Giessener Elektronische Bibliothek

GEB - Giessener Elektronische Bibliothek

Multivalente Präsentation potenzieller Inhibitoren der Selektin-Ligand-Wechselwirkungen durch biokompatible Nanopartikel

Multivalent presentation of potential inhibitors of the selectin-ligand interaction by bioactive nanoparticles

Tavernaro, Isabella Karin


Zum Volltext im pdf-Format: Dokument 1.pdf (23.904 KB)


Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgende
URN: urn:nbn:de:hebis:26-opus-113010
URL: http://geb.uni-giessen.de/geb/volltexte/2015/11301/

Bookmark bei Connotea Bookmark bei del.icio.us


Freie Schlagwörter (Deutsch): Multivalenz , Entzündungshemmung , Selektine , Biofunktionalisierung , Nanopartikel
Freie Schlagwörter (Englisch): multivalency , inflammation , selectins , biofunctionalization , nanoparticles
Universität Justus-Liebig-Universität Gießen
Institut: Institut für Anorganische und Analytische Chemie
Fachgebiet: Chemie
DDC-Sachgruppe: Chemie
Dokumentart: Dissertation
Sprache: Deutsch
Tag der mündlichen Prüfung: 17.12.2014
Erstellungsjahr: 2014
Publikationsdatum: 06.02.2015
Kurzfassung auf Deutsch: Neue Fortschritte im Verständnis des Entzündungsprozesses und dessen Beteiligung in einigen ernsten Erkrankungen, wie z.B. der Krebs-Metastasierung und verschiedenen (Auto)Immunerkrankungen (Asthma, Allergien, Morbus Crohn, rheumatoide Arthritis), haben die Entwicklung neuer antiinflammatorischer Therapieansätze in den letzten zwei Jahrzehnten rasant vorangetrieben. Dabei handelt es sich beim Entzündungsprozess um eine Kaskade verschiedener Reaktionen, deren Schlüsselschritt die Adhäsion der Leukozyten am vaskulären Endothel und deren Extravasation aus dem Blutstrom in das entzündete Gewebe darstellt. Eine entscheidende Rolle spielen hierbei die Wechselwirkungen einer Gruppe von kohlenhydratbindenden Adhäsionsmolekülen, die als Selektine bezeichnet werden, weswegen diese als interessante Wirkstofftargets gelten. Untersuchungen bekannter natürlicher Selektinliganden, wie z.B. Heparin und der P–Selektin Glycoprotein Ligand–1 (PSGL-1), konnten zeigen, dass die geringe Affinität der Bindung zwischen Selektinen und ihren entsprechenden Liganden durch eine multivalente Präsentation der funktionellen Gruppen überwunden werden kann. Aus diesem Grund besitzen Nanopartikel wegen ihres enormen Oberflächen-zu-Volumen-Verhältnisses großes Potenzial als mögliche Template für die Entwicklung effektiverer Selektin-Inhibitoren.
Ziel der vorliegenden Arbeit war es, die Oberfläche von kolloidalen Nanopartikeln (Edelmetall-, Halbleiter-, Eisenoxidnanopartikel) mit verschiedenen Strukturen zu funktionalisieren. Neben der Stabilität der Ligandenhülle hängen die Eigenschaften der Nanopartikel stark von ihrer Partikelgröße, Partikelform, der Dispersität und ihrem Agglomerationsgrad ab, weswegen die Grundlage für die angestrebten Ziele die Synthese möglichst monodisperser, sphärischer Kolloide in unterschiedlichen Größen war. Im ersten Teil dieser Arbeit wurden durch Verbesserungen literaturbekannter und Entwicklung neuer Synthesewege monodisperse Kolloide mit Partikelgrößen je nach Material im Bereich von 1,5-25 nm und einer Größendispersität < 10% hergestellt. Die Charakterisierung der erhaltenen Nanopartikel wurde dabei mithilfe von TEM-Aufnahmen, DLS-Messungen und Absorptions- bzw. Emissionsspektroskopie durchgeführt, während die Charakterisierung der organischen Ligandenhülle durch NMR- und IR-Spektroskopie erfolgte.
Im zweiten Teil der vorliegenden Arbeit wurde die Funktionalisierung der aus der Synthese erhaltenen, monodispersen Nanopartikel mit potenziellen Selektin-Inhibitoren vorgestellt. Die Modifikation der Partikeloberfläche erfolgte dabei durch Ligandenaustauschreaktionen und Reaktionen an der Ligandenperipherie durch Amidbindungsknüpfung. Dabei gelang es die aus früheren Arbeiten des Arbeitskreises bekannten azyklischen Aminoalkohole und Kohlenhydratmimetika unter Funktionserhalt auf neue Kernmaterialien (Halbleiter- und Eisenoxidnanopartikel) zu übertragen. Auf diese Weise lassen sich die guten Bindungseigenschaften mit einer Erhöhung der Biokompatibilität und einer besseren Detektierbarkeit im biologischen System kombinieren. Ausgehend von den bekannten Vorbildern sLex und Heparinoide wurden im Rahmen dieser Arbeit weitere Strukturen als potenzielle Inhibitoren der Selektin-Ligand-Wechselwirkung auf der Nanopartikeloberfläche immobilisiert. Beginnend mit der Klasse der zyklischen Oligosaccharide wurde beta-Cyclodextrin wegen seiner hohen Ladungsdichte auf der Partikeloberfläche immobilisiert und im Anschluss daran sulfatiert. Außerdem boten sich als zu testende Ligandenklasse vereinfachte, abgeleitete Strukturen der Kakao-Polyphenole (Clovamide) an, da sie einerseits für eine Hemmung der P-Selektin Expression in der Literatur bekannt sind und andererseits zusätzlich Tyrosin-Reste enthalten, die in sulfatierter Form auch in natürlichen Selektinliganden vorkommen. Eine dritte Substanzgruppe waren MUC1-Glycopeptide-Antigene, die zur Entwicklung von Krebsvakzinen eingesetzt werden könnten.
