SCHÄTZUNG GENETISCH-STATISTISCHER PARAMETER
BEI FLEISCHRINDERN DER RASSEN DEUTSCH
ANGUS UND DEUTSCHES FLECKVIEH
SOVIE DEREN EINFACHKREUZUNGEN

ANJA MÜLLENHOFF

INAUGURALDISSERTATION
zur Erlangung der Doktorwürde (Dr. agr.)
am Fachbereich Agrarwissenschaften,
Ökotrophologie und Umweltnmanagement
der Justus-Liebig-Universität, Gießen
Das Werk ist in allen seinen Teilen urheberrechtlich geschützt.

1. Auflage 2008

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Author or the Publishers.

1st Edition 2008

© 2008 by VVB LAUFERSWEILER VERLAG, Giessen
Printed in Germany

VVB LAUFERSWEILER VERLAG
dition scientifique

STAUFENBERGRING 15, D-35396 GIESSEN
Tel: 0641-5599888 Fax: 0641-5599890
email: redaktion@doktorverlag.de

www.doktorverlag.de
Schätzung genetisch-statistischer Parameter bei Fleischrindern der Rassen Deutsche Angus und Deutsches Fleckvieh sowie deren Einfachkreuzungen

Inauguraldissertation
zur Erlangung der Doktorgrades (Dr. agr.)
am Fachbereich Agrarwissenschaften, Ökotrophologie und Umweltmanagement
der Justus-Liebig-Universität, Gießen

vorgelegt von

Dipl.-Ing. agr. Anja Müllenhoff

Gießen, 2008
Die Untersuchungen wurden im Rahmen des SFB 299 „Landnutzungskonzepte für periphere Regionen“ durchgeführt.
Inhaltsverzeichnis

Verzeichnis der Abkürzungen ... I
Verzeichnis der Tabellen .. III
Verzeichnis der Abbildungen ... VII
Verzeichnis der Tabellen im Anhang ... VIII

