices Publishing, Cross Plains, Wisconsin, USA

GINThER, O. J. (2009)
A 40-year odyssey into the mysteries of equine luteolysis
Theriogenology 72, 591-598

GINThER, O. J.; BEG, M. A. (2009)
Concentrations of circulating hormones normalized to pulses of a prostaglandin F2α metabolite during spontaneous luteolysis in mares
Theriogenology 72, 1111-1119

GINThER, O. J.; BEG, M. A. (2011)
Hormone concentration changes temporally associated with the hour of transition from preluteolysis to luteolysis in mares
Animal Reproduction Science 129, 67-72

Follicle selection in monovular species
Biology of Reproduction 65 (3), 638-47

Ultrasonic evaluation of the reproductive tract of the mare: ovaries
Journal of Equine Veterinary Science, 4, 11-16

GINOTHER, O. J.; PIERSON, R. A. (1985)
Ultrasonic anatomy of equine ovaries
Theriogenology 21, 471-483

Regular and irregular characteristics of ovulation and the interovulatory interval in mares
Journal of Equine Veterinary Science 9, 4-12

Circulating hormone concentrations within a pulse of a metabolite of prostaglandin F2α during preluteolysis and early luteolysis in heifers
Animal Reproduction Science 122, 253-258

Pferde- und Eselhengste der marokkanischen Landespferde- und Maultierzucht, erste Ergebnisse aus dem Einsatz von Flüssig- und Gefriersamen für die Maultierproduktion
Berliner und Münchener Tierärztliche Wochenschrift 94, 445-449

GLATZEL, P. (1997)
Fertilität und Fertilitätsstörungen der Stute

Theriogenology 21, 887–896
Computergestützte Graustufenanalyse sonographischer Befunde des Hodengewebes beim Bullen
Hannover, Tierärztliche Hochschule, Dissertation

Maturation of the testis: Ultrasound evaluation
Ultrasound in Medicine and Biology 21, 143-147

HAMMOND, J.; WODZICKI, K. (1941)
Anatomical and histological changes during the oestrous cycle in the mare
Proceedings of the Royal Society B: Biological Sciences 130, 1-23

HANDLER, J. (2009)
Gynäkologische Untersuchung (Zuchttauglichkeitsuntersuchung) bei der Stute
In: AURICH, Ch. (Hrsg.)
Reproduktionsmedizin beim Pferd, 2. Auflage
Verlag Paul Parey, Stuttgart, Kapitel 3, 31-52

HANDLER J.; AURICH, J. (2009)
Physiologie des Sexualzyklus der Stute
In: AURICH, Ch. (Hrsg.)
Reproduktionsmedizin beim Pferd, 2. Auflage
Verlag Paul Parey, Stuttgart, Kapitel 2, 15-29

Klassifikationsverfahren zur Abstoßungsdiagnostik in echokardiographischen Bildern
28. Jahrestagung der Deutschen Gesellschaft für Biomedizinische Technik, Rostock,
22.-24.09.1994
Biomed Tech, 39 (Supplement) 32-35
HARRISON, R. J. (1946)
The early development of the corpus luteum in the mare
Journal of Anatomy 80, 160-166.2

Sonographie der Trächtigkeit beim Europäischen Reh (Capreolus capreolus) und Quantifizierung endometrialer Veränderungen während der Diapause mittels computergestützter Graustufenanalyse
Berlin, Freie Universität, Dissertation

HINES, K. K. (1987)
Endocrine communication in the mare
Journal of Equine Veterinary Science 7, 229-233

Effect of pulsatile gonadotropin release on mean serum LH and FSH in periparturient mares.

