Radiojodkinetik bei Radiojodtherapie der Schilddrüse—
Vergleich von Test und Therapie,
Vergleich verschiedener Berechnungsmethoden,
Restkörperdosis

Inauguraldissertation
zur Erlangung des Grades eines Doktors der Medizin
des Fachbereichs Medizin
der Justus-Liebig-Universität Gießen

vorgelegt von Röhl Tatjana
aus Hutthurm

Gießen 2010
Aus der Klinik für Nuklearmedizin
der Universitätsklinikum Gießen und Marburg GmbH
Standort Gießen
Direktor: Prof. Dr. Dr. Richard Bauer

Gutachter: Prof. Dr. Dr. R. Bauer

Gutachter: Frau Prof. Dr. G. Krombach

Tag der Disputation: 22.11.2010
Inhaltsverzeichnis

1. Einleitung ... 6

1.1 Geschichte der Radiojodtherapie ... 6
1.2 Indikationen zur Radiojodtherapie .. 7
1.3 Grundlagen der Radiojodtherapie .. 8
1.4 Dosimetrie bei Radiojodtherapie ... 9
1.5 Dosiskonzepte für unterschiedliche Schilddrüsenerkrankungen 10
1.6 Nachsorge bei Radiojodtherapie .. 11
1.7 Fragestellung der Arbeit ... 11

2. Patienten und Methoden ... 12

2.1 Patientenkollektiv ... 12
 2.1.1 Kollektiv A .. 13
 2.1.2 Kollektiv B .. 14
2.2 Modell der intrathyreoidalen Jodkinetik ... 15
2.3 Nähere Definition der Transferkonstanten / kinetischen Parameter 17
2.4 Berechnung der Transferkonstanten .. 18
2.5 Berechnung der Restkörperdosis .. 20
2.6 Berechnung der Therapiedosis ... 20
 2.6.1 Berechnung nach der Marinelli-Formel ... 21
 2.6.2 Berechnung durch stückweise Integration .. 23
 2.6.3 Berechnung anhand des Zwei-Kompartments-Modells .. 25
2.7 Verwendete statistische Methoden .. 26
3. Ergebnisse ... 27

3.1 Parameter in Abhängigkeit von der Schilddrüserkrankung und von dem Kollektiv .. 27
 3.1.1 Effektive Halbwertszeit $t_{1/2}$... 30
 3.1.2 Gewichtsbezogene Schilddrüsenaktivität A_0/m .. 31
 3.1.3 Gewichtsbezogene Schilddrüsenuptake Uptake/m 32
 3.1.4 Gewichtsbezogene Transferkonstante vom Restkörper in die Schilddrüse λ_{12}/m ... 33
 3.1.5 Gewichtsbezogene Transferkonstante aus der Schilddrüse in den Restkörper λ_{21}/m ... 34
 3.1.6 Transferkonstante des freien (hormonungebundenen) Jods aus dem Restkörper λ_{3} .. 35
 3.1.7 Transferkonstante des hormongebundenen Jods aus dem Restkörper λ_4 .. 36

3.2 Parameter beim Radiojodtest und Radiojodtherapie .. 37
 3.2.1 Effektive Halbwertszeit $t_{1/2}$... 37
 3.2.2 Schilddrüsenuptake ... 38

3.3 Intratherapeutische Dosis .. 40
 3.3.1 Intratherapeutische Dosis nach der Marinelli-Formel 40
 3.3.2 Intratherapeutische Dosis durch stückweise Integration 43
 3.3.3 Intratherapeutische Dosis anhand des Zwei-Kompartments-Modells 44
 3.3.4 Vergleich der Methoden mittels Bland-Altman-Plot 45
 3.3.5 Vergleich der Methoden mittels Regression .. 48

3.4 Restkörperdosis ... 51
 3.4.1 Restkörperdosis bei malignen Schilddrüserkrankungen 52
 3.4.2 Restkörperdosis bei benignen Schilddrüserkrankungen 53
 3.4.3 Restkörperdosis in Bezug auf die Schilddrüsenaktivität A_0 54
4. Diskussion ... 54

4.1 Beurteilung der Transferkonstanten in Abhängigkeit von Kollektiv A und B 55
4.2 Vergleich von Radiojodtest und Radiojodtherapie .. 56
4.3 Vergleich der unterschiedlichen Möglichkeiten der intratherapeutischen
 Dosisberechnung ... 58
4.4 Bewertung der Restkörperdosis .. 60
 4.4.1 Unterschied zwischen malignen und benignen Erkrankungen 60
 4.4.2 Abhängigkeit der Restkörperdosis von der Schilddrüsenaktivität \(A_0 \) 61

5. Zusammenfassung .. 62

6. Literatur ... 65

7. Anhang ... 69

 7.1 Abkürzungsverzeichnis ... 69
 7.2 Abbildungsverzeichnis .. 71
 7.3 Tabellenverzeichnis ... 74
 7.4 Summary .. 75
 7.5 Danksagung .. 78
1. Einleitung

1.1 Geschichte der Radiojodtherapie

über 130 Therapieeinrichtungen, in denen jährlich ungefähr 40.000 Patienten mit Radiojod therapiert werden (DGN, 2004; Reiners, 1993; Grünwald, 2001).

1.2 Indikationen zur Radiojodtherapie

Die Radiojodtherapie kann im Allgemeinen bei gut- und bösartigen Schilddrüsenerkrankungen angewendet werden, nämlich beim Morbus Basedow, der funktionellen Autonomie (multifokal, unifokal, disseminiert), der Struma und dem Schilddrüsenkarzinom (papillär, folliculär). Bei malignen Schilddrüsenerkrankungen wird eine Radiojodtherapie jedoch erst nach erfolgter Operation durchgeführt. Bei einem folliculären Schilddrüsenkarzinom wird derzeit unabhängig vom Tumorstadium nach Resektion immer eine Radiojodtherapie durchgeführt. Dies gilt auch für das papilläre Schilddrüsenkarzinom. Eine Ausnahme existiert nur beim Tumorstadium pT1, wenn der Tumor kleiner als 1 cm groß ist. Hier muss nicht in jedem Fall eine Radiojodtherapie durchgeführt werden.

1.3 Grundlagen der Radiojodtherapie

J-131, dessen physikalische Halbwertszeit 8 Tage beträgt, ist sowohl ein Beta- als auch ein Gammastrahler. Der therapeutische Effekt des Radiojods beruht jedoch zu 95 Prozent auf der Wirkung der Betastrahlung, deren Reichweite im Gewebe begrenzt ist. Die Betastrahlen werden mit einer maximalen Energie von etwa 610 und 810 keV emittiert und besitzen im Gewebe eine mittlere Reichweite von 0,5 mm. Bei der Gammastrahlung handelt es sich, anders als bei der Betastrahlung, um eine elektromagnetische Welle, deren Reichweite prinzipiell nicht begrenzt ist, so dass sie im Gegensatz zur Betastrahlung auch außerhalb des Körpers gemessen werden kann. Ihre Halbwertsdicke liegt bei 6,3 cm (Hotze und Schumm-Draeger, 2003; Reiners, 1993).
1.4 Dosimetrie bei Radiojodtherapie

Das Ausmaß der Strahlenreaktion wird von unterschiedlichen Faktoren beeinflusst. So spielt neben der topographischen Radiojodverteilung und der Dauer der Strahlenexposition auch die Art der Schilddrüsenerkrankung eine Rolle (Oeser et al., 1962).

Die zu applizierende Aktivität soll immer so gering wie möglich, jedoch so hoch wie gerade nötig gewählt werden. Um der gewünschten therapeutischen Dosis so nahe wie möglich zu kommen, wird vor der Radiojodtherapie ein Radiojodtest durchgeführt. So werden im Voraus der maximale Schilddrüsenuptake P und die effektive Halbwertszeit \(t_{1/2} \) des J-131 bestimmt. Der maximale Uptake P liegt meist 24 bis 48 Stunden nach Applikation vor. Beim Morbus Basedow kann er auch früher erreicht werden. Mit Hilfe dieser Werte, einer krankheitsspezifischen Strahlendosis D, die im Zielgewebe gewünscht wird, und der sonographisch bestimmten Schilddrüsengröße kann die zu applizierende Aktivität nach folgender Formel von Marinelli berechnet werden (Marinelli et al., 1948):

\[
A = \frac{D \times m \times K}{P \times t_{1/2}}
\]

mit

- \(A \) = Aktivität [MBq]
- \(D \) = Zieldosis [Gy]
- \(m \) = Zielmasse [g]
- \(K \) = Konstante [MBq·d·g⁻¹·Gy⁻¹]
- \(P \) = maximaler Radiojoduptake [%]
- \(t_{1/2} \) = effektive Halbwertszeit [d]
Diese Aktivität A wird benötigt, um im Zielgewebe die gewünschte Herddosis D zu erreichen. Trotz genauer Planung weicht jedoch die tatsächliche Therapiedosis meist von der gewünschten Dosis ab. Dies ist auf eine unterschiedliche Aktivitätsaufnahme und –elimination in Test und Therapie zurückzuführen. In der Regel sind Halbwertszeit \(t_{1/2} \) und Uptake P von Jod–131 im Test etwas höher als während Therapie (Nüchel et al., 1993; DGN, 2003; Rösler, 1987; Marinelli et al., 1948; Wellner und Schicha, 1993).

Die Aktivität „A“ in Gl. (1) entspricht im folgenden Text und den weiteren Gleichungen der Anfangsaktivität „A_0“. Um zwischen der zeitlich veränderlichen Aktivität A(t) und A zu unterscheiden, wird konsistent der Parameter A_0 verwendet.

1.5 Dosiskonzepte für unterschiedliche Schilddrüsenerkrankungen

1.6 Nachsorge bei Radiojodtherapie

1.7 Fragestellung der Arbeit

Dieser Arbeit liegen unterschiedliche Fragestellungen zu Grunde:

1) Anhand eines Modells der intrathyreoidalcn Jodkinetik sollen verschiedene Transferkonstanten, die die Radiojodtherapie beeinflussen, beschrieben werden. Diese Parameter werden anschließend in Abhängigkeit verschiedener
Schilddrüsenerkrankungen und in Abhängigkeit von zwei verschiedenen Patientenkollektiven untersucht.

2) Außerdem soll untersucht werden, in wie weit sich effektive Halbwertszeit und Radiojoduptake in Radiojodtest und Radiojodtherapie unterscheiden.

3) Weiterhin werden drei Modelle zur Berechnung der therapeutischen Dosis verglichen, um zu zeigen, ob bisherige Berechnungen eventuell durch ein neues Modell verbessert werden können.

4) Schließlich soll näher auf die entstehenden Restkörperdosen eingegangen werden. Diese werden separat für maligne und benigne Erkrankungen und im Hinblick auf ihre Korrelation mit der applizierten Aktivität untersucht.

2. Patienten und Methoden

2.1 Patientenkollektiv

Den Untersuchungen in dieser Arbeit liegen zwei unterschiedliche Patientenkollektive zu Grunde. Das erste Kollektiv (A) wird für alle oben stehenden Fragestellungen benötigt, das zweite Kollektiv (B) hingegen nur für einen bestimmten Teil der Arbeit, nämlich für die Beurteilung der Transferkonstanten.
2.1.1 Kollektiv A

![Diagramm des Kollektivs A](image)

Abb. 1: Häufigkeit der Schilddrüsenerkrankungen im Kollektiv A

Das Kollektiv A beinhaltet 1121 konsekutive Patienten, die sich in den Jahren 2000 bis 2005 an der Uniklinik Gießen (Klinik für Nuklearmedizin) einer Radiojodtherapie unterzogen. Darunter waren 195 Patienten mit maligner und 926 Patienten mit benigner Schilddrüsenerkrankung. Bei den malignen Schilddrüsenerkrankungen handelte es sich in 57 Fällen (≈ 5% des gesamten Kollektivs A) um ein follikuläres Karzinom, in 138 Fällen (≈ 12%) um ein papilläres Karzinom. Unter den Patienten mit benignen Schilddrüsenerkrankungen fanden sich 26 (≈ 2%) mit einer Struma, 61 (≈ 5%) mit einer disseminierten Autonomie, 318 (≈ 28%) mit unifokaler Autonomie, 325 (≈ 29%) mit multifokaler Autonomie und 196 (≈ 17%) mit einem Morbus Basedow. Dabei unterschieden sich 89 Patienten mit euthyreotem Morbus Basedow (TSH ≥ 0,1 mU/l) von den restlichen 107 Patienten mit hyperthyreotem Morbus Basedow (TSH < 0,1 mU/l).