1 Einleitung und Fragestellung ... 1

2 Literaturübersicht .. 3

2.1 Entwicklung und Organisation der Fleischrinderhaltung in der Bundesrepublik Deutschland ... 3

2.2 Rassebeschreibungen ... 7

2.2.1 Dt. Angus .. 7

2.2.2 Dr. Fleckvieh (Fleisch) .. 8

2.3 Zuchtziele und Leistungskriterien bei Fleischrindern .. 9

2.4 Zuchtwertschätzung Fleischrinder .. 11

2.4.1 Aufgabe der Zuchtwertschätzung .. 11

2.5 Wesentliche Eigenschaften des Zuchtwertschätzverfahrens .. 11

2.6 Modelle zur Schätzung populationsgenetischer Parameter und Kreuzungseffekte ... 16

2.6.1 Reproduktionsmerkmale und korrelationierte Effekte zur Gewichtsentwicklung 20

2.6.2 Produktionsmerkmale .. 28

2.6.2.1 Leistungsniveau von und Leistungsdifferenzen zwischen Rassen sowie Varianzkomponenten ... 28

2.6.2.2 Kreuzungsparameter .. 33

2.7 Weitere Forschungsgebiete im Bereich der Rinderhaltung .. 38

3 Material und Methoden .. 39

3.1 Mutterkuhherde des Lehr- und Versuchsbestands Rudlos ... 39

3.2 Haltung und Fütterung ... 40

3.3 Deckmanagement ... 41

3.4 Anpaarungen und Tierzahlen ... 42

3.5 Produktionszyklus im Jahresverlauf und Parametererfassung .. 45

3.6 Statistische Auswertung ... 47

3.6.1 Datenverarbeitung und Datenverwaltung .. 47

3.6.2 Datenauswertung Mutterkühe ... 47

3.6.3 Datenauswertung Kälber .. 48
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Themenfeld</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6.3.1</td>
<td>Produktionsleistungen</td>
<td>48</td>
</tr>
<tr>
<td>3.6.3.2</td>
<td>Varianzkomponenten</td>
<td>52</td>
</tr>
<tr>
<td>3.6.3.3</td>
<td>Kreuzungsparameter</td>
<td>53</td>
</tr>
<tr>
<td>4</td>
<td>Ergebnisse</td>
<td>54</td>
</tr>
<tr>
<td>4.1</td>
<td>Reproduktionsleistungen Mutterkühe</td>
<td>54</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Abkalberaten und Anzahl geborener Kälber</td>
<td>54</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Chi²-Test zur Häufigkeit der Abkalbungen</td>
<td>56</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Totgeburten und Aufzuchtverluste</td>
<td>57</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Kalbeverlauf</td>
<td>59</td>
</tr>
<tr>
<td>4.1.4.1</td>
<td>Deskriptive Betrachtung und prozentualer Vergleich der Ausgangsrassen</td>
<td>59</td>
</tr>
<tr>
<td>4.1.4.2</td>
<td>Ergebnisse der Einflussfaktoren auf den Kalbeverlauf aus der Varianzanalyse</td>
<td>62</td>
</tr>
<tr>
<td>4.1.4.3</td>
<td>LSQ-Mittelwerte mit Standardfehlern für den Kalbeverlauf</td>
<td>63</td>
</tr>
<tr>
<td>4.1.4.4</td>
<td>Chi²-Test zum Kalbeverlauf der Mutterkühe</td>
<td>66</td>
</tr>
<tr>
<td>4.2</td>
<td>Produktionsleistungen Kälber</td>
<td>67</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Datenbeschreibung für die ausgewählten Produktionsmerkmale</td>
<td>67</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Ergebnisse der Einflussfaktoren aus der Varianzanalyse – 1997/98 bis 2001/02 sowie 2002/03 und 2003/04</td>
<td>72</td>
</tr>
<tr>
<td>4.2.3</td>
<td>LSQ-Mittelwerte mit Standardfehlern und phänotypische Korrelationen zwischen den Merkmalen – Zuchtyahre 1997/98 bis 2001/02</td>
<td>74</td>
</tr>
<tr>
<td>4.2.3.1</td>
<td>Geburts- und Absetzgewicht</td>
<td>74</td>
</tr>
<tr>
<td>4.2.3.2</td>
<td>Tageszunahmen bis zum Absetzen</td>
<td>77</td>
</tr>
<tr>
<td>4.2.4</td>
<td>LSQ-Mittelwerte mit Standardfehlern – Zuchtyahre 2002/03 und 2003/04</td>
<td>79</td>
</tr>
<tr>
<td>4.2.4.1</td>
<td>Geburtsgewicht</td>
<td>79</td>
</tr>
<tr>
<td>4.2.4.2</td>
<td>Absetzgewicht</td>
<td>80</td>
</tr>
<tr>
<td>4.2.4.3</td>
<td>Tageszunahmen bis zum Absetzen</td>
<td>82</td>
</tr>
<tr>
<td>4.3</td>
<td>Varianzkomponenten</td>
<td>83</td>
</tr>
<tr>
<td>4.4</td>
<td>Kreuzungsparameter</td>
<td>85</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Differenzen zwischen den Reinzuchten</td>
<td>85</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Individuelle Heterosis</td>
<td>85</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Stellungseffekte</td>
<td>86</td>
</tr>
<tr>
<td>5</td>
<td>Diskussion</td>
<td>89</td>
</tr>
<tr>
<td>5.1</td>
<td>Leistungskriterien – Reproduktions- und Produktionsmerkmale</td>
<td>89</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Reproduktionsleistungen Mutterkühe</td>
<td>89</td>