Ultrasonographische Untersuchung von Hoden und Prostata des Hundes unter besonderer Berücksichtigung der Graustufenanalyse
Hannover, Tierärztliche Hochschule, Dissertation

Ovarian and pituitary function in dogs after hysterectomy
Journal of Reproduction and Fertility 96, 837-845

HOFFMANN, B.; KYREIN, H. J.; ENDER M. L. (1973)
An efficient procedure for the determination of progesterone by radioimmunoassay applied to bovine peripheral plasma
Hormone Research 4, 302-310
Zur Doppelovulation bei Stuten
Tierärztliche Praxis 20, 405-409

HOHENHAUS, M. U.; LEHMANN, B. (1990)
Ovaraufbau und Funktion bei der Stute aus klinischer Sicht unter besonderer Berücksichtigung der Ultrasonographie
Tierärztliche Praxis 18, 155-163

Funktionelle und morphologische Studien über die equine Zervix im Stadium der Ingravidität
Gießen, Justus-Liebig-Universität, Dissertation

Histomorphology of the Equine Cervix
Anatomeia, Histologia, Embryologia 34, 38-41

Endocrinology of the estrous cycle of the mare: Applications to embryo transfer
Theriogenology 15, 85-104

Ultrasonography in the mare
In: KÄHN, W.
Veterinary Reproductive Ultrasonography
Schlütersche Verlagsgesellschaft GmbH & Co. KG, Hannover, 11-37

Echographische Befunde an Ovarien von Stuten
Tierärztliche Umschau 42, 257-266
KAISER, B. (1998)
Vergleichende Untersuchungen an persistierenden und präovulatorischen Follikeln bei der Stute
Hannover, Tierärztliche Hochschule, Dissertation

Charakterisierung biologischer Grundlagen für die Entwicklung einer neuen Reproduktionstechnik –in-vitro-Embryowerbung- beim Pferd (Equus Przewalskii Caballus)
Berlin, Fachbereich Veterinärmedizin, Habilitationsschrift

KARG, H.; SCHAMS D.; HOFFMANN B.; CLAUS R. (1979)
Neue Erkenntnisse der Endokrinologie und Fortpflanzung.
Praktischer Tierarzt 60, 561-572

Relationships among scrotal and testicular characteristics, sperm production, and seminal quality in 129 beef bulls
Canadian Journal of Veterinary Research 65, 111-115

KATILA, T. (2012)
The equine cervix
Pferdeheilkunde 28, 35-38

Use of B-mode Ultrasound and Grey-Scale Analysis to Study Uterine Echogenicity in the Pig
Journal of Reproduction and Development 56, 444–448

B-mode Ultrasound and Grey-Scale Analysis of the Epididymis in Boars, and the Relationship to Semen Parameters
Reproduction in Domestic Animals 46, 108-113

Sonographische Untersuchung des Epididymis beim Eber
Gießen, Justus-Liebig-Universität, Dissertation

Effects of arachidonic acid and oxytocin on equine endometrial PGF2α during normal cycles and pseudopregnancy
Journal of Equine Veterinary Science 7, 303-308

Untersuchungen zur mikrobiellen Barrierefunktion des Hymenalrings und der Zervix bei der Stute
Tierärztliche Praxis 37, 113-117

Untersuchung zur diagnostischen Terminierung des Ovulationszeitpunktes bei der Stute
Praktischer Tierarzt 1, 28-32

Das Binnenreflexmuster des normalen Pankreas
Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren 146, 415-419

Weibliche Geschlechtsorgane (Organa genitalia feminina)
In: KÖNIG, H. E.; LIEBIG, H-G.
Anatomie der Haussäugetiere, 1. Auflage
Verlag F.K. Schattauer, Stuttgart, Kapitel 11, 135-151
Ultraschall
In: KRAMER, M. (Hrsg.)
Kompendium der Allgemeinen Veterinärchirurgie
Schlütersche Verlagsgesellschaft GmbH & Co. KG, Hannover, 100-109

Einfluss biologischer und methodischer Faktoren auf die Ergebnisse der
Echotexturanalyse am Endometrium der Stute
München, Ludwig-Maximilians-Universität, Dissertation

Klinische Aspekte der Ovarfunktion und ihrer Störungen bei der Stute
Tierärztliche Umschau 47, 63-66

LEISER, R. (1990)
Weibliche Geschlechtsorgane
In: MOSIMAN, W.; KOHLER, T.
Zytologie, Histologie und mikroskopische Anatomie der Haussäugetiere
Verlag Paul Parey, Berlin und Hamburg, 232-248