2.1.2 Kollektiv B

![Kollektiv B Diagramm](image)

Abb. 2: Häufigkeit der Schilddrüsenerkrankungen im Kollektiv B
Kollektiv B setzt sich aus insgesamt 80 Patienten mit benignen Schilddrüsenerkrankungen zusammen. Davon waren 8 (= 10%) an einer Struma, 17 (= 21%) an einer unifokalen Autonomie, 31 (= 39%) an einer multifokalen Autonomie und 24 (= 30%) Patienten an einem Morbus Basedow erkrankt. Diejenigen mit einem Morbus Basedow untergliederten sich wiederum in 16 euthyreote (TSH ≥ 0,1 mU/l) und 8 hyperthyreote (TSH < 0,1 mU/l) Patienten. Wie oben beschrieben wurde auch bei diesem Kollektiv jeweils eine Radiojodtherapie mit nachfolgenden Aktivitätsmessungen durchgeführt. Durchschnittlich wurde 6 mal gemessen (Minimum 4 Messungen, Maximum 14 Messungen). Anders als beim Kollektiv A wurde jedoch beim Kollektiv B eine zusätzliche Aktivitätsmessung jeweils vier bis sechs Stunden nach der Nuklidapplikation durchgeführt.

Mit Hilfe von Kollektiv B sollte herausgefunden werden, ob für nachfolgende Untersuchungen, insbesondere die Berechnung der thyreoidalen Transferkonstanten, eine frühere Aktivitätsmessung sinnvoll und nötig ist, um genauere Ergebnisse zu erzielen.

2.2 Modell der intrathyreoidalen Jodkinetik

Mit Hilfe von Mehrkompartmentmodellen kann die intrathyreoidale Jodkinetik näher beschrieben werden. Obwohl auch krankheitsspezifische Mittelwerte für die maximale thyreoidale Jodspeicherung und für die Halbwertszeit der Jodausscheidung existieren, ist der Einsatz einer individuell berechneten Therapieaktivität immer noch vorgeschrieben (Rink et al., 2004; Wellner und Schicha, 1993).

Die Jodabgabe hingegen wird durch folgende Gleichung definiert:

\[(3)\quad A(t) = A_0 \cdot [\exp(-\lambda_2 t) - 1]\]

Aus Gleichung (2) und Gleichung (3) erhält man eine Gleichung (4), die sowohl die Jodaufnahme als auch die Jodausscheidung aus der Schilddrüse berücksichtigt.

\[(4)\quad A(t) = A_0 \cdot [1 - \exp(-\lambda_1 t)] + A_0 \cdot [\exp(-\lambda_2 t) - 1]\]

mit

\[A(t) = \text{intrathyreoidaler Jodgehalt zum Zeitpunkt } t \ [\text{MBq}]\]
\[A_0 = \text{applizierte Aktivität } [\text{MBq}]\]
\[\lambda_1 = \text{Transferkonstante für die Jodaufnahme } [1/\text{d}]\]
\[\lambda_2 = \text{Transferkonstante für die Jodausscheidung } [1/\text{d}]\]

Abb. 3: Intrathyreoidale Jodkinetik als Summe der Exponentialfunktionen sowohl für die Jodaufnahme als auch die Jodabgabe der Schilddrüse (Rink et al., 2004)
Mit Hilfe von diesem Modell ist es bereits mit drei Messpunkten möglich, A_0, λ_1 und λ_2 zu berechnen. Es dient der Beurteilung der individuellen Jodkinetik und Dosimetrie (Rink et al., 2004).

2.3 Nähere Definition der Transferkonstanten / kinetischen Parameter

Das Zwei-Kompartment-Modell beinhaltet zum einen den Restkörper zum anderen die Schilddrüse als Kompartment. Ausgehend von dieser Tatsache können die oben beschriebenen Transferkonstanten λ_1 und λ_2 anhand eines einfachen Schemas noch aufgeschlüsselt und näher definiert werden.

\[
\begin{align*}
\lambda_{13} & \quad \lambda_{21} \\
\lambda_4 & \quad \lambda_{12}
\end{align*}
\]

Abb. 4: Definition der Transferkonstanten; Di Martino et al., 2002

λ_{12} stellt die Transferkonstante aus dem Restkörper in die Schilddrüse dar. Hingegen charakterisiert λ_{21} den Transfer aus der Schilddrüse in den Restkörper. Die Ausscheidung des Jod-131 aus dem Restkörper wird durch den Parameter λ_{13} beschrieben. λ_{13} beschreibt nur die Ausscheidung des Jod-131, das nicht mehr hormongebunden vorliegt. Jedoch kann ein Teil des Jod-131 auch hormongebunden ausgeschieden werden. Die Kinetik dieser Ausscheidung wird mit dem Parameter λ_4 beschrieben. λ_4 hat also nichts mit der eigentlichen Jod-Kinetik zu tun, ist aber wichtig für die Interpretation der gemessenen Jodaktivität, da szintigraphisch zwischen der Aktivität von freiem und hormongebundenem Jod nicht differenziert werden kann. Jod-131 wird über die Niere ausgeschieden.

Wie folgt lassen sich die Transferkonstanten λ_1 und λ_2 aus diesen kinetischen Parametern zusammensetzen:

\[
\lambda_1 = \lambda_{12} + \lambda_{13} + \lambda_{ph}
\]
Bei λ_{ph} handelt es sich um die „physikalische Transferkonstante“, die aus der physikalischen Halbwertszeit ($t_{1/2\, ph}$) berechnet werden kann. Die physikalische Halbwertszeit von Jod-131 beträgt, wie oben schon beschrieben, fast exakt 8 Tage.

(7) $t_{1/2\, ph} = \frac{\ln 2}{\lambda_{ph}}$

(8) $\lambda_{ph} = \frac{\ln 2}{t_{1/2\, ph}} = \frac{\ln 2}{8\, \text{d}} \approx 0,087 / \text{d}$

2.4 Berechnung der Transferkonstanten

Abb. 5: Computerausdruck des Fit-Programms
2.5 Berechnung der Restkörperdosis

Im Rahmen einer Radiojodtherapie ist die zusätzliche Bestrahlung von extrathyreoidalem Gewebe nicht zu vermeiden. Diese Restkörperbelastung wird von einigen Patienten als Nachteil dieser Behandlungsmethode gesehen (Oeser et al., 1962).

2.6 Berechnung der Therapiedosis

Ebenfalls eignet sich ein neues Modell zur Berechnung der Therapiedosis, das auf der Grundlage des oben beschriebenen Zwei-Kompartiment-Modells der intrathyreoideal en Jodkinetik basiert. Teil dieser Arbeit ist es, diese unterschiedlichen Berechnungsmethoden der Therapiedosis aufzuzeigen, um dann die einzelnen Ergebnisse bewerten und vergleichen zu können.

2.6.1 Berechnung nach der Marinelli–Formel

Für die Dosimetrie nach Radiojodtherapie werden unterschiedliche biologische Parameter der Schilddrüse benötigt. Diese sind nicht nur individuell, sondern auch krankheitsspezifisch. So müssen vor Rechenbeginn die Schilddrüsenmasse m, der Radiojod–Uptake P und die effektive Halbwertszeit $t_{1/2}$ des Nuklids bestimmt werden. Die effektive Halbwertszeit $t_{1/2}$ setzt sich aus zwei Komponenten zusammen, nämlich aus der Ausscheidung des Jod-131 aus der Schilddrüse und dem radioaktiven Zerfall des Nuklids, also der biologischen und der physikalischen Halbwertszeit (Fueger, 1987).

Anschließend kann die erreichte Herddosis nach der modifizierten Marinelli–Formel ermittelt werden:

\[
D = \frac{P \cdot t_{1/2} \cdot A_0}{K \cdot m}
\]

mit

- D = Herddosis [Gy]
- P = Radiojoduptake [%]
- $t_{1/2}$ = Halbwertszeit [d]
- A_0 = applizierte Aktivität [MBq]
- K = eine von der Schilddrüsenmasse abhängige Konstante $[\text{MBq} \cdot \text{d}^{-1} \cdot \text{g}^{-1} \cdot \text{Gy}^{-1}]$
- m = Schilddrüsenmasse [g]
Hierbei beschreibt der Uptake P die maximale Radiojodaufnahme in die Schilddrüse in Prozent. Die Halbwertszeit $t_{1/2}$ in Tagen wird mit Hilfe mehrerer Aktivitätsmessungen ermittelt. Bei der Aktivität A_0 handelt es sich um die applizierte Therapieaktivität. Die Konstante K [MBq * $d / (g \cdot Gy)$] hängt von der Schilddrüsenmasse ab und variiert zwischen 27 MBq * $d / (g \cdot Gy)$ bei einer Masse unter 3 g und 21 MBq * $d / (g \cdot Gy)$ bei einer Masse über 100 g (Bauer 1987). Die Schilddrüsenmasse wird mittels Sonographie bestimmt (Fueger, 1987; Brunn, 1981).

Zur intratherapeutischen Dosisbestimmung werden während der Radiojodtherapie eines Patienten täglich Aktivitätsmessungen durchgeführt. So lässt sich eine Aktivitäts–Kurve in Abhängigkeit der Zeit t erstellen.

Abb. 6: Schilddrüsenaktivität A_0 (MBq) in Abhängigkeit von der Zeit t (d) nach Therapie

Vor der Integration wird die Aktivitäts-Kurve gegen Null rückextrapoliert, um den maximalen Uptake P zu erhalten.
Die Funktion wird nun ab $t = 0$ integriert, um so die tatsächlich erreichte Therapiedosis bestimmen zu können (Bogner und Czempiel, 1993; Marinelli, 1949).

2.6.2 Berechnung durch stückweise Integration

Eine andere Möglichkeit, die tatsächliche Therapiedosis zu berechnen, lieferte Bauer, 1987, mit dem Modell der stückweisen Integration. Hier werden die nach Radiojodapplikation gemessenen Schilddrüsenaktivitäten $A(t)$ in MBq in einem Diagramm gegen die Zeit t in Tagen aufgetragen.
Abb. 8: Schilddrüsenaktivität A(t) nach Radiojodtherapie in linearer Darstellung (Bauer, 1987)

Abbildung 8 stellt die Messergebnisse eines Patienten exemplarisch dar. Um die tatsächliche kumulierte Therapiedosis zu erhalten, muss die Fläche unter der oben beschriebenen Kurve stückweise integriert werden. Der ansteigende Teil der Kurve beschreibt die Jod-131-Aufnahme in die Schilddrüse, wobei die maximale Jodaufnahme einen Tag nach Applikation erreicht wird. Im absteigenden Teil der Kurve ist der exponentielle Abfall der Schilddrüsenaktivität A(t) erkennbar. Dieser Teil der Kurve kommt sowohl durch die Jodausscheidung aus der Schilddrüse als auch durch den physikalischen Zerfall zustande. Die Berechnung der gesamten Schilddrüsendosis setzt sich aus drei Anteilen zusammen. So werden separat die Dosis für Tag 0 bis 1, die Dosis für Tag 1 bis n (wobei der Tag n dem Tag der Entlassung entspricht) und die Restdosis ab Entlassung berechnet und dann summiiert.

\[\text{Dosis Tag 0 bis 1} = \frac{1}{K \times m} \times 0,7 \times A_1 \times \ln (2) \]

Der Faktor 0,7 wurde empirisch ermittelt.
Dosis Tag 1 bis n = \(\frac{1}{K \cdot m} \cdot \sum (A_{m,i} \cdot \Delta t_i) \cdot \ln(2) \)

Dosis Rest = \(\frac{1}{K \cdot m} \cdot A_n \cdot t_{1/2} \)

Somit lässt sich die gesamte Schilddrüsendosis wie folgt berechnen:

\[
D = \frac{1}{K \cdot m} \cdot \left(0,7 \cdot A_1 + \sum (A_{m,i} \cdot \Delta t_i) \right) \cdot \ln(2) + A_n \cdot t_{1/2}
\]

mit

\(K \): von der Schilddrüsenvase abhängige Konstante [MBq * d / g / Gy]
\(m \): Schilddrüsenmasse [g]
\(A_1 \): Aktivität, die 24 Stunden nach Applikation gemessen wird [MBq]
\(A_{m,i} \): Aktivität pro Messintervall \(\Delta t_i \), die aus den gemessenen Aktivitäten \(A_i \) gemittelt wurde [MBq]
\(A_n \): Restaktivität bei Entlassung [MBq]
\(t_{1/2} \): Halbwertszeit von Jod-131 während Therapie [d]

(Bauer, 1987)

2.6.3 Berechnung anhand des Zwei-Kompartment-Modells

(4) \[A(t) = A_0 \cdot [\exp(-\lambda_2 t) - \exp(-\lambda_1 t)] \]

(14) \[D_{SD} = \frac{1}{(K \cdot m)} \int A_0 \cdot [\exp(-\lambda_2 t) - \exp(-\lambda_1 t)] \, dt \]

\[= A_0 / (K \cdot m) \cdot \left[-e^{-\lambda_2 t} \cdot \frac{1}{\lambda_2} + e^{-\lambda_1 t} \cdot \frac{1}{\lambda_1} \right]_0^\infty \]
\[= A_0 / (K \cdot m) \cdot (1/\lambda_2 - 1/\lambda_1) \]

Auf diese Weise ist eine sehr präzise Berechnung der Schilddrüsendosis möglich, da auch die initiale Anreicherungsphase von Jod-131 bis hin zum Speichermaximum korrekt berücksichtigt wird.