</tr>
<tr>
<td>5.1.1.1</td>
<td>Abkalberaten</td>
<td>89</td>
</tr>
<tr>
<td>5.1.1.2</td>
<td>Kalbeverlauf der Mutterkühe</td>
<td>90</td>
</tr>
<tr>
<td>5.1.1.3</td>
<td>Kälberverluste</td>
<td>92</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Produktionsleistungen Kälber</td>
<td>95</td>
</tr>
<tr>
<td>5.2</td>
<td>Schätzwerte – Heritabilitäten und maternale Effekte</td>
<td>98</td>
</tr>
<tr>
<td>Kapitel</td>
<td>Titel</td>
<td>Seitenzahl</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>5.3</td>
<td>Kreuzungsparameter</td>
<td>100</td>
</tr>
<tr>
<td>5.4</td>
<td>Zuchtwertschätzung – Einsatz von Rassemitteln</td>
<td>101</td>
</tr>
<tr>
<td>5.5</td>
<td>Vorschläge zur Optimierung der Zuchtwertschätzung</td>
<td>105</td>
</tr>
<tr>
<td>6</td>
<td>Zusammenfassung</td>
<td>107</td>
</tr>
<tr>
<td>7</td>
<td>Summary</td>
<td>110</td>
</tr>
<tr>
<td>8</td>
<td>Quellenangaben</td>
<td>113</td>
</tr>
<tr>
<td>8.1</td>
<td>Verwendete Literatur</td>
<td>113</td>
</tr>
<tr>
<td>8.2</td>
<td>Internetquellen</td>
<td>121</td>
</tr>
<tr>
<td>9</td>
<td>Anhang</td>
<td>122</td>
</tr>
</tbody>
</table>
Verzeichnis der Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>AbsAlter</td>
<td>Absetzalter</td>
</tr>
<tr>
<td>AbsGew</td>
<td>Absetzgewicht</td>
</tr>
<tr>
<td>add. gen.</td>
<td>additiv genetisch</td>
</tr>
<tr>
<td>AUS</td>
<td>Australien</td>
</tr>
<tr>
<td>bd.</td>
<td>beide</td>
</tr>
<tr>
<td>BGBL.</td>
<td>Bundesgesetzblatt</td>
</tr>
<tr>
<td>BLUP</td>
<td>engl. best linear unbiased prediction = beste lineare unverzerrte Schätzung</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>CAN</td>
<td>Kanada</td>
</tr>
<tr>
<td>cm</td>
<td>Zentimeter</td>
</tr>
<tr>
<td>d</td>
<td>engl. day = Tag</td>
</tr>
<tr>
<td>d.h.</td>
<td>das heißt</td>
</tr>
<tr>
<td>Dt. Angus</td>
<td>Deutsche Angus</td>
</tr>
<tr>
<td>Dt. Fleckvieh</td>
<td>Deutsches Fleckvieh</td>
</tr>
<tr>
<td>einschl.</td>
<td>einschließlich</td>
</tr>
<tr>
<td>et al.</td>
<td>und andere</td>
</tr>
<tr>
<td>F₁</td>
<td>erste Filialgeneration</td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
</tr>
<tr>
<td>g/d</td>
<td>Gramm pro Tag</td>
</tr>
<tr>
<td>GebGew</td>
<td>Geburtsgewicht</td>
</tr>
<tr>
<td>GebTyp</td>
<td>Geburtstyp (Einling, Zwilling)</td>
</tr>
<tr>
<td>h</td>
<td>engl. hour = Stunde(n)</td>
</tr>
<tr>
<td>h²</td>
<td>Heritabilität</td>
</tr>
<tr>
<td>HB</td>
<td>Herdbuch</td>
</tr>
<tr>
<td>Kap.</td>
<td>Kapitel</td>
</tr>
<tr>
<td>KB</td>
<td>künstliche Besamung</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogramm</td>
</tr>
<tr>
<td>LaktNr.</td>
<td>Laktationsnummer</td>
</tr>
<tr>
<td>lebgeb.</td>
<td>lebend geboren</td>
</tr>
<tr>
<td>LSQ</td>
<td>Least Squares</td>
</tr>
<tr>
<td>MJ</td>
<td>Mega Joule</td>
</tr>
<tr>
<td>MK</td>
<td>Mutterkuh</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Bedeutung</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>ma^2</td>
<td>maternaler Effekt</td>
</tr>
<tr>
<td>max</td>
<td>Maximum</td>
</tr>
<tr>
<td>mg</td>
<td>Milligramm</td>
</tr>
<tr>
<td>min</td>
<td>Minimum</td>
</tr>
<tr>
<td>n</td>
<td>Anzahl</td>
</tr>
<tr>
<td>Pkte.</td>
<td>Punkte</td>
</tr>
<tr>
<td>rh^2 * ma^2</td>
<td>genetische Korrelation zwischen additiv genetischem und maternalem Effekt</td>
</tr>
<tr>
<td>RZF</td>
<td>Relativzuchtwert Fleisch</td>
</tr>
<tr>
<td>s</td>
<td>Standardabweichung</td>
</tr>
<tr>
<td>S.</td>
<td>Seite</td>
</tr>
<tr>
<td>SE</td>
<td>Standardfehler</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>u.a.</td>
<td>unter anderem, unter anderen</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>u.s.w.</td>
<td>und so weiter</td>
</tr>
<tr>
<td>vgl.</td>
<td>vergleiche</td>
</tr>
<tr>
<td>vs.</td>
<td>versus, im Sinne von gegenüber</td>
</tr>
<tr>
<td>x</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>z.B.</td>
<td>zum Beispiel</td>
</tr>
<tr>
<td>z.T.</td>
<td>zum Teil</td>
</tr>
<tr>
<td>Zun_{GebAbs}</td>
<td>Tageszunahmen von der Geburt bis zum Absetzen</td>
</tr>
<tr>
<td>Ø</td>
<td>im Durchschnitt</td>
</tr>
<tr>
<td>%</td>
<td>Prozent</td>
</tr>
<tr>
<td>Σ</td>
<td>Summe</td>
</tr>
<tr>
<td>♀</td>
<td>weiblich</td>
</tr>
<tr>
<td>♂</td>
<td>männlich</td>
</tr>
</tbody>
</table>
Verzeichnis der Tabellen