Ultrasonographische Diagnostik der Myokarditis mittels quantitativer Texturanalyse
von zweidimensionalen Echokardiographiebildern
Zeitschrift für die gesamten Inneren Medizin und ihre Grenzgebiete 18, 484-487

Erkennung einer Abstoßungsreaktion nach Herztransplantation durch
echokardiographische Gewebecharakterisierung
Zeitschrift für Herz-, Thorax- und Gefäßchirurgie 5, 207-214
Clinical value of echocardiographic tissue characterisation in the diagnosis of myocarditis
European Heart Journal 17, 135-142

LIEBACK-ZIMMERMANN, E. (1993)
Computergestützte sonographische Gewebedifferenzierung des Myokards
In: HETZER, R. (Hrsg.)
Fortschritte in der Herz-, Thorax- und Gefäßchirurgie
Steinkopff Verlag, Darmstadt, 135-147

Weibliche Geschlechtsorgane
Funktionelle Histologie der Haussäugetiere und Vögel
Verlag Schattauer, Stuttgart, 293-344

LIGNER, A. (2009)
Charakterisierung von Besamungsbullen anhand der mehrdimensionalen Graustufenanalyse sonografischer Bilder des Genitales sowie einem erweiterten spermatologischen Untersuchungsspektrum
Hannover, Tierärztliche Hochschule, Dissertation

LORBER, K. (1999)
Ultrasonographische Gewebetexturanalyse des equinen Endometriums mit Hilfe einer computergestützten Graustufenanalyse
Hannover, Tierärztliche Hochschule, Dissertation

Ultrasonographic grey scale analysis (GSA) of the equine uterus - practical relevance for fertility prognosis
Pferdeheilkunde 6, 551-554

Gewebsanalyse mit Ultraschall-real-time-Geräten – Voraussetzungen eines sinnvollen Einsatzes
Ultraschalldiagnostik 84, 398-399

Seasonality, folliculogenesis and luteogenesis in mare ovaries
Facta Universitatis, Series: Medicine and Biology 10, 120-126

McCUE, P. M. (1998)
Review of ovarian abnormalities in the mare
Proceedings of the Annual Convention of the AAEP 40, 125-133

Persistent anovulatory follicles in the mare
Theriogenology 58, 541-543

McCUE, P. M.; SCOGGIN, C.F; LINDHOLM, A. R. G. (2011)
Estrus
Equine Reproduction, Second edition
Verlag Wiley-Blackwell, 1716-1727

Ultrasound characterisation of acute myocardial ischemia by quantitative texture analysis
Ultrasonic Imaging 8, 227-240
MEIER, H. P.; MINDER, H. P.; WEGMANN, Ch.; WEIDELI, U. (1985)
Zur Ultraschalldiagnostik bei der gynäkologischen Untersuchung von Stuten
Swiss Vet Schweizerische Zeitschrift für Veterinärmedizin 2, 8-15

MEINECKE, B. (2000)
Allgemeine Endokrinologie, Reproduktion beim weiblichen Tier
In: VON ENGELHARDT, W.; BREVES, G.
Physiologie der Haustiere, 1. Auflage
Enke Verlag, Stuttgart, 514-536

Echographie - eine Ergänzung der gynäkologischen Untersuchungsmethoden zur
Zyklus- und Trächtigkeitsdiagnostik beim Pferd
Deutsch tierärztliche Wochenschrift 90, 225-230

MERKT, H. (1986)
Zwei Gutachten über Mastdarmrupturen bei Stuten
Pferdeheilkunde 2, 6, 325-330

MERKT, H. (1992)
Gutachten über einen Schadensfall (Mastdarmruptur), der sich bei einer
Follikelkontrolle ereignete
Pferdeheilkunde 8, 5, 305-306

MERKT, H.; KLUG, E. (1976)
Fortpflanzungsprobleme im Rahmen der künstlichen Besamung beim Pferd
Deutsche Tierärztliche Wochenschrift 83, 539-542

