Giessener Elektronische Bibliothek

GEB - Giessener Elektronische Bibliothek

Simple cathode design for Li-S batteries : cell performance and mechanistic insights by in operando X-ray diffraction

Kulisch, Jörn ; Sommer, Heino ; Brezesinski, Torsten ; Janek, Jürgen

Originalveröffentlichung: (2014) Physical Chemistry Chemical Physics 16(35):18765-18771 doi:10.1039/C4CP02220C
Zum Volltext im pdf-Format: Dokument 1.pdf (2.536 KB)

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgende
URN: urn:nbn:de:hebis:26-opus-114063

Bookmark bei Connotea Bookmark bei

Sammlung: RSC Open Access Artikel
Universität Justus-Liebig-Universität Gießen
Institut: Institute of Physical Chemistry
Fachgebiet: Chemie
DDC-Sachgruppe: Chemie
Dokumentart: Aufsatz
Sprache: Englisch
Erstellungsjahr: 2014
Publikationsdatum: 25.03.2015
Kurzfassung auf Englisch: Rechargeable batteries have been receiving increasing attention over the past several years, particularly with regard to the accelerated development of electric vehicles, but also for their potential in grid storage applications. Among the broad range of cathode active materials, elemental sulfur has the highest theoretical specific capacity, thereby making it one of the most promising positive electrode materials these days. In the present work, we show that already a simple cathode design (cathodes with a non-optimized composite microstructure) provides good electrochemical performance both in coin and pouch cells with sulfur loadings of 2 mg cm-2. Our research data demonstrate that (1) specific capacities of 1000 mA h g-1 can be achieved over 60 cycles at room temperature while the cyclability at elevated temperatures (here, theta > 40 [degree]C) is poor, (2) the discharge is the kinetically rate-limiting process, (3) the major fraction of active sulfur in the electrode is lost during the formation cycle at C/50 and (4) the Li-S cells suffer from drying-out due to continuous electrolyte decomposition on the lithium metal anode. In addition, in operando X-ray diffraction shows Li2S formation (grain size of <10 nm) on discharge and the appearance of single phase [small beta]-sulfur in the sub-100 nm size range - rather than the thermodynamically stable orthorhombic polymorph (alpha-sulfur) - by the end of the charge cycle.
Lizenz: Lizenz-Logo  Creative Commons - Namensnennung