Tab. 2.1: Entwicklungen im Mutterkuh- und Herdbuchbestand in Deutschland im Zeitraum von 2000 bis 2006 (ADR, 2005 bis 2007; BDF, 2001 bis 2007) .. 4

Tab. 2.2: Herdbuchbestand nach Landesverbänden in Deutschland 2006 (BDF, 2007) ... 5

Tab. 2.3: Einteilung der in der Bundesrepublik Deutschland eingesetzten Fleischrinderrassen in Wiege- und Nicht-Wiegerassen (GOLZE, 1997) .. 6

Tab. 2.4: Heritabilitäten und genetische Korrelationen der Merkmale in der Fleischrinderzucht – Zuchtwertschätzung Feldprüfung (RUTEN und REINHARDT, 2004; VIT, 2007) ... 13

Tab. 2.5: Heritabilitäten und genetische Korrelationen der Merkmale in der Fleischrinderzucht – Zuchtwertschätzung Stationsprüfung (RUTEN und REINHARDT, 2004; VIT, 2007) ... 14

Tab. 2.6: Heritabilitäten, maternale Effekte und Korrelationen zwischen additiv genetischem und maternalem Effekt für ausgewählte Produktionsmerkmale (nach verschiedenen Autoren) 31

Tab. 2.7: Individuelle Heterosis für Merkmale der Gewichtsentwicklung (nach verschiedenen Autoren) .. 37

Tab. 3.1: Durchschnittliche Tagesration pro Mutterkuh und Tag in Winterfütterung in Abhängigkeit vom Reproduktionsstadium ... 41

Tab. 3.2: In den Zuchtjahren 1997/98 bis 2001/02 eingesetzte Anzahl Mutterkühe und aus deren Anpaarung hervorgegangene Anzahl an Kälbern 43

Tab. 3.3: In den Zuchtjahren 2002/03 bis 2003/04 eingesetzte Anzahl Mutterkühe und aus deren Anpaarung hervorgegangene Anzahl an Kälbern 44

Tab. 3.4: Überblick zu durchgeführten Aktionen im Jahresverlauf und zur Erfassung der Parameter .. 46

Tab. 3.5: Darstellung des Modellaufbaus für die einzelnen Produktionsmerkmale der Kälber der Zuchtjahre 1997/98 bis 2001/02 sowie 2002/03 und 2003/04 für die Varianzanalyse .. 51

Tab. 4.1: Abkalberaten für die Mutterkühe beider Rassen der Zuchtjahre 1997/98 bis 2001/02 sowie 2002/03 und 2003/04 ... 54

Tab. 4.2: Anzahl geborener Reinzucht- und Kreuzungskälber der Zuchtjahre 1997/98 bis 2001/02 sowie 2002/03 und 2003/04 ... 55

Tab. 4.3: Verlustgeschehen in Form von Totgeburten der Reinzucht- und Kreuzungskälber der Zuchtjahre 1997/98 bis 2001/02 sowie 2002/03 und 2003/04 ... 57

Tab. 4.4: Verlustgeschehen in Form von Aufzuchtvverlusten der Reinzucht- und Kreuzungskälber der Zuchtjahre 1997/98 bis 2001/02 sowie 2002/03 und 2003/04 ... 58
Tab. 4.5: Mittelwerte, Standardabweichungen, Minima und Maxima für den Kalbeverlauf der Mutterkühe beider Rassen der Zuchtjahre 1997/98 bis 2001/02 sowie 2002/03 und 2003/04 .. 61

Tab. 4.6: Ergebnisse der Einflussfaktoren auf den Kalbeverlauf der Mutterkühe beider Rassen der Zuchtjahre 1997/98 bis 2001/02 sowie 2002/03 und 2003/04 ... 62

Tab. 4.7: LSQ-Rassemittelwerte mit Standardfehlern (SE) für den Kalbeverlauf der Mutterkühe beider Rassen der Zuchtjahre 1997/98 bis 2001/02 sowie 2002/03 und 2003/04 .. 63

Tab. 4.8: LSQ-Kalbesaisonmittelwerte mit Standardfehlern (SE) für den Kalbeverlauf der Mutterkühe beider Rassen der Zuchtjahre 1997/98 bis 2001/02 sowie 2002/03 und 2003/04 .. 64

Tab. 4.9: LSQ-Laktationsnummernmittelwerte mit Standardfehlern (SE) für den Kalbeverlauf der Mutterkühe beider Rassen der Zuchtjahre 1997/98 bis 2001/02 sowie 2002/03 und 2003/04 .. 65

Tab. 4.10: LSQ-Geburtstypmittelwerte mit Standardfehlern (SE) für den Kalbeverlauf der Mutterkühe beider Rassen der Zuchtjahre 1997/98 bis 2001/02 sowie 2002/03 und 2003/04 .. 65

Tab. 4.11: Beobachtungen im Kalbeverlauf zum Chi²-Test für die Mutterkühe beider Rassen der Zuchtjahre 1997/98 bis 2001/02 sowie 2002/03 und 2003/04 nach Art der Anpaarung .. 67

Tab. 4.12: Mittelwerte, Standardabweichungen, Minima und Maxima für die Geburtsgewichte der Kälber aller Rassen der Zuchtjahre 1997/98 bis 2001/02 sowie 2002/03 und 2003/04, einschl. der Zwillingskälber 68

Tab. 4.13: Mittelwerte, Standardabweichungen, Minima und Maxima für die Absetzgewichte und -alter der Kälber aller Rassen der Zuchtjahre 1997/98 bis 2001/02 sowie 2002/03 und 2003/04, einschl. der Zwillingskälber 70