2.7 Verwendete statistische Methoden

Die statistische Auswertung der Daten erfolgte mittels des Programms MS Excel. Zur Beschreibung der Transferkonstanten wurden der geometrische Mittelwert und das 95% Konfidenzintervall bestimmt. Um die Abhängigkeit der Transferkonstanten vom Kollektiv und von der Art der Schilddrüsenerkrankung zu überprüfen, wurden der Mann-Whitney-Test und eine Varianzanalyse durchgeführt. Beim Vergleich von effektiver Halbwertszeit \(t_{1/2} \) und Uptake zwischen Radiojodtest und Radiojodtherapie wurden die geometrischen Mittelwerte und das 95% Konfidenzintervall berechnet. Zur Auswertung der Ergebnisse wurde der Wilcoxon-Test verwendet.\[p \text{- Werte} \leq 0,05 \text{ wurden als statistisch signifikant angesehen.} \]

Zur Darstellung der Restkörperdosis und der intratherapeutischen Radiojoddosis wurden der arithmetische Mittelwert und die Standardabweichung berechnet.
3. Ergebnisse

3.1 Parameter in Abhängigkeit von der Schilddrüsenerkrankung und von dem Kollektiv

Zur Beurteilung der Schilddrüsenparameter wurden Patienten mit Struma, unifokaler Autonomie, multifokaler Autonomie und Morbus Basedow aus Kollektiv A berücksichtigt. Die Patienten mit euthyreotem Morbus Basedow (TSH \(\geq 0,1 \) mU/l) wurden jedoch von den restlichen Patienten mit hyperthyreotem Morbus Basedow (TSH < 0,1 mU/l) unterschieden.

Aus Kollektiv B mit zusätzlicher Aktivitätsmessung nach Applikation wurden ebenfalls Patienten mit euthyreotem und hyperthyreotem Morbus Basedow, mit Struma, mit unifokaler und multifokaler Autonomie untersucht.

Für diese Arbeit wurden zunächst für das Kollektiv A die oben beschriebenen Transferkonstanten (\(\lambda_{13} \), \(\lambda_{21} \), \(\lambda_{12} \), \(\lambda_{4} \)), die maximal erreichbare Schilddrüsenaktivität \(A_0 \), der Schilddrüsenuptake \(P \) und die effektive Halbwertszeit \(t_{1/2} \) des Radiojods berechnet. Die Parameter \(\lambda_{12}, \lambda_{21} \), die Aktivität \(A_0 \) und der Schilddrüsenuptake \(P \) wurden anschließend pro Gramm Schilddrüsengewebe berechnet. So erhielt man die Werte für \(\lambda_{12}/m, \lambda_{21}/m, A_0/m \) und Uptake/m, wobei es sich bei m um die Schilddrüsenmasse in Gramm handelt. Im Folgenden wurden die gewichtsbezogenen Variablen näher betrachtet, da sie unabhängig vom Schilddrüsenvolumen einen Vergleich der Parameter zwischen den beiden Kollektiven und zwischen den einzelnen Schilddrüsenerkrankungen zuließen.

Um herauszufinden, ob die aufgezählten Parameter durch eine zusätzliche Aktivitätsmessung innerhalb weniger Stunden nach Applikation genauer bestimmt werden können, wurden dieselben Berechnungen auch bei Kollektiv B durchgeführt.

Tabelle 1 und 2 zeigen die Transferkonstanten in Abhängigkeit der unterschiedlichen Schilddrüsenerkrankungen für Kollektiv A und Kollektiv B. Angegeben sind jeweils der geometrische Mittelwert und das 95% Konfidenzintervall. Bei n handelt es sich um die jeweilige Anzahl der Patienten mit entsprechender Schilddrüsenerkrankung.
Kollektiv A

<table>
<thead>
<tr>
<th>Erkrankung</th>
<th>MB TSH < 0,1</th>
<th>MB TSH ≥ 0,1</th>
<th>multi</th>
<th>uni</th>
<th>Struma</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>107</td>
<td>89</td>
<td>325</td>
<td>318</td>
<td>26</td>
</tr>
<tr>
<td>t₁/₂ d</td>
<td>5,0</td>
<td>6,3</td>
<td>6,3</td>
<td>6,3</td>
<td>6,3</td>
</tr>
<tr>
<td>95% KI</td>
<td>4,8-5,2</td>
<td>6,0-6,6</td>
<td>6,2-6,5</td>
<td>6,2-6,5</td>
<td>6,0-6,6</td>
</tr>
<tr>
<td>A₀ MBq</td>
<td>388,2</td>
<td>373,3</td>
<td>312,6</td>
<td>214,8</td>
<td>398,1</td>
</tr>
<tr>
<td>95% KI</td>
<td>345,1-436,5</td>
<td>328,1-424,6</td>
<td>291,7-344,2</td>
<td>200,4-230,1</td>
<td>331,1-478,6</td>
</tr>
<tr>
<td>A₀/m MBq/g</td>
<td>14,4</td>
<td>14,3</td>
<td>8,2</td>
<td>7,3</td>
<td>8,1</td>
</tr>
<tr>
<td>95% KI</td>
<td>13,4-15,6</td>
<td>12,7-16,1</td>
<td>7,8-8,6</td>
<td>6,9-7,8</td>
<td>7,6-8,7</td>
</tr>
<tr>
<td>Uptake %</td>
<td>57,3</td>
<td>56,0</td>
<td>35,2</td>
<td>26,2</td>
<td>50,1</td>
</tr>
<tr>
<td>95% KI</td>
<td>52,4-62,7</td>
<td>50,8-61,8</td>
<td>33,5-37,1</td>
<td>24,8-27,5</td>
<td>45,9-54,7</td>
</tr>
<tr>
<td>Uptake/m %/g</td>
<td>2,1</td>
<td>2,1</td>
<td>0,9</td>
<td>0,9</td>
<td>0,9</td>
</tr>
<tr>
<td>95% KI</td>
<td>1,9-2,3</td>
<td>1,9-2,4</td>
<td>0,9-1,0</td>
<td>0,8-0,9</td>
<td>0,7-1,1</td>
</tr>
<tr>
<td>l₁₂ 1/d</td>
<td>2,87</td>
<td>2,53</td>
<td>1,08</td>
<td>0,76</td>
<td>1,58</td>
</tr>
<tr>
<td>95% KI</td>
<td>2,49-3,30</td>
<td>2,17-2,96</td>
<td>0,10-1,17</td>
<td>0,70-0,82</td>
<td>1,26-2,00</td>
</tr>
<tr>
<td>l₁₃ 1/d</td>
<td>1,89</td>
<td>1,84</td>
<td>1,85</td>
<td>2,03</td>
<td>2,00</td>
</tr>
<tr>
<td>95% KI</td>
<td>1,73-2,05</td>
<td>1,67-2,01</td>
<td>1,77-1,95</td>
<td>1,93-2,13</td>
<td>1,58-2,51</td>
</tr>
<tr>
<td>l₂₁ 1/d</td>
<td>0,04</td>
<td>0,03</td>
<td>0,04</td>
<td>0,04</td>
<td>0,03</td>
</tr>
<tr>
<td>95% KI</td>
<td>0,04-0,05</td>
<td>0,02-0,03</td>
<td>0,03-0,04</td>
<td>0,037-0,043</td>
<td>0,02-0,03</td>
</tr>
<tr>
<td>l₄ 1/d</td>
<td>0,35</td>
<td>0,23</td>
<td>0,30</td>
<td>0,36</td>
<td>0,32</td>
</tr>
<tr>
<td>95% KI</td>
<td>0,31-0,39</td>
<td>0,20-0,64</td>
<td>0,28-0,32</td>
<td>0,34-0,38</td>
<td>0,25-0,40</td>
</tr>
<tr>
<td>L₁₂/m 1/d/g</td>
<td>0,104</td>
<td>0,100</td>
<td>0,028</td>
<td>0,026</td>
<td>0,035</td>
</tr>
<tr>
<td>95% KI</td>
<td>0,091-0,118</td>
<td>0,087-0,117</td>
<td>0,026-0,030</td>
<td>0,024-0,027</td>
<td>0,025-0,040</td>
</tr>
<tr>
<td>L₂₁/m 1/d/g</td>
<td>0,0015</td>
<td>0,0011</td>
<td>0,0010</td>
<td>0,0014</td>
<td>0,0005</td>
</tr>
<tr>
<td>95% KI</td>
<td>0,0013-0,0018</td>
<td>0,0009-0,0014</td>
<td>0,0009-0,0011</td>
<td>0,0012-0,0015</td>
<td>0,0004-0,0006</td>
</tr>
</tbody>
</table>

Tab. 1: Kollektiv A: Geometrische Mittelwerte und 95% Konfidenzintervalle der Parameter der Marinelliformel t₁/₂, A₀ und Uptake und der Transferkonstanten l₁₂, l₁₃, l₂₁ und l₄ (l₁₂ = λ₁₂, l₁₃ = λ₁₃ usw.)

Die Ergebnisse von Kollektiv B werden in Tabelle 2 dargestellt, n stellt auch hier die Anzahl der Patienten mit entsprechender Schilddrüserkrankung dar.
Tab. 2: Kollektiv B: Geometrische Mittelwerte und 95% Konfidenzintervalle der Parameter der Marinelliformel $t_{1/2}$, A_0 und Uptake und der Transferkonstanten I_{12}, I_{13}, I_{21} und I_4

<table>
<thead>
<tr>
<th>Erkrankung</th>
<th>$MB_{TSH < 0,1}$</th>
<th>$MB_{TSH \geq 0,1}$</th>
<th>multi</th>
<th>uni</th>
<th>Struma</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>16</td>
<td>8</td>
<td>31</td>
<td>17</td>
<td>8</td>
</tr>
<tr>
<td>$t_{1/2}$</td>
<td>5,0</td>
<td>4,0</td>
<td>6,3</td>
<td>5,0</td>
<td>6,3</td>
</tr>
<tr>
<td>95% KI</td>
<td>4,0-6,3</td>
<td>2,0-7,9</td>
<td>5,9-6,8</td>
<td>4,0-6,3</td>
<td>5,0-7,9</td>
</tr>
<tr>
<td>A_0 MBq</td>
<td>408,2</td>
<td>319,2</td>
<td>329,6</td>
<td>220,3</td>
<td>478,6</td>
</tr>
<tr>
<td>95% KI</td>
<td>300,6-554,6</td>
<td>207,0-492,0</td>
<td>264,9-410,2</td>
<td>163,7-296,5</td>
<td>310,5-737,9</td>
</tr>
<tr>
<td>A_0/m MBq/g</td>
<td>19,3</td>
<td>17,5</td>
<td>9,4</td>
<td>8,5</td>
<td>7,6</td>
</tr>
<tr>
<td>95% KI</td>
<td>15,8-23,6</td>
<td>13,3-23,0</td>
<td>8,2-10,9</td>
<td>6,3-11,3</td>
<td>5,8-10,1</td>
</tr>
<tr>
<td>Uptake %</td>
<td>67,1</td>
<td>59,8</td>
<td>39,6</td>
<td>31,0</td>
<td>44,1</td>
</tr>
<tr>
<td>95% KI</td>
<td>53,2-84,7</td>
<td>43,2-83,2</td>
<td>33,5-46,8</td>
<td>24,7-38,7</td>
<td>31,7-61,2</td>
</tr>
<tr>
<td>Uptake/m %/g</td>
<td>3,2</td>
<td>3,3</td>
<td>1,1</td>
<td>1,2</td>
<td>0,7</td>
</tr>
<tr>
<td>95% KI</td>
<td>2,5-4,1</td>
<td>2,3-4,7</td>
<td>0,9-1,4</td>
<td>0,9-1,5</td>
<td>0,5-1,0</td>
</tr>
<tr>
<td>I_{12} 1/d</td>
<td>3,86</td>
<td>2,14</td>
<td>1,05</td>
<td>0,85</td>
<td>1,24</td>
</tr>
<tr>
<td>95% KI</td>
<td>2,7-5,6</td>
<td>1,3-3,6</td>
<td>0,8-1,4</td>
<td>0,6-1,2</td>
<td>0,7-2,1</td>
</tr>
<tr>
<td>I_{13} 1/d</td>
<td>1,60</td>
<td>1,63</td>
<td>1,46</td>
<td>1,87</td>
<td>1,26</td>
</tr>
<tr>
<td>95% KI</td>
<td>1,29-1,99</td>
<td>1,20-2,22</td>
<td>1,25-1,71</td>
<td>1,52-2,32</td>
<td>0,92-1,71</td>
</tr>
<tr>
<td>I_{21} 1/d</td>
<td>0,07</td>
<td>0,09</td>
<td>0,06</td>
<td>0,08</td>
<td>0,05</td>
</tr>
<tr>
<td>95% KI</td>
<td>0,05-0,09</td>
<td>0,06-0,15</td>
<td>0,04-0,07</td>
<td>0,05-0,10</td>
<td>0,03-0,09</td>
</tr>
<tr>
<td>I_4 1/d</td>
<td>0,22</td>
<td>0,29</td>
<td>0,20</td>
<td>0,19</td>
<td>0,22</td>
</tr>
<tr>
<td>95% KI</td>
<td>0,16-0,30</td>
<td>0,19-0,45</td>
<td>0,16-0,25</td>
<td>0,14-0,26</td>
<td>0,14-0,34</td>
</tr>
<tr>
<td>$L_{12/m}$ 1/d/g</td>
<td>0,183</td>
<td>0,144</td>
<td>0,030</td>
<td>0,033</td>
<td>0,020</td>
</tr>
<tr>
<td>95% KI</td>
<td>0,132-0,254</td>
<td>0,090-0,229</td>
<td>0,024-0,038</td>
<td>0,024-0,045</td>
<td>0,012-0,031</td>
</tr>
<tr>
<td>$L_{21/m}$ 1/d/g</td>
<td>0,0031</td>
<td>0,0060</td>
<td>0,0016</td>
<td>0,0029</td>
<td>0,0009</td>
</tr>
<tr>
<td>95% KI</td>
<td>0,0019-0,0049</td>
<td>0,0031-0,0119</td>
<td>0,0011-0,0022</td>
<td>0,0018-0,0046</td>
<td>0,0004-0,0017</td>
</tr>
</tbody>
</table>
3.1.1 Effektive Halbwertszeit \(t_{1/2} \)

Die effektive Halbwertszeit \(t_{1/2} \) zeigte keinen signifikanten Unterschied zwischen Kollektiv A und B (Signifikanz \(p=0,437 \)). Sie war allein von der Art der Schilddrüsenerkrankung abhängig (Signifikanz \(p < 0,001 \)).

