Giessener Elektronische Bibliothek

GEB - Giessener Elektronische Bibliothek

Human grasp point selection

Kleinholdermann, Urs ; Franz, Volker H. ; Gegenfurtner, Karl R.


Originalveröffentlichung: (2013) Journal of Vision 13(8):23 doi:10.1167/13.8.23
Zum Volltext im pdf-Format: Dokument 1.pdf (1.937 KB)


Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgende
URN: urn:nbn:de:hebis:26-opus-104318
URL: http://geb.uni-giessen.de/geb/volltexte/2013/10431/

Bookmark bei Connotea Bookmark bei del.icio.us


Sammlung: Open Access - Publikationsfonds
Universität Justus-Liebig-Universität Gießen
Fachgebiet: Psychologie
DDC-Sachgruppe: Psychologie
Dokumentart: Aufsatz
Sprache: Englisch
Erstellungsjahr: 2013
Publikationsdatum: 09.12.2013
Kurzfassung auf Englisch: When we grasp an object, our visuomotor system has to solve an intricate problem: how to find the best out of an infinity of possible contact points of the fingers with the object? The contact point selection model (CoPS) we present here solves this problem and predicts human grasp point selection in precision grip grasping by combining a few basic rules that have been identified in human and robotic grasping. Usually, not all of the rules can be perfectly satisfied. Therefore, we assessed their relative importance by creating simple stimuli that put them into conflict with each other in pairs. Based on these conflict experiments we made model-based grasp point predictions for another experiment with a novel set of complexly shaped objects. The results show that our model predicts the human choice of grasp points very well, and that observers´ preferences for their natural grasp angles is as important as physical stability constraints. Incorporating a human grasp point selection model like the one presented here could markedly improve current approaches to cortically guided arm and hand prostheses by making movements more natural while also allowing for a more efficient use of the available information.
Lizenz: Veröffentlichungsvertrag für Publikationen ohne Print on Demand