Tab. 4.14: Mittelwerte, Standardabweichungen, Minima und Maxima für die Tageszunahmen bis zum Absetzen der Kälber aller Rassen der Zuchtjahre 1997/98 bis 2001/02 sowie 2002/03 und 2003/04, einschl. der Zwillingskälber 71

Tab. 4.15: Signifikanzniveaus der fixen Einflussfaktoren, Kovariablen und Interaktionen auf die Produktionsmerkmale der Reinzuchtkälber der Zuchtjahre 2002/03 und 2003/04 .. 72

Tab. 4.16: Signifikanzniveaus der fixen Einflussfaktoren und Kovariablen auf die Produktionsmerkmale der Kälber aller Rassen der Zuchtjahre 1997/98 bis 2001/02 ... 73

Tab. 4.17: LSQ-Rassemittelwerte mit Standardfehlern (SE) für Geburts- und Absetzgewichte der Reinzuchtkälber der Zuchtjahre 1997/98 bis 2001/02 .. 74

Tab. 4.18: LSQ-Kalbesaison- bzw. Zuchtjahrmittelwerte mit Standardfehlern (SE) für Geburts- und Absetzgewichte der Reinzuchtkälber der Zuchtjahre 1997/98 bis 2001/02 .. 75
Tab. 4.19: LSQ-Laktationsnummernmittelwerte mit Standardfehlern (SE) und Gewichtsdifferenzen für die Geburtsgewichte der Reinzuchtkälber der Zuchtjahre 1997/98 bis 2001/02 ... 76

Tab. 4.20: LSQ-Geburtstypmittelwerte mit Standardfehlern (SE) für Geburts- und Absetzgewichte der Reinzuchtkälber der Zuchtjahre 1997/98 bis 2001/02 76

Tab. 4.21: LSQ-Rassemittelwerte nach Geschlecht mit Standardfehlern (SE) für die Tageszunahmen von der Geburt bis zum Absetzen der Reinzuchtkälber der Zuchtjahre 1997/98 bis 2001/02 .. 77

Tab. 4.22: LSQ-Geburtstypmittelwerte mit Standardfehlern (SE) für die Tageszunahmen von der Geburt bis zum Absetzen der Reinzuchtkälber der Zuchtjahre 1997/98 bis 2001/02 ... 78

Tab. 4.23: LSQ-Laktationsnummernmittelwerte mit Standardfehlern (SE) und Differenzen für die Tageszunahmen von der Geburt bis zum Absetzen der Reinzuchtkälber der Zuchtjahre 1997/98 bis 2001/02 ... 78

Tab. 4.24: LSQ-Zuchtjahrmittelwerte mit Standardfehlern (SE) und Differenzen für die Tageszunahmen von der Geburt bis zum Absetzen der Reinzuchtkälber der Zuchtjahre 1997/98 bis 2001/02 .. 79

Tab. 4.25: LSQ-Mittelwerte mit Standardfehlern (SE) für die Geburtsgewichte der Kälber aller Rassen der Zuchtjahre 2002/03 und 2003/04 (ohne Zwillingskälber) ... 80

Tab. 4.26: LSQ-Mittelwerte mit Standardfehlern (SE) für die Absetzgewichte der Kälber aller Rassen der Zuchtjahre 2002/03 und 2003/04 (ohne Zwillingskälber) ... 81

Tab. 4.27: LSQ-Mittelwerte mit Standardfehlern (SE) für die Tageszunahmen von der Geburt bis zum Absetzen der Kälber aller Rassen der Zuchtjahre 2002/03 und 2003/04 (ohne Zwillingskälber) .. 81

Tab. 4.28: Varianz-/Kovarianzmatrix aus bivariater Schätzung für Geburts-, Absetzgewichte und Tageszunahmen von der Geburt bis zum Absetzen der Reinzuchtkälber der Zuchtjahre 1997/98 bis 2001/02 .. 82

Tab. 4.29: Heritabilitäten und Maternaleffekte für Geburts-, Absetzgewichte und Tageszunahmen von der Geburt bis zum Absetzen der Reinzuchtkälber der Zuchtjahre 1997/98 bis 2001/02 auf der Diagonalen, genetische Korrelationen zwischen den Merkmalen sowie Korrelationen zwischen additiv genetischem und maternalem Effekt oberhalb der Diagonalen ... 83

Tab. 4.30: Differenzen zwischen den Reinzuchten in den ausgewählten Produktionsmerkmalen anhand der LSQ-Rassemittelwerte und Standardfehler (SE) für die Kälber der Zuchtjahre 2002/03 und 2003/04 ... 84

Tab. 4.31: Individuelle Heterosis in den drei ausgewählten Produktionsmerkmalen für die Kälber der Zuchtjahre 2002/03 und 2003/04 ... 85