Abbildung 9 zeigt die effektive Halbwertszeit \(t_{1/2} \) in Kollektiv A und B.

Abb. 9: effektive Halbwertszeit und 95% Konfidenzintervall für Kollektiv A und B

Die effektive Halbwertszeit \(t_{1/2} \) zeigte zwischen Kollektiv A und B kaum einen Unterschied. In Kollektiv A wies der hyperthyreote Morbus Basedow mit 5,0 Tagen (95% KI 4,8-5,2) die geringste effektive Halbwertszeit auf. Er unterschied sich signifikant von den übrigen Erkrankungen (Signifikanz \(p < 0,001 \)). Beim euthyreoten Morbus Basedow lag die effektive Halbwertszeit bei 6,3 Tagen (95% KI 6,0-6,6). In Kollektiv B ergab sich für den euthyreoten Morbus Basedow die kürzeste effektive Halbwertszeit. Sie lag bei 4,0 Tagen (95% KI 2,0-7,9). Der hyperthyreote Morbus Basedow zeigte eine effektive Halbwertszeit von 5,0 Tagen (95% KI 4,0-6,3).
3.1.2 Gewichtsbezogene Schilddrüsenaktivität A_0/m

Die gewichtsbezogene Schilddrüsenaktivität A_0/m zeigte sich sowohl abhängig vom Kollektiv (Signifikanz $p=0.002$) als auch von der jeweiligen Schilddrüsenerkrankung (Signifikanz $p<0.001$).

![Diagramm der gewichtsbezogenen Schilddrüsenaktivität A_0/m für Kollektiv A und B](image)

Abb. 10: gewichtsbezogene Schilddrüsenaktivität A_0/m und 95% Konfidenzintervall für Kollektiv A und B

Die Werte für die gewichtsbezogene Schilddrüsenaktivität A_0/m lagen zwischen 7,3 MBq/g (95% KI 6,9-7,8) für die unifokale Autonomie und 14,4 MBq/g (95% KI 13,4-15,6) für den hyperthyreoten Morbus Basedow in Kollektiv A. In Kollektiv B lagen die Werte zwischen 19,3 MBq/g (95% KI 15,8-23,6) für den hyperthyreoten Morbus Basedow und 7,6 MBq/g (95% KI 5,8-10,1) für die Struma. Der hyperthyreote Morbus Basedow unterschied sich jeweils signifikant von den übrigen Erkrankungen.
3.1.3 Gewichtsbezogene Schilddrüsenuptake Uptake/m

Der gewichtsbezogene Schilddrüsenuptake Uptake/m war sowohl von der Art der Schilddrüsenerkrankung (Signifikanz p<0,001) als auch vom Kollektiv (Signifikanz p=0,002) abhängig.

Abbildung 11 zeigt den gewichtsbezogenen Schilddrüsenuptake in Kollektiv A und B.

![Uptake/m Kollektiv A und B](image)

Abb. 11: Uptake/m und 95% Konfidenzintervall für Kollektiv A und B

Der gewichtsbezogene Schilddrüsenuptake war in Kollektiv A beim Morbus Basedow signifikant am größten. Er zeigte sich beim hyperthyreoten (95% KI 1,9-2,3) und euthyreoten (95% KI 1,9-2,4) Morbus Basedow identisch und lag bei 2,1%/g. Multifokale (0,9%/g; 95% KI 0,9-1,0) und unifokale (0,9%/g; 95% KI 0,8-0,9) Autonomie und die Struma (0,9%/g; 95% KI 0,7-1,1) lagen deutlich niedriger.

Auch in Kollektiv B ließ sich beim hyperthyreoten (3,2%/g; 95% KI 2,5-4,1) und euthyreoten (3,3%/g; 95% KI 2,3-4,7) Morbus Basedow der größte gewichtsbezogene Schilddrüsenuptake erkennen. Er unterschied sich signifikant von den Ergebnissen der übrigen Erkrankungen. Diese wiesen deutlich niedrigere Werte auf. Uptake/m betrug für die multifokale Autonomie 1,1%/g (95% KI 0,9-1,4), für die unifokale Autonomie 1,2%/g (95% KI 0,9-1,5) und für die Struma 0,7%/g (95% KI 0,5-1,0).
Insgesamt fiel auf, dass die Werte in Kollektiv B höher lagen als in Kollektiv A. Eine Ausnahme fand sich lediglich bei der Struma.

3.1.4 Gewichtsbezogene Transferkonstante vom Restkörper in die Schilddrüse λ_{12}/m

Der Parameter für den Transfer vom Restkörper in die Schilddrüse λ_{12} wurde, um die Ergebnisse verallgemeinern zu können, pro Gramm Schilddrüsegewebe beschrieben. Die Werte für λ_{12}/m waren abhängig von der jeweiligen Schilddrüsenerkrankung (Signifikanz $p<0,001$) und vom Kollektiv (Signifikanz $p=0,048$).

Abbildung 12 zeigt die Ergebnisse von λ_{12}/m.

![Diagramm](attachment:Diagramm.png)

Abb. 12: λ_{12}/m und 95% Konfidenzintervall für Kollektiv A und B

In beiden Kollektiven zeigte der Morbus Basedow deutlich die schnellste Jod-131-Aufnahme aus dem Restkörper in die Schilddrüse. Die Werte für λ_{12}/m lagen in Kollektiv A für den hyperthyreoten und euthyreoten Morbus Basedow nahezu identisch bei 0,104 1/d/g (95% KI 0,091-0,118) und 0,100 1/d/g (95% KI 0,087-0,117). In Kollektiv B lag der Wert des hyperthyreoten Morbus Basedow (0,183 1/d/g;
95% KI 0,132-0,254) jedoch noch über dem Wert des euthyreoten Morbus Basedow (0,144 1/d/g; 95% KI 0,090-0,229). Die Werte für die Struma, die multifokale und unifokale Autonomie lagen sowohl in Kollektiv A als auch in Kollektiv B einiges niedriger. In Kollektiv A betrug λ_{12}/m für die Struma 0,035 1/d/g (95% KI 0,025-0,040), für die unifokale 0,026 1/d (95% KI 0,024-0,027) und für die multifokale Autonomie 0,028 1/d/g (95% KI 0,026-0,030). In Kollektiv B betrug λ_{12}/m für die Struma 0,020 1/d/g (95% KI 0,012-0,031), für die unifokale 0,033 1/d (95% KI 0,024-0,045) und für die multifokale Autonomie 0,030 1/d/g (95% KI 0,024-0,038). Die Ergebnisse von Kollektiv B lagen außer bei der Struma in der Regel über den Werten von Kollektiv A.

3.1.5 Gewichtsbezogene Transferkonstante aus der Schilddrüse in den Restkörper λ_{21}/m

Auch der Parameter für den Transfer aus der Schilddrüse in den Restkörper λ_{21} wurde bei nachfolgenden Ergebnissen pro Gramm Schilddrüsengewebe beschrieben. Der Parameter λ_{21}/m war sowohl vom Kollektiv (Signifikanz $p<0,001$) als auch von der Art der Schilddrüsenerkrankung (Signifikanz $p=0,011$) abhängig. Abbildung 13 zeigt die Ergebnisse des Parameters λ_{21}/m.

Abb. 13: λ_{21}/m und 95% Konfidenzintervall für Kollektiv A und B
Der schnellste Radiojod-Transfer aus der Schilddrüse in den Restkörper fand in Kollektiv A beim hyperthyreoten Morbus Basedow statt. λ_{21}/m wies hier einen Wert von 0,0015 1/d/g (95% KI 0,0013-0,0018) auf. Der geringste Wert lag mit 0,0005 1/d/g (95% KI 0,0004-0,0006) bei der Struma. Auch in Kollektiv B zeigte die Struma das kleinste λ_{21}/m. Es betrug hier 0,0009 1/d/g (95% KI 0,0004-0,0017). Für den euthyreoten Morbus Basedow errechnete sich in Kollektiv B als größter Wert ein λ_{21}/m von 0,0060 1/d/g (95% KI 0,0031-0,0119). Generell war festzustellen, dass die Werte aus Kollektiv B über den Werten aus Kollektiv A lagen.

3.1.6 Transferkonstante des freien (hormonungebundenen) Jods aus dem Restkörper λ_{13}

Der Parameter λ_{13} beschreibt den Transfer des hormonungebundenen Jods aus dem Restkörper in die Niere. Dieser Parameter zeigte sich unabhängig von der jeweiligen Schilddrüsenerkrankung (Signifikanz $p=0,900$). Dagegen gab es signifikante Unterschiede zwischen Kollektiv A und B (Signifikanz $p=0,017$). Abbildung 14 zeigt die Ergebnisse des Parameters λ_{13}.

![Abbildung 14: λ_{13} und 95% Konfidenzintervall für Kollektiv A und B](image.png)
Abbildung 14 zeigt, dass die Werte für Kollektiv A bei allen Schilddrüsenerkrankungen etwas höher lagen als bei Kollektiv B. In Kollektiv A schwankten die Werte für λ_{13} zwischen 1,84 1/d (95% KI 1,67-2,01) für den euthyreoten Morbus Basedow und 2,03 1/d (95% KI 1,93-2,13) für die unifokale Autonomie. In Kollektiv B lagen die Werte zwischen 1,26 1/d (95% KI 0,92-1,71) für die Struma und 1,87 1/d (95% KI 1,52-2,32) für die unifokale Autonomie.

3.1.7 Transferkonstante des hormongebundenen Jods aus dem Restkörper λ_4

Der Parameter λ_4 beschreibt den Transfer des hormongebundenen Jods aus dem Restkörper. Er war deutlich abhängig vom Kollektiv (Signifikanz $p<0,001$). Jedoch zeigten sich in Kollektiv A auch Unterschiede zwischen den verschiedenen Schilddrüsenerkrankungen (Signifikanz $p<0,001$). Abbildung 15 zeigt die Ergebnisse des Parameters λ_4.

Abb. 15: λ_4 und 95% Konfidenzintervall für Kollektiv A und B

Abbildung 15 zeigt, dass die Werte für λ_4 in Kollektiv A größer waren als in Kollektiv B. Lediglich beim euthyreoten Morbus Basedow war λ_4 in Kollektiv B größer als in Kollektiv A. In Kollektiv A lagen die Werte für λ_4 zwischen 0,23 1/d (95% KI 0,20-
0,64) für den euthyreoten Morbus Basedow und 0,36 1/d (95% KI 0,34-0,38) für die unifokale Autonomie. Signifikante Unterschiede zwischen den einzelnen Erkrankungen ergaben sich in Kollektiv A zwischen euthyreotem Morbus Basedow und dem hyperthyreoten Morbus Basedow, der multifokalen und der unifokalen Autonomie. In Kollektiv B schwankten die Werte zwischen 0,19 1/d für die unifokale (95% KI 0,14-0,26) Autonomie und 0,29 1/d (95% KI 0,19-0,45) für den euthyreoten Morbus Basedow.

3.2 Parameter beim Radiojodtest und Radiojodtherapie

Bei 789 Patienten mit ambulanten Radiojodtest aus Kollektiv A wurden die effektive Halbwertszeit $t_{1/2}$ und der Schilddrüsenuptake berechnet.

3.2.1 Effektive Halbwertszeit $t_{1/2}$

Tabelle 3 und Abbildung 16 zeigen die Ergebnisse der effektiven Halbwertszeit $t_{1/2}$ in Radiojodtest und Radiojodtherapie.