Concentrations of circulating gonadotropins during various reproductive states in
mares
Biology of Reproduction 22, 744-750
MIRO, J. (2012)
Ovarian ultrasonography in the mare
Reproduction in Domestic Animals 47, 30-33

MODLICH, U. (1997)
Charakterisierung von Endothelzellen im zyklischen Corpus luteum: Untersuchung regressiver Endothelzellen und initiale Analyse eines neuen endothelzellspezifischen Oberflächenmoleküls.
Berlin, Freien Universität Berlin, Dissertation

MONTAVON, S. (1994)
Ultrasonography of the formation and development of the corpus luteum in the mare: review for the practitioner
Schweizer Archiv für Tierheilkunde 136, 91-94

An evaluation of the use of echotexture measurements for the tissue characterisation of ultrasonic images of in vivo human placentae
Ultrasound in Medicine and Biology 14, 387-395

Grauwerthistogrammanalyse in der Schilddrüsensonographie: Kritik an der visuellen Beurteilung der Echogenität
Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren 145, 283-287

NEWCOMBE, J. R. (1997)
The incidence of fluid in the post-ovulatory area and in the early corpus luteum
Journal of Equine Veterinary Sciences 17, 58-63

Regulation of luteal function in domestic ruminants: new concepts.
Recent Progress in Hormone Research 41, 101-151

Luteal function: the estrous cycle and early pregnancy.
Biology of Reproduction 50, 239-247

Mechanisms Controlling the Function and Life Span of the Corpus Luteum
Physiological Reviews 80, No. 1, 1-29

Veterinary Diagnostic Ultrasound
Verlag Saunders, London, 4-26

PALMER, E; DRIANCOURT, M. A. (1980)
Use of ultrasonic echography in equine gynecology
Theriogenology 13, 203-216

PANTKE, K. H. P. (1990)
Charakterisierung von Sekretionsrhythmen der Gonadotropine in der venösen Drainage der Hypophyse bei der Stute
Hannover, Tierärztliche Hochschule, Dissertation

Vascular control of luteal steroidogenesis
Journal of Reproduction and Fertility, Supplement 10, 97-103

PIERSON, R. A.; GINTHER, O. J. (1985 a)
Ultrasonic evaluation of the corpus luteum of the mare
Theriogenology 23, 795-806
PIERSON, R. A.; GINTHER, O. J. (1985 b)
Ultrasonic evaluation of the preovulatory follicle in the mare
Theriogenology 24, 359-368

Quantitative texture analysis in two-dimensional echocardiography: Application to the
diagnosis of myocardial amyloidosis
Journal of the American College of Cardiology 14, 666-671

Physikalische Grundlagen, Technische Grundlagen, Sonographische Phänomene
und Artefakte
In: POULSEN NAUTRUP, C.; TOBIAS, R.
Atlas und Lehrbuch der Ultraschalldiagnostik bei Hund und Katze.
Schlütersche Verlagsanstalt, Hannover, 21-75

Bewertung quantitativer sonografischer Gewebetypisierung und Längenbestimmung
der Cervix uteri als neuer Prädiktor für Cervixinsuffizienz und Frühgeburtslichkeit
Marburg, Philipps-Universität, Dissertation

Quantitative texture analysis in two-dimensional echocardiography: Application to the
diagnosis of myocardial amyloidosis
Journal of the American College of Cardiology 14, 666-671

Principles
In: RANTANEN, N. W.; McKINNON, A. O. (Hrsg.)
Equine diagnostic ultrasound
Verlag Williams und Wilkens, Baltimore, 1-18
Der Beitrag der Grauwerthistogramm-Analyse zur sonographischen Diagnostik des
diffusen Leberparenchymbrands
Ultraschall 5, 94-97

Untersuchungen zu den Verschlussverhältnissen im kaudalen Genitalkanal der Stute
Berlin, Freie Universität Berlin, Dissertation

Mitogenic factors of corpora lutea.
Progress in Growth Factor Research 5, 159-175

Die Follikeldynamik und deren endokrine Steuerung bei der Stute im Verlauf des
Östrus.
Tierärztliche Praxis 60, 350-356