Tab. 4.32: Stellungseffekte in den drei ausgewählten Produktionsmerkmalen für die Kälber der Zuchtjahre 2002/03 und 2003/04 ... 86
| Tab. 5.1: Ergebnisauszug der Fleischleistungsprüfung in Mutterkuhherden in 2006 (BDF, 2007) für die Rassen Dt. Angus und Dt. Fleckvieh im Vergleich mit den LSQ-Rassemittelwerten für Geburts- und Absetzgewichte der Reinzuchtkälber der Zuchtjahre 1997/98 bis 2001/02 | 96 |
| Tab. 5.2: Auswirkungen des Einsatzes eines Rassemittels für das Geburtsgewicht auf die Höhe der Tageszunahmen von der Geburt bis zum Absetzen im Sinne einer Über- bzw. Unterschätzung, Mittelwerte, Standardabweichungen, Minima und Maxima für die Rassen Dt. Angus und Dt. Fleckvieh der Zuchtjahre 1997/98 bis 2001/02 | 103 |
Verzeichnis der Abbildungen

Abb. 2.1: Verteilung der Herdbuchtiere nach Rassen (modifiziert nach BDF, 2007) 6
Abb. 2.2: Schwarze Dt. Anguskuh (Mutterkuhherde Rudlos) .. 7
Abb. 2.3: Dt. Fleckviehkuh (Fleisch, Mutterkuhherde Rudlos) ... 8
Abb. 2.4: Leistungskriterien in der Fleischrinderzucht (nach GROTHEER, 1996) 10
Abb. 4.1: Graphische Darstellung der LSQ-Rassemittelwerte mit Standardfehlern (SE) im Merkmal Geburtsgewicht der Kälber aller Rassen der Zuchtjahre 2002/03 und 2003/04 ... 87
Abb. 4.2: Graphische Darstellung der LSQ-Rassemittelwerte mit Standardfehlern (SE) im Merkmal Absetzgewicht der Kälber aller Rassen der Zuchtjahre 2002/03 und 2003/04 ... 87
Abb. 4.3: Graphische Darstellung der LSQ-Rassemittelwerte mit Standardfehlern (SE) im Merkmal Tageszunahmen von der Geburt bis zum Absetzen der Kälber aller Rassen der Zuchtjahre 2002/03 und 2003/04 .. 88
Verzeichnis der Tabellen im Anhang

Tab. 9.1: Hersteller und Zusammensetzung des verabreichten Mineralfutters 122
Tab. 9.2: Hersteller und Zusammensetzung der verwendeten Minerallecksteine 123
1 Einleitung und Fragestellung

In der Praxis ist die Kreuzungszucht im Hinblick auf Nutzung von Heterosis und Stellungseffekten weit verbreitet. Der allergrößte Teil der Mutterkuhhalter erzeugt Absetzer zum Verkauf für die eigene Rindermast oder Weidekälber, die von der Herde weg über Direktvermarktung zum Verbraucher gelangen. Die Kreuzungszucht ist weltweit von
Einleitung und Fragestellung

Bedeutung. Für eine gesamtwirtschaftliche Beurteilung der Vorteilhaftigkeit solcher Kreuzungssysteme liefern Kreuzungsparameter und Differenzen zwischen den Rassen wichtige Informationen über die Kreuzungseignung der Ausgangspopulationen und darüber, welche Population auf Mutter- und welche auf Vaterposition vorteilhaft ist (WOLF und HERRENDÖRFER, 1993; GOLZE, 1997; GRAHAM et al., 1999; RÖHE et al., 2000; DEMEKE et al., 2003b).

Ziel der Arbeit war es, anhand umfangreicher Reinzuchtdaten für die beiden eingesetzten Rassen Dt. Angus und Dt. Fleckvieh (Fleisch) genetisch-statistische Parameter zur Zuchtwertschätzung zu berechnen um daraus gegebenenfalls Verbesserungsempfehlungen hinsichtlich der zu berücksichtigenden Informationsmerkmale und deren statistischer Auswertung aussprechen zu können.

Ein weiteres Ziel war die Beurteilung der Kreuzungseignung der beiden Ausgangsrassen Dt. Angus und Dt. Fleckvieh (Fleisch) im Hinblick auf eine mögliche Erhöhung des Produktionsniveaus. Derartige Beurteilungen liegen bisher nur für einen Teil der Fleischrinderrassen vor. Direkte Rassevergleiche mit den im Rahmen der vorliegenden Untersuchung verwendeten Rassen liegen in der Literatur nicht vor.
2 Literaturübersicht

2.1 Entwicklung und Organisation der Fleischrinderhaltung in der Bundesrepublik Deutschland

Nach der Rasseschätzung der Arbeitsgemeinschaft Deutscher Rinderzüchter e. V. (ADR, 2007) lag der bundesdeutsche Rinderbestand im November 2006 bei ca. 12,6 Millionen Tieren (12.676.700), darunter ca. 4,0 Millionen Milchkühe (4.054.300) und ca. 654.700 Mutterkühe (= 5,16 %).

