Rovibrational eigenenergy structure of the [H,C,N] molecular system
Mellau, Georg Ch.
Originalveröffentlichung:
(2011) Journal of Chemical Physics, 2011, 134(19), Article 194302; doi:10.1063/1.3590026
Zum Volltext im pdf-Format:
Dokument 1.pdf (1.275 KB)
Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgende
URN: urn:nbn:de:hebis:26-opus-86285
URL: http://geb.uni-giessen.de/geb/volltexte/2012/8628/
Freie Schlagwörter (Englisch):
HCN/HNC molecular system , vibrational-rotational eigenenergy structure , rotational states , molecular spectroscopy
Sammlung:
Allianzlizenzen / Artikel
Universität
Justus-Liebig-Universität Gießen
Institut:
Physikalisch-Chemisches Institut
Fachgebiet:
Chemie
DDC-Sachgruppe:
Chemie
Dokumentart:
Aufsatz
Sprache:
Deutsch
Erstellungsjahr:
2011
Publikationsdatum:
24.02.2012
Kurzfassung auf Englisch:
The vibrational-rotational eigenenergy structure of the [H,N,C] molecular system is one of the key features needed for a quantum mechanical understanding of the HCN reversible arrow HNC model reaction. The rotationless vibrational structure corresponding to the multidimensional double well potential energy surface is well established. The rotational structure of the bending vibrational states up to the isomerisation barrier is still unknown. In this work the structure of the rotational states for low and high vibrational angular momentum is described from the ground state up to the isomerisation barrier using hot gas molecular high resolution spectroscopy and rotationally assigned ab initio rovibronic states. For low vibrational angular momentum the rotational structure of the bending excitations splits in three regions. For J < 40 the structure corresponds to that of a typical linear molecule, for 40 < J < 60 has an approximate double degenerate structure and for J > 60 the splitting of the e and f components begins to decrease and the rotational constant increases. For states with high angular momentum, the rotational structure evolves into a limiting structure for v(2) > 7 -the molecule is locked to the molecular axis. For states with v(2) > 11 the rotational structure already begins to accommodate to the lower rotational constants of the isomerisation states. The vibrational energy begins to accommodate to the levels above the barrier only at high vibrational excitations of v(2) > 22 just above the barrier whereas this work shows that the rotational structure is much more sensitive to the double well structure of the potential energy surface. The rotational structure already experiences the influence of the barrier at much lower energies than the vibrational one.
Lizenz:
Allianzlizenz