<table>
<thead>
<tr>
<th>Erkrankung</th>
<th>MB</th>
<th>diss</th>
<th>multi</th>
<th>uni</th>
<th>Struma</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>175</td>
<td>46</td>
<td>268</td>
<td>277</td>
<td>23</td>
</tr>
<tr>
<td>Test $t_{1/2}$ d</td>
<td>5,7</td>
<td>7,0</td>
<td>6,3</td>
<td>6,2</td>
<td>7,2</td>
</tr>
<tr>
<td>95% KI</td>
<td>5,5-5,9</td>
<td>6,8-7,3</td>
<td>6,1-6,4</td>
<td>6,0-6,3</td>
<td>6,8-7,6</td>
</tr>
<tr>
<td>Ther $t_{1/2}$ d</td>
<td>5,5</td>
<td>6,2</td>
<td>5,8</td>
<td>5,7</td>
<td>6,3</td>
</tr>
<tr>
<td>95% KI</td>
<td>5,3-5,7</td>
<td>5,9-6,5</td>
<td>5,7-5,9</td>
<td>5,5-5,8</td>
<td>6,0-6,6</td>
</tr>
</tbody>
</table>

Tab. 3: Halbwertszeit $t_{1/2}$ in Radiojodtest und Radiojodtherapie; geometrische Mittelwerte und 95% Konfidenzintervall
Die effektive Halbwertszeit $t_{1/2}$ war im Radiojodtest für den Morbus Basedow, die disseminierte Autonomie, die multifokale Autonomie, die unifokale Autonomie und die Struma länger als während Radiojodtherapie. Für den Morbus Basedow erwiesen sich die Unterschiede zwischen Test und Therapie jedoch nicht als signifikant (Signifikanz $p=0,074$). Sowohl in Test als auch Therapie zeigte die Struma die längste Halbwertszeit. Sie lag im Test bei 7,2 Tagen (95% KI 6,8–7,6) und während Therapie bei 6,3 Tagen (95% KI 6,0–6,6). Die kürzeste Halbwertszeit errechnete sich für den Morbus Basedow. Sie betrug 5,7 Tage (95% KI 5,5–5,9) im Test und 5,5 Tage (95% KI 5,3–5,7) während Therapie.

3.2.2 Schilddrüsenuptake

Tabelle 4 und Abbildung 17 zeigen die Ergebnisse des Schilddrüsenuptakes in Radiojodtest und Radiojodtherapie.
<table>
<thead>
<tr>
<th>Erkrankung</th>
<th>MB</th>
<th>diss</th>
<th>multi</th>
<th>uni</th>
<th>Struma</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>175</td>
<td>46</td>
<td>268</td>
<td>277</td>
<td>23</td>
</tr>
<tr>
<td>Test Upt %</td>
<td>59,6</td>
<td>32,5</td>
<td>34,8</td>
<td>26,8</td>
<td>45,9</td>
</tr>
<tr>
<td>95% KI</td>
<td>56,7-62,7</td>
<td>29,0-36,3</td>
<td>32,8-36,8</td>
<td>24,7-29,0</td>
<td>40,4-52,1</td>
</tr>
<tr>
<td>Ther Upt %</td>
<td>53,5</td>
<td>33,9</td>
<td>34,1</td>
<td>26,6</td>
<td>46,6</td>
</tr>
<tr>
<td>95% KI</td>
<td>50,4-56,8</td>
<td>30,5-37,5</td>
<td>32,2-36,1</td>
<td>24,9-28,4</td>
<td>41,4-52,5</td>
</tr>
</tbody>
</table>

Tab. 4: Uptake in Radiojodtest und Radiojodtherapie; geometrische Mittelwerte und 95% Konfidenzintervall

Abb. 17: Schilddrüsenuptake und 95% Konfidenzintervall in Test und Therapie

Der Schilddrüsenuptake war für den Morbus Basedow, die multifokale Autonomie und die unifokale Autonomie im Radiojodtest größer als während Radiojodtherapie. Dies erwies sich allerdings nur für die multifokale Autonomie (Signifikanz p=0,007) und den Morbus Basedow (Signifikanz p<0,001) als signifikant. Der Uptake für die multifokale Autonomie lag im Radiojodtest bei 34,8% (95% KI 32,8-36,8) und während Radiojodtherapie bei 34,1% (95% KI 32,2-36,1). Der Morbus Basedow wies im Test einen Uptake von 59,6% (95% KI 56,7-62,7) und während Therapie einen Uptake von 53,5% (95% KI 50,4-56,8) auf. Der Schilddrüsenuptake der disseminierten Autonomie (Signifikanz p=0,350) und der Struma (Signifikanz
p=0,976) lagen im Radiojodtest niedriger als unter Radiojodtherapie. Dies war allerdings nicht signifikant.

3.3 Intratherapeutische Dosis

Die Therapiedosis bei Radiojodtherapie kann, wie oben beschrieben, auf unterschiedliche Arten berechnet werden. In diesem Teil der Arbeit wurden drei verschiedene Methoden zur Dosisberechnung angewendet, nämlich die Methode nach Marinelli, die Berechnung durch stückweise Integration und die neue Methode mit Hilfe des Zwei-Kompartment-Modells. Für alle Berechnungen wurden hier die Daten von 893 Patienten aus Kollektiv A verwendet. Die Ergebnisse werden getrennt für die disseminierte Autonomie, für Morbus Basedow, für die multifokale Autonomie, die Struma und die unifokale Autonomie aufgeführt.

Tabelle 5 zeigt die Ergebnisse der Dosisberechnung nach der Marinelli–Formel, nach stückweiser Integration und mit Hilfe des Zwei-Kompartment-Modells.

<table>
<thead>
<tr>
<th>Erkrankung</th>
<th>dis</th>
<th>Struma</th>
<th>MB</th>
<th>uni</th>
<th>multi</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>87</td>
<td>17</td>
<td>190</td>
<td>290</td>
<td>309</td>
</tr>
<tr>
<td>Marinelli Dosis Gy</td>
<td>226,9</td>
<td>208,1</td>
<td>336,0</td>
<td>403,9</td>
<td>371,0</td>
</tr>
<tr>
<td>Marinelli σ</td>
<td>69</td>
<td>56</td>
<td>87</td>
<td>119</td>
<td>137</td>
</tr>
<tr>
<td>Stückw Dosis Gy</td>
<td>219,4</td>
<td>201,1</td>
<td>327,5</td>
<td>374,7</td>
<td>347,2</td>
</tr>
<tr>
<td>Stückw σ</td>
<td>66</td>
<td>55</td>
<td>86</td>
<td>106</td>
<td>123</td>
</tr>
<tr>
<td>Zwei- Komp Dosis Gy</td>
<td>219,8</td>
<td>201,5</td>
<td>328,4</td>
<td>372,1</td>
<td>344,5</td>
</tr>
<tr>
<td>Zwei- Komp σ</td>
<td>67</td>
<td>56</td>
<td>87</td>
<td>155</td>
<td>121</td>
</tr>
</tbody>
</table>

Tab. 5: Dosisberechnung nach Marinelli, stückweiser Integration und Zwei-Kompartment-Modell; arithmetische Mittelwerte und Standardabweichung

3.3.1 Intratherapeutische Dosis nach der Marinelli–Formel

Für die Fragestellung, wieviel Prozent der angestrebten Therapiedosis tatsächlich erreicht wurden, wurden die Daten von 761 Patienten mit ambulantem Radiojodtest verwendet. Im Test wurde (exakt) berechnet, welche Aktivität verabreicht werden
musste, um die gewünschte Therapiedosis zu erreichen. Bei einer früheren Analyse war festgestellt worden, dass im Mittel die therapeutische Dosis ca. 15% unter der im Test ermittelten Herddosis lag. Deshalb wurde und wird seitdem die Therapieaktivität 15% höher gewählt, als im Test berechnet.

Abbildung 18 zeigt die Häufigkeitsverteilung der erzielten relativen Therapiedosis unabhängig von der Schilddrüsenerkrankung.

Abb. 18: Häufigkeitsverteilung der erzielten relativen Therapiedosis \(D_p (D_p = \frac{D_{ther}}{D_{test}} \times 100) \), berechnet nach der Marinelli-Formel

Der Mittelwert der tatsächlich erreichten Therapiedosis betrug 95 Prozent (Standardabweichung 22%) der gewünschten Therapiedosis.

Unterschiede in der Häufigkeitsverteilung der erzielten relativen Therapiedosis zwischen den einzelnen Schilddrüsenerkrankungen werden in Abbildung 19 dargestellt.
Abb. 19: Häufigkeitsverteilung der erzielten relativen Therapiedosis $D_p \ (D_p = D_{ther} / D_{test} \times 100)$, berechnet nach der Marinelli-Formel in Abhängigkeit der Erkrankung

Abbildung 19 zeigt, dass Patienten mit Struma im Mittel 94 Prozent (Standardabweichung 20), Patienten mit disseminierter Autonomie 94 Prozent (Standardabweichung 21) und Patienten mit unifokaler Autonomie 94 Prozent (Standardabweichung 23) der gewollten Herddosis erreichten. Patienten mit multifokaler Autonomie erhielten im Durchschnitt 98 Prozent (Standardabweichung 34) und Patienten mit Morbus Basedow 96 Prozent (Standardabweichung 39) der gewünschten Herddosis.

Abbildung 20 zeigt die Ergebnisse der Dosisberechnung nach der Marinelli–Formel.
Durchschnittlich ergab sich für die unifokale Autonomie eine Schilddrüsendosis von 403,9 Gy (Standardabweichung 119). Für die multifokale Autonomie ergab sich eine Dosis von 371,0 Gy (Standardabweichung 137). Der Morbus Basedow wies eine Dosis von 336,0 Gy (Standardabweichung 87) auf. Wie angestrebt ergaben sich niedrigere Therapiedosen für die Struma (208,1 Gy; Standardabweichung 56) und die disseminierte Autonomie (226,9 Gy; Standardabweichung 69).

3.3.2 Intratherapeutische Dosis durch stückweise Integration

Die Ergebnisse, die wie oben erklärt, durch stückweise Integration erlangt wurden, werden in Abbildung 21 dargestellt.
Bei der unifokalen Autonomie lag die Schilddrüsendosis im Mittel bei 374,7 Gy (Standardabweichung 106). Eine geringere Dosis wies die multifokale Autonomie (347,2 Gy; Standardabweichung 123) auf. Für die Patienten mit Morbus Basedow ergab sich eine Dosis von 327,5 Gy (Standardabweichung 86). Die Dosis bei der Struma dagegen betrug 201,1 Gy (Standardabweichung 55). Für die disseminierte Autonomie errechnete sich eine Dosis von 219,4 Gy (Standardabweichung 66).

3.3.3 Intratherapeutische Dosis anhand des Zwei-Kompartment-Modells

In Abbildung 22 sind die Ergebnisse der Berechnungen anhand des Zwei-Kompartment-Modells aufgeführt.
Die Dosisberechnung für die unifokale Autonomie ergab im Durchschnitt 372,1 Gy (Standardabweichung 155). Die multifokale Autonomie wies eine Therapiedosis von 344,5 Gy (Standardabweichung 121) auf. Die berechnete Dosis betrug für den Morbus Basedow im Mittel 328,4 Gy (Standardabweichung 87). Für Patienten mit einer Struma wurde eine Dosis von 201,5 Gy (Standardabweichung 58) ermittelt. Die intratherapeutische Dosis für Patienten mit disseminerter Autonomie lag bei 219,8 Gy (Standardabweichung 67).

3.3.4 Vergleich der Methoden mittels Bland-Altman-Plot

Um die Ergebnisse der drei unterschiedlichen Verfahren zur Dosisberechnung vergleichen zu können, wurden die Ergebnisse aus zwei Berechnungsmethoden jeweils in einem Bland-Altman-Plot dargestellt. In diesem Plot wurde die Differenz der Werte, die mit Hilfe von zwei unterschiedlichen Methoden berechnet wurden, auf der y-Achse aufgetragen. Auf der x-Achse wurden die Mittelwerte der zu vergleichenden Werte aufgetragen. Außerdem wurde im Plot das 2-S-Intervall der Differenzen angegeben. Die Differenz der Werte ist im Bland-Altman-Plot von der Höhe der zu vergleichenden Werte abhängig. Je größer die zu vergleichende Dosis war, desto
größer war auch die Differenz zwischen den Werten. Um auf einen Blick feststellen zu können, wie sich die Daten im Plot verhalten, wurde zusätzlich eine Trendlinie eingefügt (Bland und Altman, 1986).

![Bland-Altman-Plot](image)

Abb. 23: Bland-Altman-Plot; Vergleich von Dosisberechnung nach Marinelli und stückweiser Integration

Die Graphik zeigt, dass der Großteil der Punkte unterhalb der Nulllinie liegt. Die Dosisberechnung durch stückweise Integration lieferte also niedrigere Werte als die Dosisberechnung nach Marinelli. Das 2-S-Intervall der Differenzen lag bei +/- 68. Die schwarze Trendlinie zeigt, dass die Differenzen der zu vergleichenden Dosiswerte (hier Marinelli und stückweiser Integration) mit zunehmenden Mittelwerten der zu vergleichenden Dosiswerte auch größer wurden.