Die Veränderungen im Mutterkuh- und Herdbuchbestand seit dem Jahr 2000 präsentiert nachfolgende Tab. 2.1.

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Mutterkühe</th>
<th>Vgl. zum Vorjahr</th>
<th>HB-Bullen</th>
<th>HB-Kühe</th>
<th>HB-Tiere gesamt</th>
<th>HB-Betriebe*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>654.700</td>
<td>+3,26 %</td>
<td>4.757</td>
<td>53.662</td>
<td>58.419</td>
<td>4.031</td>
</tr>
<tr>
<td>2005</td>
<td>634.000</td>
<td>-2,70 %</td>
<td>4.804</td>
<td>54.948</td>
<td>59.752</td>
<td>4.091</td>
</tr>
<tr>
<td>2004</td>
<td>651.500</td>
<td>+0,02 %</td>
<td>4.841</td>
<td>54.970</td>
<td>59.811</td>
<td>4.186</td>
</tr>
<tr>
<td>2003</td>
<td>651.400</td>
<td>-4,10 %</td>
<td>5.488</td>
<td>56.955</td>
<td>62.443</td>
<td>4.357</td>
</tr>
<tr>
<td>2002</td>
<td>679.000</td>
<td>-3,60 %</td>
<td>5.727</td>
<td>60.113</td>
<td>65.840</td>
<td>4.592</td>
</tr>
<tr>
<td>2001</td>
<td>704.400</td>
<td>-2,00 %</td>
<td>6.097</td>
<td>63.882</td>
<td>69.979</td>
<td>4.603</td>
</tr>
<tr>
<td>2000</td>
<td>718.800</td>
<td></td>
<td>5.892</td>
<td>63.910</td>
<td>69.802</td>
<td>4.750</td>
</tr>
</tbody>
</table>

* mehrassige Betriebe sind nur einmal gezählt

Die im Anschluss dargestellte Tabelle enthält die Aufzählung der einzelnen Verbände einschließlich des jeweiligen Bestands an zu betreuenden Herdbuchtiern (Tab. 2.2).
Tab. 2.2: Herdbuchbestand nach Landesverbänden in Deutschland 2006 (BDF, 2007)

<table>
<thead>
<tr>
<th>Landesverband</th>
<th>HB-Bullen</th>
<th>HB-Kühe</th>
<th>HB-Tiere Ges.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRZ Verband Schleswig-Holsteiner Fleischrinderzüchter e. V.</td>
<td>125</td>
<td>1.219</td>
<td>1.344</td>
</tr>
<tr>
<td>RSH Rinderzucht Schleswig-Holstein e.G.</td>
<td>126</td>
<td>1.665</td>
<td>1.791</td>
</tr>
<tr>
<td>RBB Rinderproduktion Berlin-Brandenburg GmbH</td>
<td>234</td>
<td>5.239</td>
<td>5.473</td>
</tr>
<tr>
<td>RMV Rinderzucht Mecklenburg-Vorpommern e. V.</td>
<td>152</td>
<td>4.478</td>
<td>4.630</td>
</tr>
<tr>
<td>NOR Nordrind GmbH (Zuchtrinder-Erzeugergemeinschaft Hannover e.G.)</td>
<td>501</td>
<td>6.577</td>
<td>7.078</td>
</tr>
<tr>
<td>RSA Rinderzuchtverband Sachsen-Anhalt e.G.</td>
<td>277</td>
<td>3.982</td>
<td>4.259</td>
</tr>
<tr>
<td>FHB Fleischrinder-Herdbuch Bonn e. V.</td>
<td>1.870</td>
<td>8.496</td>
<td>10.366</td>
</tr>
<tr>
<td>ZBH Zucht- und Besamungsunion Hessen e.G.</td>
<td>378</td>
<td>4.160</td>
<td>4.538</td>
</tr>
<tr>
<td>LTR Landesverband Thüringer Rinderzüchter e.G.</td>
<td>307</td>
<td>5.469</td>
<td>5.776</td>
</tr>
<tr>
<td>SRV Sächsischer Rinderzuchtverband e. V.</td>
<td>244</td>
<td>3.897</td>
<td>4.141</td>
</tr>
<tr>
<td>RBW Rinderunion Baden-Württemberg e. V.</td>
<td>177</td>
<td>3.650</td>
<td>3.827</td>
</tr>
<tr>
<td>FVB Fleischrinderverband Bayern e. V.</td>
<td>366</td>
<td>4.830</td>
<td>5.196</td>
</tr>
<tr>
<td>Σ</td>
<td>4.757</td>
<td>53.662</td>
<td>58.419</td>
</tr>
</tbody>
</table>

