Giessener Elektronische Bibliothek

GEB - Giessener Elektronische Bibliothek

Impact of hypercapnia on alveolar Na+-transport : Establishing a system for ENaC-protein detection

Einfluß von Hyperkapnie auf den alveolaren Na+-Transport : Etablierung eines Systems zur Detektion von ENaC-Proteinen

Buchbinder, Benno Andreas


Zum Volltext im pdf-Format: Dokument 1.pdf (5.566 KB)


Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgende
URN: urn:nbn:de:hebis:26-opus-104176
URL: http://geb.uni-giessen.de/geb/volltexte/2013/10417/

Bookmark bei Connotea Bookmark bei del.icio.us


Freie Schlagwörter (Deutsch): Hyperkapnie , ENaC , Nucleofection , Primärzellen
Freie Schlagwörter (Englisch): Hypercapnia , ENaC , Nucleofection , ATII cells
Universität Justus-Liebig-Universität Gießen
Institut: Zentrum für Innere Medizin, Medizinische Klinik II
Fachgebiet: Biologie
DDC-Sachgruppe: Biowissenschaften, Biologie
Dokumentart: Dissertation
Sprache: Englisch
Tag der mündlichen Prüfung: 29.11.2013
Erstellungsjahr: 2013
Publikationsdatum: 06.12.2013
Kurzfassung auf Englisch: Acute respiratory distress syndrome is a life threatening condition triggered by a variety of
pulmonary and extrapulmonary causes, that is characterized by pulmonary edema and
subsequently impaired gas exchange. Due to lung protective ventilation strategies, its
treatment is often associated with systemic accumulation of CO2, a condition termed
permissive hypercapnia. Recent studies report a negative effect of CO2 on alveolar fluid
clearance, a process mediated by its two key elements the Na+,K+-ATPase and epithelial
Na+-channels (ENaCs). A reduced activity of the Na+,K+-ATPase during hypercapnia has
already been demonstrated, but regulation of ENaC has never been directly linked to CO2.
Many molecular signaling events that are activated during hypercapnia are known to
regulate ENaC function, so the present study aimed to generate and subsequently apply
techniques to investigate a possible contribution of ENaC to the reduction of alveolar
epithelial fluid transport upon hypercapnia.
ENaC function was studied in H441 cells by Ussing chamber experiments which revealed
no significant regulation during short term hypercapnia, but a clear reduction of ENaC
function during sustained hypercapnia.
To identify the signaling mechanism on the molecular level, epitope-tagged human ENaC
constructs for the α-, β- and γ-subunit were cloned and initially expressed in A549 cells.
Exposition to hypercapnia up to 4 hours did not significantly reduce cell surface expression
of the ENaC-subunits, but after 24 hours, a significant decrease of β-ENaC was observed.
Since the molecular sizes of α- and γ-ENaC expressed in A549 cells were differing from
previously published studies, transfection of ENaC was continued in other cells. H441 cells
are commonly used for ENaC studies, so their transfection was established, yielding an
efficiency of about 60 %. The molecular sizes of transfected ENaC subunits matched the
pattern that was expected, but expression levels were evanescent and too low for further
experiments. Since ENaC detection in these two cell lines remained problematic, a novel
methodology was applied. Since the primary site of ENaC expression in the lung are
epithelial cells, rat primary alveolar epithelial cells type II were used as recipients for
ENaC plasmids. Non-viral transfection of ATII cells has been inefficient in the past, but
during the present study a protocol was generated to efficiently deliver nucleic acids to
exactly this cell type. ENaC expression was largely increased in ATII cells, compared to
the cell lines used, indicating that established system might be extremely useful for further
studies involving ENaC turnover.
Thus, a new and highly relevant, non-viral transfection technique for primary alveolar
epithelial type II cells was established, providing ground-breaking opportunities for future
pulmonary research.
Kurzfassung auf Deutsch: Das Atemnotsyndrom des Erwachsenen ist eine lebensbedrohliche Erkrankung, ausgelöst
durch eine Reihe von Faktoren, die direkt oder indirekt auf die Lunge einwirken .
Charakteristisch für dieses Syndrom sind pulmonare Ödeme und daraus resultierend ein
eingeschränkter Gasaustausch. Die daher benötigte künstliche Beatmung führt im Zuge
von protektiven Beatmungsstrategien oft zu einer systemischen Anreicherung von CO2
(Hyperkapnie). Einige Studien zeigen, dass erhöhte CO2-Level den Flüssigkeitstransport
der Lunge einschränken. Dieser aktive Prozess wird maßgeblich durch zwei Komponenten,
die Na+,K+-ATPase und epitheliale Na+-Kanäle (ENaCs), kontrolliert. Eine
Beeinträchtigung der Na+,K+-ATPase durch CO2 gezeigt, für ENaCs ist dies bislang nicht
bekannt. Einige bekannte Regulatoren von ENaCs werden jedoch während Hyperkapnie
aktiviert. Das Ziel der vorliegenden Arbeit war, Methoden zu etablieren und anzuwenden,
die einen möglichen Einfluss von CO2 auf ENaC zeigen.
Funktionelle Versuche wurden an H441-Zellen mit Ussing-Kammer-Messungen
durchgeführt. Während akuter Hyperkapnie konnte keine signifikante Regulation von
ENaC nachgewiesen werden, jedoch war die ENaC-Funktion bei anhaltender Hyperkapnie
deutlich verringert.
Um die Signalwege auf molekularer Ebene zu untersuchen, wurde die α-, β- und γ-
Untereinheit des humanen ENaC kloniert, genetisch modifiziert und in A549 Zellen
überexprimiert. Nach bis zu vierstündiger Hyperkapnie erfolgte keine Regulation von
ENaC, jedoch wurde nach 24 Stunden eine deutlich verminderte Menge β-ENaC in der
Zellmembran nachgewiesen. Da die Größen von α- und γ-ENaC von den bisher
publizierten abwichen, wurden weitere Versuche in H441 Zellen durchgeführt. Die
Transfektion dieser Zelllinie wurde etabliert und erreichte eine Effizienz von ungefähr 60
%. Die posttranslationale Regulation der α- und γ-Untereinheiten, insbesondere die
proteolytische Aktivierung funktionierten wie in der Literatur beschrieben, jedoch waren
die Expressionslevel zu gering für weitere Versuche. In der Lunge werden ENaCs
überwiegend in epithelialen Zellen exprimiert. Diese Zellen konnten bisher jedoch nicht
effizient transfiziert werden, ohne Viren einzusetzen. In der vorliegenden Arbeit wurde
jedoch eine effiziente Methode zur Transfektion von primären epithelialen Zellen der Ratte
erarbeitet. Die Expression von transfizierten ENaC-Untereinheiten war in diesen Zellen
deutlich erhöht, weswegen die Etablierung dieses Systems ausschlaggebend für weitere
Versuche ist.
Die vorliegende Arbeit beschreibt daher zum ersten Mal die nicht-virale, effiziente
Transfektion von primären alveolaren Zellen und liefert damit ein bedeutendes neues
Werkzeug für die Lungenforschung.
Lizenz: Veröffentlichungsvertrag für Publikationen ohne Print on Demand