Abb. 24: Bland-Altman-Plot; Vergleich von Dosisberechnung nach Marinelli und Zwei-Kompartment-Modell

Hier liegen nahezu alle Punkte der Graphik unterhalb der Nulllinie. Es wird also gezeigt, dass die Dosisberechnung anhand des Zwei-Kompartment-Modells niedrigere Ergebnisse lieferte als die Berechnung nach Marinelli. Das 2-S-Intervall der Differenzen lag hier bei +/- 66. Die schwarze Trendlinie lässt deutlich einen Zusammenhang zwischen Differenzen der zu vergleichenden Dosiswerte (hier Marinelli und Zwei-Kompartment-Modell) und Mittelwerten der zu vergleichenden Dosiswerte erkennen. Je größer die Mittelwerte waren, desto größer waren auch die Differenzen.

Schließlich wurden auch die Ergebnisse durch stückweise Integration mit den Ergebnissen, die mit Hilfe des Zwei-Kompartment-Modells erlangt wurden, verglichen. Wiederum wurden die Mittelwerte der beiden Methoden auf der x-Achse aufgetragen. Auf der y-Achse wurden die Differenzen zwischen Zwei-Kompartment-
Modell und stückweiser Integration aufgetragen. Abbildung 25 zeigt den zugehörigen Bland-Altman-Plot.

Abb. 25: Bland-Altman-Plot; Vergleich von Dosisberechnung nach stückweiser Integration und Zwei-Kompartment-Modell

In dieser Graphik liegen die Punkte in etwa zu gleichen Teilen oberhalb und unterhalb der Nulllinie. Fast alle Punkte liegen jedoch in einem sehr engen Bereich um die Nulllinie. Betrachtet man die schwarze Trendlinie, wird jedoch eine leichte Tendenz der Punkte nach unten deutlich. Dies bedeutet, dass die Dosisberechnung mit Hilfe des Zwei-Kompartment-Modells etwas niedrigere Werte ergab als die Berechnung durch stückweise Integration. Das 2-S-Intervall der Differenzen lag hier bei +/- 44.

3.3.5 Vergleich der Methoden mittels Regression

Abbildung 26 zeigt die Regressionsgerade der Dosiswerte berechnet mit Hilfe des Zwei-Kompartment-Modells und mit Hilfe von Marinelli.
Abb. 26: Regression zwischen Zwei-Kompartment-Modell und Marinelli

Der Zusammenhang zwischen Zwei-Kompartment-Modell und Marinelli lässt sich wie folgt beschreiben:

(15) \[Y = 19,2 + 0,89 \times X \]

Abbildung 27 zeigt die Regressionsgerade der Dosiswerte berechnet durchstückweise Integration und mit Hilfe des Zwei-Kompartment-Modells.
Abb. 27: Regression zwischen stückweiser Integration und Zwei-Kompartment-Modell

Der Zusammenhang zwischen stückweiser Integration und Zwei-Kompartment-Modell lässt sich wie folgt beschreiben:

\[(16) \quad Y = 3,7 + 0,99 \times X\]

Abbildung 28 zeigt die Regressionsgerade der Dosiswerte berechnet durch Marinelli und mit Hilfe des Zwei-Kompartment-Modells.
Abb. 28: Regression zwischen Marinelli und Zwei-Kompartments-Modell

Der Zusammenhang zwischen Marinelli und Zwei-Kompartments-Modell lässt sich wie folgt beschreiben:

\[
Y = -10.1 + 1.1 \times X
\]

(17)

3.4 Restkörperdosis

3.4.1 Restkörperdosis bei malignen Schilddrüsenerkrankungen

Die Ergebnisse der Restkörperdosisberechnung bei malignen Schilddrüsenerkrankungen werden in Abbildung 29 und Tabelle 6 dargestellt.

Abb. 29: Restkörperdosis bei malignen Erkrankungen

Tab. 6: Beiträge zur Restkörperdosis bei malignen Schilddrüsenerkrankungen; arithmetische Mittelwerte

<table>
<thead>
<tr>
<th></th>
<th>A0 MBq</th>
<th>Jodid mGy</th>
<th>SD mGy</th>
<th>Hormon mGy</th>
<th>Gesamt mGy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>6873,2</td>
<td>327,3</td>
<td>16,3</td>
<td>78,0</td>
<td>421,7</td>
</tr>
<tr>
<td>σ</td>
<td>3372</td>
<td>218</td>
<td>17</td>
<td>117</td>
<td>257</td>
</tr>
</tbody>
</table>

Bei den behandelten 195 Patienten mit unterschiedlichen malignen Schilddrüsenerkrankungen wurde im Durchschnitt ein Aktivität A₀ von 6873,2 MBq (Standardabweichung 3372) appliziert. Insgesamt wurde eine Restkörperdosis von 421,7 mGy (Standardabweichung 257) gemessen. 77% davon waren mit 327,3 mGy (Standardabweichung 218) dem Jodid, das sich im Restkörper befand,
zuzuschreiben. Das hormongebundene Jod–131 im Körper ergab mit 78,0 mGy (Standardabweichung 117) 19% der Restkörperdosis. Die übrigen 4% wurden durch die von der Schilddrüse selbst abgegebene Strahlung gebildet und entsprachen 16,3 mGy (Standardabweichung 17).

3.4.2 Restkörperdosis bei benignen Schilddrüserkrankungen

Die Ergebnisse der Restkörperdosisberechnung bei benignen Schilddrüserkrankungen zeigen Abbildung 30 und Tabelle 7.

<table>
<thead>
<tr>
<th>Restkörperdosis bei benignen Erkrankungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jodid</td>
</tr>
<tr>
<td>23%</td>
</tr>
</tbody>
</table>

Abb. 30: Restkörperdosis bei benignen Erkrankungen

<table>
<thead>
<tr>
<th>Restkörperdosis - benigne Erkrankungen</th>
<th>A0 MBq</th>
<th>Jodid mGy</th>
<th>SD mGy</th>
<th>Hormon mGy</th>
<th>Gesamt mGy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>920,0</td>
<td>25,6</td>
<td>56,0</td>
<td>24,7</td>
<td>106,3</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>744</td>
<td>24</td>
<td>37</td>
<td>25</td>
<td>60</td>
</tr>
</tbody>
</table>

Tab. 7: Beiträge zur Restkörperdosis bei benignen Schilddrüserkrankungen; arithmetische Mittelwerte
Zur Berechnung der Restkörperdosis bei benignen Schilddrüsenerkrankungen wurden die Daten von 926 Patienten verwendet. A_0 betrug durchschnittlich 920,0 MBq (Standardabweichung 744). Die gesamte Restkörperdosis lag bei 106,3 mGy (Standardabweichung 60). Der größte Teil davon (53%) wurde durch die Schilddrüse selbst verursacht (56,0 mGy; Standardabweichung 37). Etwa zu gleichen Teilen trugen das Jodid im Körper (25,6 mGy; Standardabweichung 24; 24%) und das hormongebundene Jod-131 (24,7 mGy; Standardabweichung 25; 23%) zur gesamten Restkörperdosis bei.

3.4.3 Restkörperdosis in Bezug auf die Schilddrüsenaktivität A_0

Die Restkörperdosis wurde auch in Bezug auf die Schilddrüsenaktivität A_0 betrachtet. Hierzu war es notwendig, den Quotienten aus der gesamten Restkörperdosis und der applizierten Aktivität A_0 zu bilden. Daraus ergab sich für die berechneten Werte eine Einheit von [mGy/MBq]. Die entsprechenden Ergebnisse für maligne und benigne Schilddrüsenerkrankungen werden in Tabelle 8 dargestellt.

<table>
<thead>
<tr>
<th></th>
<th>Maligne</th>
<th>Benigne</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{RK}{A_0}$ in mGy/MBq</td>
<td>0,06</td>
<td>0,12</td>
</tr>
<tr>
<td>σ</td>
<td>0,02</td>
<td>0,05</td>
</tr>
</tbody>
</table>

Tab. 8: Gesamte Restkörperdosis in Bezug auf A_0

Bei den malignen Schilddrüsenerkrankungen betrug $\frac{RK}{A_0}$ 0,06 mGy/MBq (Standardabweichung 0,02). Bei den benignen Schilddrüsenerkrankungen lag dieser Wert einiges höher bei 0,12 mGy/MBq (Standardabweichung 0,05).

4. Diskussion

Die Radiojodtherapie als nebenwirkungs- und risikoarme Alternative zur Schilddrüsenoperation nimmt in der Behandlung benigner Schilddrüsenerkrankungen einen immer größeren Stellenwert ein. Jedoch spielt sie auch in der Behandlung von
Schildrüsenkarzinomen nach vorausgegangener Thyreoidektomie eine wichtige Rolle (Reiners, 1993).

4.1 Beurteilung der Transferkonstanten in Abhängigkeit von Kollektiv A und B

Der spezifische, massenbezogene Schilddrüsenuptake (TcTU_m) ist von der Art der Schilddrüsenerkrankung abhängig. Der TcTU_m von hyperthyreotem Morbus Basedow, mit euthyreotem Morbus Basedow, mit unifokaler Autonomie, mit multifokaler Autonomie und mit Struma aufgenommen. Der spezifische, massenbezogene Schilddrüsenuptake (TcTU_m) ist von der Art der Schilddrüsenerkrankung abhängig. Der TcTU_m von hyperthyreotem und euthyreotem Morbus Basedow ist nahezu identisch und liegt deutlich über dem Uptake der übrigen Erkrankungen. Die effektive Halbwertszeit $t_{1/2}$ ist beim Morbus Basedow am kürzesten. Außerdem zeigt der Morbus Basedow deutlich die schnellste Jod-131-Aufnahme aus dem Restkörper in die Schilddrüse. λ_{12}/m ist hier am größten. Ebenso ist λ_{21}/m, das den Transfer des Jods aus der Schilddrüse in den Restkörper beschreibt, beim Morbus Basedow am größten. Das kleinste λ_{21}/m findet sich bei der Struma. Diese Ergebnisse werden in der Literatur bestätigt (Nüchel et al., 1993; Schad, 1989).
Die Ausscheidung des hormonungebundenen Jods zeigt sich unabhängig von der Art der Schilddrüsenerkrankung. Die Ausscheidung des hormongebundenen Jods weist in Kollektiv A jedoch Unterschiede zwischen den einzelnen Schilddrüsenerkrankungen auf. So liegt der Wert für λ_4 beim euthyreoten Morbus Basedow (0,23/d; 95% KI 0,20-0,64) signifikant unter dem Wert für den hyperthyreoten Morbus Basedow, die unifokale und multifokale Autonomie. In Abhängigkeit von der Stoffwechselleistungen wird demnach beim euthyreoten Morbus Basedow das hormongebundene Jod langsamer ausgeschieden als bei Patienten mit Hyperthyreose.

Weiterhin ist zu beachten, dass durch eine zusätzliche frühe Aktivitätsmessung das erreichte Aktivitätsmaximum mit einer höheren Wahrscheinlichkeit bestimmt werden kann, dies wirkt sich auch auf die berechneten Transferkonstanten aus.

4.2 Vergleich von Radiojodtest und Radiojodtherapie

Zur Berechnung der zu applizierenden Aktivität vor Radiojodtherapie wird bei benignen Schilddrüsenerkrankungen ein Radiojodtest durchgeführt. Im Test werden effektive Halbwertszeit $t_{1/2}$ und Schilddrüsenuptake bestimmt. Jedoch unterscheiden sich die Werte für effektive Halbwertszeit $t_{1/2}$ und Schilddrüsenuptake in Test und Therapie. Aus der Literatur ist bekannt, dass sowohl die effektive Halbwertszeit $t_{1/2}$
als auch der Schilddrüsenuptake im Radiojodtest höher liegen als unter Therapie (Nüchel et al., 1993; Bogner und Czempiel, 1993; Fueger, 1987).

Zum anderen wurde gezeigt, dass bei einer Zweit- oder Drittapplikation der Uptake zunehmend kleiner wird als bei der Erstapplikation. Eine Erklärung dieser Beobachtung ist der frühzeitige Beginn der therapeutischen Wirkung der Jodgabe, die die spätere Aufnahme von noch freiem Jodid reduziert.

Die größte Differenz zwischen Test und Therapie findet sich beim Morbus Basedow. Der Uptake beträgt für den Morbus Basedow im Test 59,6 Prozent (95% KI 56,7-62,7) und während Therapie 53,5 (95% KI 50,4-56,8) Prozent. Diese Tatsache zeigt, dass ein hoher Uptake auch eine hohe frühzeitig einsetzende Wirkung bedeutet. Die frühzeitig einsetzende Wirkung wiederum bewirkt einen reduzierten Uptake während Radiojodtherapie im Vergleich zum Radiojodtest.

Die effektive Halbwertszeit $t_{1/2}$ zeigte sich bei allen untersuchten Schilddrüsenerkrankungen (Morbus Basedow, disseminierte Autonomie, multifokale Autonomie, unifokale Autonomie, Struma) im Test länger als während Therapie. Durch das im Radiojodtest applizierte Jod-131 wird die Schilddrüse bereits geschädigt. Folglich wird unter Therapie das Radiojod mit dem Zerfall von Schilddrüsenzellen schneller aus der Schilddrüse freigesetzt.