RUBERTE, J.; CARRETERO, A.; FERNANDEZ, M.; NAVARRO, M.; CAJA, G.;
KIRCHNER, F.; SUCH, X. (1994)
Ultrasound mammography in the lactating ewe and its correspondence to anatomical
section
Small Ruminant Research 13, 199-204

SCHLOMM, S. (2013)
Digitale Grauwertanalyse am Endometrium puerperaler Stuten
Gießen, Justus-Liebig-Universität, Dissertation

Zyklus- und entzündungsbedingte Veränderungen der endometrialen Echostruktur
beim Rind unter Berücksichtigung der Stickstoffmonoxid-Synthase-Expression
München, Ludwig-Maximilians-Universität, Dissertation

SCHMIDT, K. (1950):
Zur klinischen Physiologie des Sexualzyklus der Stute mit besonderer Berücksichtigung der Rosse und der Ovulation.
Monatsheft Veterinärmedizin 5, 221-224

Entwicklung und Bau der Eizellen
In: SCHNORR, B., KRESSIN, M.
Embryologie der Haustiere, 4. Auflage
Enke Verlag, Stuttgart, 14-21

SCHUMMER A.; VOLLMERHAUS B. (1987)
Harn- und Geschlechtsapparat.
In: Lehrbuch der Anatomie der Haustiere, Band 2
Hrsg.: NICKEL, R.; SCHUMMER, A.; SEIFERLE, A.
Verlag Paul Parey, Berlin und Hamburg, 300-420

Changes in equine follicular aromatase activity during transition from winter anoestrus.

Use of push-pull perfusion techniques in studies of gonadotropin-releasing hormone secretion in mares.

Ultrasound image attributes of the bovine corpus luteum: structural and functional correlates
Journal of Reproduction and Fertility 109, 35-44
SKORTON, D. J.; COLLINS, S. M. (1988)
Clinical potential of ultrasound tissue characterisation in cardiomyopathies
Journal of the American Society of Echocardiography 1, 69-77

Erste Ergebnisse einer neuen Methode zur sonographischen Lungenreifediagnostik
Ultraschall in der Medizin 13, 37-40

Measurement of oxytocin concentrations in plasma and ovarian extracts during the oestrous cycle of mares
Journal of reproduction and fertility 93, 437-441

The uterus as a source of oxytocin in cyclic mares
Journal of reproduction and fertility (Supplement) 56, 281-287

Krankheiten des Genitaltrakts, Fortpflanzung und Trächtigkeit
In: Klinische Diagnostik in der Pferdepraxis
Schlütersche GmbH & Co. KG, Hannover, 133-156

Quantitative ultrasonic tissue characterization of the cervix - A new predictor for prematurity?
Zeitschrift für Geburtshilfe und Neonatologie 206, 88-93

Zur Charakterisierung sonographischer Befunde am Corpus haemorrhagicum und Corpus luteum der Stute
Berlin, Freie Universität Berlin, Dissertation
Physiologie und Pathophysiologie der Fortpflanzungsregulation
In: BUSCH, W.; ZEROBIN, K.
Fruchtbarkeitskontrolle bei Groß- und Kleintieren
Enke Verlag, Stuttgart, 19-39

Quantitative echotexture analysis of bovine corpora lutea
Theriogenology 49, 1345-1352

Quantitative echotexture analysis of bovine ovarian follicles
Theriogenology 50, 339-346

The development of fluid-filled luteal glands in mares
Animal Reproduction Sciences 17, 155-163

Ultrasonic echogenicity of developing corpora lutea in pony mares
Animal Reproduction Science 20, 143-153

Characterization of plasma progesterone concentrations for two distinct luteal morphologies in mares
Theriogenology 32, 197-204

VANDERWALL, D. K. (2011)
Progesteron
Equine Reproduction Second Edition
Wiley-Blackwell, 1637-1641
Concentrations of oxytocin in the intercavernous sinus of mares during luteolysis: temporal relationship with concentrations of 13,14-dihydro-15-keto-prostaglandin F