Durch Variation des Kernmaterials, der Partikelgröße, der Ankergruppe und der Linkerlänge wurde ein breites Spektrum an unterschiedlichen funktionalisierten Nanopartikeln erhalten. Diese wurden im Rahmen der Arbeit ebenfalls auf ihre Biokompatibilität hin untersucht. Dieser Einfluss wurde an einer einzelnen Charge HUVEC-Zellen getestet. Dabei zeigte sich, dass die zytotoxische und zellproliferationshemmende Wirkung der funktionalisierten Nanopartikel nicht auf das Kernmaterial und nur bedingt auf die Partikelgröße zurückzuführen war. Neben der Konzentration hatte die Stabilität der gebundenen Liganden den größten Einfluss auf die Toxizität. Hingegen zeigten Tests an mesenchymalen Stammzellen auch einen Einfluss der Partikelgröße. Zusätzlich wurden erste Untersuchungen zur Aufnahme der Partikel in die Zelle vorgestellt. Dabei konnte nachgewiesen werden, dass unabhängig von der Partikelgröße und der Ligandenhülle die Nanopartikel über Endozytose in die Zellen aufgenommen werden.
Kurzfassung auf Englisch: Recently inflammation has become one of the most rapidly developing areas of medical research, due to new studies indicating that inflammation mediate most chronic diseases (e.g. cancer, asthma, allergies, Crohn´s disease, rheumatoid arthritis), which are accompanied by an ongoing extravasation of leukocytes from the blood vessels into the inflammed tissue. This involves a multistep adhesion process initialized by different selectins and their respective carbohydrate ligands. Because of this selectins are promising targets for an anti-inflammatory therapy to inhibit this key step of the inflammation casscade. Since selectins tend to bind only weakly to their complementary receptors, stronger binding affinities can be achieved by the use of multivalent interaction. Due to their remarkably high surface-to-volume ratio in combination with their high stability, nanoparticles are well suited as scaffolds for the multivalent immobilization of potential selectin-inhibitors.
The aim of this doctoral thesis was the synthesis of different types of monodisperse nanoparticles and their surface modification with bioactive molecules. These potential ligands have to fulfill some requirements, like good dispersibility and stability in a physiological environment to protect the particle core against agglomeration. In addition, they also should indicate a relative high binding affinity to selectins. The properties of functionalized nanoparticles dependent on their size, their shape, their dispersity and their agglomeration degree. Therefore the first part of this thesis describes the syntheses of various types of spherical, nearly monodisperse nanoparticles. For this purpose literature known methods were improved and new synthetic strategies were developed, so that depending on the type, synthesized nanoparticles ranging in size from 1.5 to 25 nm with a dispersity < 10% were obtained. The characterization of the synthesized nanoparticles was carried out by various methods. TEM images, UV/Vis spectra and dynamic light scattering measurements were used to determine the average diameter, the shape, the agglomeration state and the size distribution of the synthesized nanoparticles, while the characterization of the organic ligand shell was performed by NMR and IR spectroscopy.
In the second part of this thesis the functionalization of the synthesized nanoparticles with selectin binding ligands was presented. The modification of the particle surface was achieved by ligand exchange reactions or by chemical binding of the ligands through formation of a stable amide bond. It was demonstrated that the transfer of a ligand shell to other nanostructured core materials (quantum dots, iron oxide nanoparticles) is possible under preservation of its function. This was tested using acyclic amino alcohols and aminopyrans already known from previous work. Thereby the good binding properties have been combined with further desirable attributes, like a higher biocompatibility and better detectability in biological systems.
Using the tetrasaccharide sLex and heparinoids as lead compounds for selectin-binding ligands, further structures were identified as potential inhibitors and immobilized on the nanoparticle surface. Due to its high charge density the cyclic oligosaccharide beta-cyclodextrine was selected and bond on the nanoparticle surface and sulfated subsequently.Following the concept of simplified binding epitopes, a series of structures derieved from cocoa polyphenols (clovamides), were also tested as potential selectin-binding ligands. Recent studies indicate that these clovamides are able to inhibit P-selectin expression and that they are derivatives of the amino acid L-tyrosine, which occur in sulfated form also in natural selectin ligands. A third group of substances were MUC1 glycopeptides antigens that may be used for the development of cancer vaccines.
Another scope of this thesis was the investigation of the biocompatibility of the functionalized nanoparticles. For this purpose several parameters like the core material, the particle diameter and a variety of surface modifications were taken into account to evaluate the potential cytotoxic effects of the functionalized nanoparticles on HUVECs of one single batch. The test results demonstrates that the core material have no influence on the cytotoxicity and cell proliferation, whereas the particle size show only small effects. The main influence of nanoparticles on HUVECs was accounted for the nanoparticle concentration and the stability of the ligands. On the other hand, in vitro tests on mesenchymal stem cells also indicate a toxic effect of the particle size. Beside the cytotoxicity of nanoparticles, the cell uptake of the nanoparticles was investigated in this thesis. It was demonstrated, that the nanoparticles penetrate into the cells by endocytosis. This is independent from their size and ligand shell.
Lizenz: Veröffentlichungsvertrag für Publikationen ohne Print on Demand