Durch die unterschiedliche effektive Halbwertszeit und den unterschiedlichen Uptake in Test und Therapie wird für die Radiojodtherapie meist eine zu niedrige Aktivität berechnet. Um einer dadurch verursachten zu geringen Therapiedosis vorzubeugen, wurde den Patienten eine höhere Aktivität als berechnet appliziert. In früheren Versuchen hatten wir eine Dosisverringerung von 15% berechnet. Die Analyse in
dieser Arbeit (Abbildung 18) zeigt, dass die tatsächlich erreichte Therapiedosis im Mittel 5% unter der gewollten Therapiedosis liegt.

4.3 Vergleich der unterschiedlichen Möglichkeiten der intratherapeutischen Dosisberechnung

Die Beschreibung des abfallenden Schenkels der Aktivitäts-Kurve als monoexponentielle Funktion stellt eine starke Vereinfachung dar, da dies voraussetzen würde, dass zum Zeitpunkt des Uptake-Maximums die Jod-131-Aufnahme in die Schilddrüse bereits beendet wäre (Rink et al., 2004).

Bessere Ergebnisse liefert die Dosisberechnung durch stückweise Integration, da hier auch die Anfangsphase nach Radiojodapplikation in die Berechnung eingeht. Bei dieser Methode wird in Formel (10) der Faktor 0,7 für die Dosisberechnung verwendet. Dieser Faktor wird in der Annahme, dass der 24-Stunden-Uptake der Schilddrüse 70 Prozent beträgt, verwendet (Bauer, 1987). Je nach wahren 24-Stunden-Uptake der Schilddrüse liegt die berechnete Dosis jedoch etwas höher oder niedriger als die tatsächliche Therapiedosis. Berechnet man die Therapiedosis nach Radiojodtherapie mittels Zwei-Kompartment-Modell wird die Aktivitätskurve exakt integriert. So erhält man hier die besten Ergebnisse, da auch die initiale Anreicherungsphase bis zum Uptake-Maximum exakt beachtet wird (Rink et al., 2004).

Wie Abbildung 25 zeigt unterscheiden sich die Ergebnisse durch stückweise Integration und die Ergebnisse, die mit Hilfe des Zwei-Kompartment-Modells berechnet werden, jedoch nur minimal. So eignet sich die Methode der stückweisen Integration auf Grund der einfachen Durchführbarkeit für die Praxis sehr gut.

Abbildung 19 zeigt, dass Patienten mit multifokaler Autonomie (98%, Standardabweichung 34) die gewünschte Herddosis im Mittel sehr gut erreichen. Die übrigen Patienten liegen minimal unter der gewünschten Herddosis.
4.4 Bewertung der Restkörperdosis

4.4.1 Unterschied zwischen malignen und benignen Erkrankungen

das hormongebundene Jod-131 (23%) tragen etwa zu gleichen Teilen zur Restkörperdosis bei.
Trotz sehr geringer Restschilddrüse nach Operation bei malignen Erkrankungen weist hier absolut betrachtet das hormongebundene Jod-131 einen höheren Wert auf als das hormongebundene Jod-131 bei benignen Schilddrüserkrankungen. Da bei malignen Erkrankungen nach Operation eine hypothyreote Stoffwechselle prolongiert vorliegt, bewirkt das folglich erhöhte TSH die Hormonproduktion in der Restschilddrüse und die vermehrte Freisetzung dieser Hormone aus der Schilddrüse ins Blut.

4.4.2 Abhängigkeit der Restkörperdosis von der Schilddrüsenaktivität A

Ebenso wie die Verteilung der Restkörperdosis bei malignen und benignen Schilddrüserkrankungen Unterschiede aufweist, sind in der Beurteilung der Abhängigkeit der Restkörperdosis von der Schilddrüsenaktivität A Unterschiede zu erkennen. Die applizierte Jodaktivität A ist bei malignen Schilddrüserkrankungen (Mittelwert 6873,2 MBq; Standardabweichung 3372) um fast 1 Zehnerpotenz höher als bei benignen Schilddrüserkrankungen (Mittelwert 920,0 MBq; Standardabweichung 744). Betrachtet man den Quotienten aus Restkörperdosis und Schilddrüsenaktivität A weist dieser für benigne Schilddrüserkrankungen einen höheren Wert (Mittelwert 0,12 mGy/MBq; Standardabweichung 0,05) auf als für maligne Erkrankungen (Mittelwert 0,06 mGy/MBq; Standardabweichung 0,02), obwohl die Restkörperdosis bei malignen Erkrankungen größer ist als bei benignen Erkrankungen. Das bedeutet, dass bei gleicher applizierter Aktivität A bei benignen Schilddrüserkrankungen eine höhere Restkörperdosis zu erwarten ist als bei malignen Schilddrüserkrankungen. Dies liegt am größeren Schilddrüsen- Uptake bei benignen Schilddrüserkrankungen. Auf Grund des fehlenden Schilddrüsegewebes nach Thyroidektomie ist bei malignen Schilddrüserkrankungen der Radijoduptake um einiges niedriger.
5. Zusammenfassung

Die effektive Halbwertszeit $t_{1/2}$ war allein von der Art der Schilddrüserkrankung abhängig. Die kürzeste effektive Halbwertszeit $t_{1/2}$ zeigte in Kollektiv A der hyperthyreote Morbus Basedow (5,0 Tage; 95% KI 4,8-5,2).

Der massenbezogene Schilddrüsenuptake Uptake$/m$, TcTU_m, war sowohl von der Art der Schilddrüserkrankung als auch vom Kollektiv abhängig. Die Werte von Kollektiv B lagen außer bei der Struma über den Werten von Kollektiv A. TcTU_m war in beiden Kollektiven für den Morbus Basedow am größten. Er lag in Kollektiv A beim hyperthyreoten (95% KI 1,9-2,3) und euthyreoten (95% KI 1,9-2,4) Morbus Basedow bei 2,1 %$/g$. In Kollektiv B lag TcTU_m beim hyperthyreoten Morbus Basedow bei 3,2 %$/g (95% KI 2,5-4,1) und beim euthyreoten Morbus Basedow bei 3,3 %$/g (95% KI 2,3-4,7).

Die Parameter λ_{12}/m und λ_{21}/m, die den Transfer des Jod-131 aus dem Restkörper in die Schilddrüse bzw. aus der Schilddrüse in den Restkörper beschreiben, zeigten ebenfalls für Kollektiv B höhere Werte als für Kollektiv A. Der Morbus Basedow lieferte für beide Parameter in Kollektiv A und B die höchsten Ergebnisse.

Weiteres Ziel der Arbeit war es, die Unterschiede der effektiven Halbwertszeit $t_{1/2}$ und des Schilddrüsenuptakes zwischen Radiojodtest und Therapie herauszustellen. Es wurden die Daten von 789 Patienten mit Morbus Basedow, Struma, disseminierter, multifokaler und unifokaler Autonomie verglichen, bei denen zuvor ein ambulanter Radiojodtest durchgeführt wurde. Die effektive Halbwertszeit $t_{1/2}$ war bei allen Patienten im Test länger als während Therapie. Die kürzeste Halbwertszeit $t_{1/2}$ wies im Test der Morbus Basedow auf (5,7 d; 95% KI 5,5-5,9). Die längste Halbwertszeit zeigte sich mit 7,2 Tagen (95% KI 6,8-7,6) bei der Struma.
Der Schilddrüsenuptake zeigte sich für die multifokale Autonomie, die unifokale Autonomie und den Morbus Basedow in Test größer als während Therapie. Der geringere Uptake unter Therapie ist durch das Stunning der Schilddrüse zu erklären, das zum Teil durch den vorausgegangenen Radiojodtest und zum – wahrscheinlich größeren – Teil durch die frühzeitig einsetzende Wirkung der Therapie selbst zu erklären ist. Die größte Differenz zwischen Test und Therapie findet sich beim Morbus Basedow. Der Uptake beträgt für den Morbus Basedow im Test 59,6 Prozent (95% KI 56,7-62,7) und während Therapie 53,5 (95% KI 50,4-56,8) Prozent.

Mit dem Modell der stückweisen Integration wurde für Patienten mit disseminierter Autonomie eine Dosis von 219,4 Gy (Standardabweichung 66) berechnet. Patienten mit einer Struma erhielten im Durchschnitt 201,1 Gy (Standardabweichung 55). Patienten mit Morbus Basedow erhielten eine Dosis von 327,5 Gy (Standardabweichung 86). Patienten mit unifokaler bzw. multifokaler Autonomie erhielten eine Dosis von 374,7 Gy (Standardabweichung 106) bzw. 347,2 Gy (Standardabweichung 123).

Weiteres Ziel der Arbeit war es, die entstehende Restkörperdosis zwischen malignen und benignen Schilddrüsenerkrankungen zu vergleichen und in Bezug zur applizierten Aktivität A_0 zu betrachten. Es wurde die Restkörperdosis für 195
Patienten mit malignen Schilddrüserkrankungen und 926 Patienten mit benignen Schilddrüserkrankungen berechnet. Bei den malignen Erkrankungen wurden 77 Prozent (327,3mGy; Standardabweichung 218) der Restkörperdosis durch das freie Jodid verursacht. Bei den benignen Erkrankungen wurde der größte Teil (53%; 56,0 mGy; Standardabweichung 37) durch die Schilddrüse selbst verursacht.

Der Quotient aus Restkörperdosis RK und A_0 lieferte für benigne Erkrankungen einen Wert von 0,12 mGy/MBq (Standardabweichung 0,05) und für maligne Erkrankungen von 0,06 mGy/MBq (Standardabweichung 0,02). Durch das größere Schilddrüsenvolumen entsteht bei benignen Erkrankungen bei gleichem A_0 also eine größere Restkörperdosis als bei malignen Erkrankungen.
6. Literatur

Bauer, R.
Physikalische Grundlagen der Radiojodtherapie.
Buttermann, pmj – Verlag, München, 1987

Becker, D. V., Sawin, C. T
Radioiodine and Thyroid Disease: The Beginning.
Seminars in Nuclear Medicine 26 (3), 1996, S. 155-164

Berman, M., Hoff, E., Barandes, M., Becker, D. B., Sonenberg, M., Benua, R., Koutras, D. A.
Iodine kinetics in man – a model.
The Journal of clinical endocrinology and metabolism 28 (1), 1968, S. 1-14

Bland, J. M., Altman, D. G.
Statistical methods for assessing agreement between two methods of clinical measurement.

Bogner, L., Czempiel, H.
Näherungsfehler bei der physikalischen Planung der Radiojodtherapie der Schilddrüse.
Nuklearmedizin 32 (5), 1993, S. 236-246

Brunn, J.
Volumetrie der Schilddrüsenlappen mittels real-time-Sonographie.
Deutsche Medizinische Wochenschrift 106, 1981, S. 1338-1340
Deutsche Gesellschaft für Nuklearmedizin (DGN)
Leitlinie zur Radioiodtherapie (RIT) bei benignen Schilddrüsenerkrankungen.
www.nuklearmedizin.de
Stand 30.09.2004

Deutsche Gesellschaft für Nuklearmedizin (DGN)
Radioiodtest I-131
www.nuklearmedizin.de/die_dgn/agmtm/aktuelles/pdf/RIT.pdf
Stand 08.08.2006

Deutsche Gesellschaft für Nuklearmedizin (DGN)
Verfahrensanweisung zum Radioiodtest.
Nuklearmedizin 42, 2003, S. 116-119

Di Martino, F., Traino, A. C., Brill, A. B., Stabin, M. G., Lazzer, M.
A theoretical model for prescription of the patient-specific therapeutic activity for radioiodine therapy of Graves` disease.
Physics in Medicine and Biology 47, 2002, S. 1493-1499

Fueger, G. F.
Dosimetrie und Dosierung der Radiojodtherapie mit 131-Jod.

Grünwald, F.
Nuklearmedizinische Diagnostik und Therapie – Aktuelle Bedeutung für die klinische Medizin.
Hessisches Ärzteblatt 3, 2001, S. 105-111

Horst, W.
Strahlentherapie der Schilddrüsenerkrankungen mit Radiojod (J-131).
Der Internist 1, 1960, S. 373-384
Hotze, L.-A., Schumm-Draeger, P.-M.
Schilddrüsenkrankheiten Diagnose und Therapie.