VON DEM BUSSCHE-HÜNNEFELD, B. (2007)
Sonographische Graustufenanalyse des Uterus vom Schwein im Verlauf des Zyklus und der frühen Trächtigkeit
Leipzig, Universität, Dissertation

Condition of the uterine cervix in relation to cycle stage, plasma progesteron and estradiol-17β concentrations in the mare
Reproduction in Domestic Animals 29, 5, 404-410

Gross changes of internal genitalia during the estrous cycle in the mare
American Journal of Veterinary Research 23, 19-26

Immunolocalisation of oxytocin in the equine ovary
Equine Veterinary Journal 31, 174-175

Prostaglandins and reproduction in female farm animals
The Veterinary Journal 171, 206-228

Was ist bei der rechnerunterstützten Bildauswertung zu beachten?
Ultraschalldiagnostik 84, 388-389

Physikalische Grundlagen des Ultraschalls – eine Einführung in die Sonographie
Zur Wertigkeit von Grauwert-Analysen für die Beurteilung sonographisch erfassbarer Strukturen im Abdominalbereich
Bildgebung 57, 11-16

Zur Beurteilung der gravid en Cervix uteri im Sonogramm mittels computergestützter Texturanalyse
Zeitschrift für Geburtshilfe und Neonatologie 203, 115-119

ZENT, W. W.; STEINER, J. V. (2011)
Vaginal examination
Equine Reproduction Second Edition
Wiley-Blackwell, 1900-1903

Quantitative Verfahren bei der Ultraschalldiagnostik
Der Radiologe 25, 468-473

Ultraschalllexikon
Blackwell Wissenschaftsverlag, Berlin und Wien, 42

ZUNA, I. (1991)
Aktueller Stand der sonographischen Gewebeklassifizierung
Jahrbuch der Radiologie, 135-144
Danksagung

Mein besonderer Dank gilt Herrn Prof. Dr. Axel Wehrend für die Überlassung des interessanten und relevanten Themas und die Heranführung an die wissenschaftlichen Seiten der Veterinärmedizin. Die mir stets gewährte Unterstützung, Motivation, Geduld und Energie wird mir immer in wertvoller Erinnerung bleiben.

Bei den MitarbeiterInnen der Klinik für Geburtshilfe, Gynäkologie und Andrologie der Groß- und Kleintiere mit tierärztlicher Ambulanz möchte ich mich für die gute Zusammenarbeit bedanken. Insbesondere bin ich für die Durchführung der Blutanalysen dankbar.

Herrn Dr. Failing und Frau Sparenberg von der Arbeitsgruppe Biomathematik und Datenverarbeitung der Justus-Liebig-Universität möchte ich für die statistischen Auswertungen und Erklärungen danken.

Herrn Simon und seinen Mitarbeitern danke ich für die Hilfe bei der Beschaffung der Stutenovarien auf dem Schlachthof in Gießen.

Ohne die mentale, emotionale und finanzielle Unterstützung meiner Eltern wäre das Studium der Veterinärmedizin als Zweitstudium und die Anfertigung der Dissertation nicht denkbar gewesen. Ich bin froh und dankbar, dass ihr mir es ermöglicht habt, diesen Beruf zu ergreifen. Danke!
Meinen Schwestern und Brüdern und ihren Partnern und meinen Freunden in Gießen, besonders meinen beiden I's und M., und meinen Kindern: für offene Ohren und offene Herzen, für Aufmunterungen, für Abwechslung und Ablenkung in schwierigen Zeiten und für viele gemeinsame Abenteuer. Jedi hugs to all of you!!

Und Jörg, meinem Gefährten, Komplizen und Herzallerliebsten: mit dir macht jede Herausforderung Spaß.
Ich erkläre:

Sara Laufkötter
Klinische, endokrine und sonographische Untersuchungen zum Zyklus der ingraviden Stute

SARA LAUFKÖTTER

Inaugural-Dissertation zur Erlangung des Grades eines Dr. med. vet.
beim Fachbereich Veterinärmedizin der Justus-Liebig-Universität Gießen