Koch, W., Knesewitsch, P., Tatsch, K., Hahn, K.
Stunningeffekte bei der Radioiodtherapie des Schilddrüsenkarzinoms:
Existenz, klinische Auswirkungen und Auswege.
Nuklearmedizin, 42(1), 2003, S. 10-14

Luster, M., Stinzing, A., Reiners, C.
Inzidentalome der Schilddrüse beim Ultraschall- Screening: Initiative Papillon.
Der Nuklearmediziner 28, 2005, S. 92-95

Marinelli, L. D.
Dosage determination in the use of radioactive isotopes.
J Clin Invest 28, 1949, S. 1271-1280

Marinelli, L. D., Quinby, E. H., Hine, G. J.
Dosage determination with radioactive isotopes. Practical considerations in therapy
and protection.
Am J Roentgenol 59, 1948, S. 260 – 281

Nüchel, C., Boddenberg, B., Schicha, H.
Die Bedeutung des Radiojodtests für die Berechnung der Therapiedosis bei
benignen Schilddrüsenerkrankungen.
Nuklearmedizin 32, 1993, S. 91-98

Oeser, H., Billion, H., Kühne, P.
Die Behandlung der Hyperthyreose mit Radiojod.
In: Künstliche radioaktive Isotope in Physiologie, Diagnostik und Therapie.
Reiners, C.
Radiojodtherapie Indikation, Durchführung und Risiken.
Deutsches Ärzteblatt 90, Heft 45, 12. Nov. 1993 (35), S. 2217-2221

Rink, Th., Bormuth, F.-J., Braun, S., Zimny, M., Schroth, H.-J.
Prinzip und Validierung eines einfachen Modells der intrathyreoidealnen Iodkinetik.
Nuklearmedizin 1, 2004, S. 21-25

Rösler, H.
Radiojodtherapie bei Schilddrüsenleiden: Naturwissenschaftliche versus magische
Konzepte.
Nuklearmediziner 10, 1987, S. 77-86

Sawin, C. T., Becker, D. V.
Radioiodine and the treatment of hyperthyroidism: the early history.
Thyroid 7 (2), 1997, S. 163-176

Schad, Klaus
Bestimmung der Äquivalentdosen von Schilddrüsengewebe und Restkörper bei der
Radiojodtherapie benigner und maligner Schilddrüsenerkrankungen unter
Therapiebedingungen.
Dissertation, Medizinische Hochschule Hannover, 1989

Schilddrüsen- Initiative Papillon (Pap)
Die Papillon- Studie.
http://www.schilddruese.de/download/download-studie.pdf
Stand 21.02.2007

Wellner, U., Schicha, H.
Die Therapie von Schilddrüsenerkrankungen mit 131J in einer Bettenstation mit
Abklinganlage.
Nuklearmedizin 32, 1993, S. 149-155
7. Anhang

7.1 Abkürzungsverzeichnis

A applizierte Aktivität
Abb Abbildung
Bq Becquerel
D Dosis
diss disseminierte Autonomie
Dpost tatsächlich erreichte Therapiedosis
Dplan gewünschte Therapiedosis
foll Ca follikuläres Karzinom
fT3 freies Trijodthyronin
fT4 freies Thyroxin
Gy Gray
J-131 Jod-131
K von der Schilddrüsenmasse m abhängige Konstante
KI Konfidenzintervall
m Masse
MB Morbus Basedow
multi multifokale Autonomie
n Umfang der Stichprobe
Na\(^+\)/J\(^-\) Symporter
P maximaler Radiojoduptake
p Signifikanzniveau
pap Ca papilläres Karzinom
RK Restkörper
SD Schilddrüse
t\(_{1/2}\) Halbwertszeit
Tab Tabelle
TcTU\(_m\) spezifische, massenbezogene Schilddrüsenuptake
 Uptake/masse
TSH Thyreoida-stimulierendes Hormon
uni unifokale Autonomie
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V)</td>
<td>Volumen</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>Transferkonstanten</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>Standardabweichung</td>
</tr>
</tbody>
</table>
7.2 Abbildungsverzeichnis

Abbildung 1: Häufigkeit der Schilddrüsenerkrankungen im Kollektiv A

Abbildung 2: Häufigkeit der Schilddrüsenerkrankungen im Kollektiv B

Abbildung 3: Intrathyreoidale Jodkinetik als Summe der Exponentialfunktion sowohl für die Jodaufnahme als auch die Jodabgabe der Schilddrüse; Rink et al., 2004

Abbildung 4: Definition der Transferkonstanten; Di Martino et al., 2002

Abbildung 5: Computerausdruck des Fit-Programms

Abbildung 6: Schilddrüsenaktivität A_0 (MBq) in Abhängigkeit von der Zeit t (d) nach Therapie

Abbildung 7: Aktivitäts-Kurve gegen Null rückextrapoliert in halblogarithmischer Darstellung; Bogner und Czempiel, 1993

Abbildung 8: Schilddrüsenaktivität $A(t)$ nach Radiojodtherapie in linearer Darstellung; Bauer, 1987

Abbildung 9: effektive Halbwertszeit für Kollektiv A und B

Abbildung 10: gewichtsbezogene Schilddrüsenaktivität A_0/m für Kollektiv A und B

Abbildung 11: Uptake/m für Kollektiv A und B

Abbildung 12: λ_{12}/m für Kollektiv A und B

Abbildung 13: λ_{21}/m für Kollektiv A und B

Abbildung 14: λ_{13} für Kollektiv A und B
Abbildung 15: λ_4 für Kollektiv A und B

Abbildung 16: effektive Halbwertszeit $t_{1/2}$ in Test und Therapie

Abbildung 17: Schilddrüsenuptake in Test und Therapie

Abbildung 18: Häufigkeitsverteilung der erzielten relativen Therapiedosis

\[D_p (D_p = D_{\text{ther}} / D_{\text{test}} \times 100), \text{ berechnet nach der Marinelli-Formel} \]

Abbildung 19: Häufigkeitsverteilung der erzielten relativen Therapiedosis

\[D_p (D_p = D_{\text{ther}} / D_{\text{test}} \times 100), \text{ berechnet nach der Marinelli-Formel in Abhängigkeit der Erkrankung} \]

Abbildung 20: Dosisberechnung nach Marinelli

Abbildung 21: Dosisberechnung durch stückweise Integration

Abbildung 22: Dosisberechnung anhand des Zwei-Kompartment-Modells

Abbildung 23: Bland-Altman-Plot; Vergleich von Dosisberechnung nach Marinelli und stückweiser Integration

Abbildung 24: Bland-Altman-Plot; Vergleich von Dosisberechnung nach Marinelli und Zwei-Kompartment-Modell

Abbildung 25: Bland-Altman-Plot; Vergleich von Dosisberechnung nach stückweiser Integration und Zwei-Kompartment-Modell

Abbildung 26: Regression zwischen Zwei-Kompartment-Modell und Marinelli

Abbildung 27: Regression zwischen stückweiser Integration und Zwei-Kompartment-Modell

Abbildung 28: Regression zwischen Marinelli und Zwei-Kompartment-Modell
Abbildung 29: Restkörperdosis bei malignen Erkrankungen

Abbildung 30: Restkörperdosis bei benignen Erkrankungen
7.3 Tabellenverzeichnis

Tabelle 1: Kollektiv A: Geometrische Mittelwerte und 95% Konfidenzintervalle der Parameter der Marinelliformel $t_{1/2}$, A_0 und Uptake und der Transferkonstanten l_{12}, l_{13}, l_{21} und l_4

Tabelle 2: Kollektiv B: Geometrische Mittelwerte und 95% Konfidenzintervalle der Parameter der Marinelliformel $t_{1/2}$, A_0 und Uptake und der Transferkonstanten l_{12}, l_{13}, l_{21} und l_4

Tabelle 3: Halbwertszeit $t_{1/2}$ in Radiojodtest und Radiojodtherapie

Tabelle 4: Uptake in Radiojodtest und Radiojodtherapie

Tabelle 5: Dosisberechnung nach Marinelli, stückweiser Integration und Zwei-Kompartment-Modell

Tabelle 6: Beiträge zur Restkörperdosis bei malignen Schilddrüsenerkrankungen; arithmetische Mittelwerte

Tabelle 7: Beiträge zur Restkörperdosis bei benignen Schilddrüsenerkrankungen; arithmetische Mittelwerte

Tabelle 8: Gesamte Restkörperdosis in Bezug auf A_0
7.4 Summary

Intrathyroidal iodine kinetics can be described by a model of two compartments. In this study different parameters were, firstly, analyzed and correlated to two different groups of patients (group “a” without additionally measuring activity and group “b” whose activity on the day of application was measured additionally) and were, secondly, analyzed regarding different thyroid dysfunctions. A “Fit” program was used to calculate the parameters.

The effective half-life $t_{1/2}$ (of the intrathyroidal kinetics) was only dependent on the different types of thyroid dysfunctions. In the “a” group Graves` disease caused the shortest effective half-life (5.0 days; 95% KI 4.8-5.2).

The weight based thyroid uptake TcTu_m depended both on the type of thyroid dysfunction and on the group. The uptake results of group “b” were higher than the results of group “a” (except for the results for patients with a goiter). TcTu_m for Graves` disease was higher than the TcTu_m for other thyroid dysfunctions for both groups. In group “a” it was 2.1%/g both for the euthyroid (95% KI 1.9-2.4) and the hyperthyroid (95% KI 1.9-2.3) Graves` disease. In group “b” TcTu_m for the hyperthyroid Graves` disease was 3.2%/g (95% KI 2.5-4.1), TcTu_m for the euthyroid Graves` disease was 3.3%/g (95% KI 2.3-4.7).

The results for the parameters λ_{12}/m and λ_{21}/m, which describe the iodine-131 transfer from the rest of the body to the thyroid gland as well as the transfer from the thyroid gland back to the rest of the body, were also higher in group “b” than in group “a”. Graves` disease delivered the highest results for both parameters in group “a” and “b”.

Another aim of this study was to describe the differences in the effective half-life $t_{1/2}$ and the differences in radioiodine uptake between test and therapy respectively. I compared the data of 789 patients with Graves` disease, goiter, disseminated thyroid autonomy, as well as multifocal and unifocal thyroid autonomy. Before therapy all the patients had undergone an out-patient radioiodine test. In all patients the effective half-life $t_{1/2}$ was longer during testing compared to therapy. Graves` disease showed
the shortest half-life $t_{1/2}$ (5.7 days; 95% KI 5.5-5.9). Goiter showed the longest half-life $t_{1/2}$ (7.2 days; 95% KI 6.8-7.6).

In patients suffering from Graves` disease, unifocal autonomy or multifocal autonomy the radioiodine uptake was bigger during testing than during therapy. The lower uptake during therapy can be explained by the stunning effect of the radioiodine test upon the thyroid gland. The biggest difference between test and therapy manifested itself in patients with Graves` disease. During the test-phase the uptake for Graves´ disease was 59.6 percent (95% KI 56.7-62.7), during therapy it was 53.5 percent (95% KI 50.4-56.8).

I compared three current models used to calculate the intratherapeutic dose of radioiodine. This study aimed to ascertain if the model of two compartments would provide better results compared to the other models such as Marinelli's model or the model of integrating bit by bit, which have been used up to the present. I was calculating dosage for 893 patients with Graves` disease, goiter, disseminated, multifocal and unifocal thyroid autonomy using all of the three models in each case. The calculations according to Marinelli delivered the highest results for dose. These results were certainly higher than the dose actually attained. Utilizing the model of bit by bit integration, produced lower results for all thyroid dysfunctions. On average the model of two compartments showed even lower results than either Marinelli's model or the model of bit by bit integration. However, the difference was just minimal, so that within clinical routine it is reasonable to use the model of bit by bit integration, because of its greater practicability.

For patients with disseminated autonomy the model of bit by bit integration showed an effective dose of 219.4 Gy (standard deviation 66). Patients with goiter got 201.1 Gy (standard deviation 55) on average. Patients with Graves` disease received a dose of 327.5 Gy (standard deviation 86). Patients with unifocal or multifocal autonomy received a dose of 374.7 Gy (standard deviation 106) or a dose of 347.2 Gy (standard deviation 123), respectively.

The last aim of this study was to compare the effective dose for the rest of the body for malign and benign thyroid dysfunctions, respectively, and to examine it in view of
applied activity A_0. The dose for the rest of the body was calculated for 195 patients with malign and 926 patients with benign thyroid dysfunctions. In the case of malign thyroid dysfunctions 77 percent (327.3 mGy; standard deviation 218) of the dose for the rest of the body were caused by free iodine. For benign thyroid dysfunctions the greater part of the said dose (53%; 56.0 mGy; standard deviation 37) was caused by the thyroid gland itself.

The ratio of the dose for the rest of the body RK to the applied activity A_0 was 0.12 mGy/MBq (standard deviation 0.05) for benign thyroid dysfunctions and it was 0.06 mGy/MBq (standard deviation 0.02) for malign thyroid dysfunctions. So, because of the larger volume of the thyroid gland in benign thyroid dysfunctions, there is (with an identical applied activity A_0) a higher dose for the rest of the body than in malign thyroid dysfunctions.
7.5 Danksagung

Mein besonderer Dank gilt

Herrn Prof. Dr. med. Dr. rer. nat. R. Bauer für die Überlassung des Themas

Frau Dr. med. D. Steiner und Herrn Dr. med. M. Puille, die mir bei allen schwierigen Fragen professionell Hilfe leisteten

Herrn Dr. rer. nat. G. Fängewisch und Herrn Dr. rer. nat. M. Preiß für die Einweisung am Radiojodmessplatz

Herrn W. Pabst für die statistische Beratung.

Ort, Datum, Unterschrift