Einen graphischen Eindruck zur Verteilung der Herdbuchtiere auf die einzelnen Rassen im Jahr 2006 vermittelt die Abb. 2.1. Sie zeigt, dass Limousin und Dt. Fleckvieh die im Bundesgebiet mit 18,3 % bzw. 16,9 % am stärksten vertretenen Rassen sind. Geringfügig weniger vertreten sind die Rinder der Rassen Charolais (16,7 %) und Dt. Angus (14,6 %). Die Robustrinderrasse Galloway ist mit 9,0 % ebenfalls verhältnismäßig stark im Bundesgebiet vertreten. Dahinter folgt eine unter „Sonstige“ zusammengefasste Rassengruppe (vgl. * unter der Abbildung). Highland Cattle, Blonde d’ Aquitaine und Salers bilden wiederum als eigene Rassen das Schlusslicht mit Prozentzahlen von 6,2 %, 2,5 % und 1,6 %.
Hinsichtlich des Rahmens, der Standortansprüche sowie des Umfangs an Leistungsprüfung und Zuchtwertschätzung werden bei den Fleischrindern Wiege- und Nicht-Wiegerassen unterschieden, wobei die Übergänge zum Teil fließend sind (vgl. Tab. 2.3).

Tab. 2.3: Einteilung der in der Bundesrepublik Deutschland eingesetzten Fleischrinderrassen in Wiege- und Nicht-Wiegerassen (GOLZE, 1997)

<table>
<thead>
<tr>
<th>grobwüchsige Rassen</th>
<th>Rassen mit mittlerem Rahmen</th>
<th>Robustrassen mittel-bis großrahmige</th>
<th>Zeburassen, Kreuzungs- rassen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blonde d’Aquitaine</td>
<td>Aberdeen Angus</td>
<td>Aubrac</td>
<td>Brahman</td>
</tr>
<tr>
<td>Charolais</td>
<td>Deutsche Angus</td>
<td>Lincoln Red</td>
<td>Brangus</td>
</tr>
<tr>
<td>Dt. Fleckvieh</td>
<td>Hereford</td>
<td>Luing</td>
<td>Zwergzebu</td>
</tr>
<tr>
<td>Gelbvieh</td>
<td>Limousin</td>
<td>Salers</td>
<td></td>
</tr>
<tr>
<td>Uckermärker</td>
<td>Piemontese</td>
<td>Ungarisches</td>
<td></td>
</tr>
<tr>
<td>Salers</td>
<td>Pinzgauer</td>
<td>Steppenrind</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shorthorn</td>
<td>Welsh Black</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiegerassen</th>
<th>Nicht-Wiegerassen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.2 Rassebeschreibungen

2.2.1 Dt. Angus

2.2.2 Dt. Fleckvieh (Fleisch)

Ausgewachsene Mutterkühe erreichen bei Widerristhöhen von 138 bis 145 cm Lebendgewichte von 700 bis 850 kg, die Bullen entsprechend 1.100 bis 1.300 kg bei 148 bis 160 cm Widerristhöhe. Das angestrebte Erstkalbealter liegt bei 24 bis 28 Monaten, das mittlere Geburtsgewicht der Kuhkälber bei 39,0 kg, bei Bullenkälbern um 41,0 kg. Die Milchleistung der Rasse gewährleistet gute Aufzucht- und Mastergebnisse der Kälber. Als mittlere Absetzgewichte im Alter zwischen sieben und acht Monaten werden 280 bis 300 kg für die weiblichen und 300 bis 335 kg für die männlichen Absetzer angegeben. Die Jungbullen erzielten bei der Eigenleistungsprüfung im Feld im Jahr 2006 durchschnittlich 1.436 g Tageszunahmen bei einem mittleren Alter von 433 Tagen (GOLZE, 1997; SAMBRAUS, 2001; BDF, 2007).
2.3 Zuchziele und Leistungskriterien bei Fleischrindern

Während bei den kleinrahmigen Rassen das Hauptaugenmerk auf der Erhaltung rassetypischer Merkmale und Eigenschaften liegt, wie z.B. Wetterhärte, Genügsamkeit, Eignung zur Landschaftspflege aber auch Mütterlichkeit, gute Fruchtbarkeit und eine hohe Vitalität der Kälber, steht bei den großrahmigen Fleischrassen neben den bereits angeführten Fitness- und Fruchtbarkeitsmerkmalen insbesondere die Steigerung der Produktionsleistung im Vordergrund. Im Allgemeinen werden in der Fleischrinderzucht zwei Merkmalskomplexe von wirtschaftlicher Bedeutung angesehen, die Produktionsleistung in Form der Fleischleistung sowie die Reproduktionsleistung (TRAMPLER und JÄGER, 1976; STAMER und GROTHEER, 1998; vgl. Abb. 2.4).

Die Fleischleistung, insbesondere relevant bei Intensivrassen, vereint Mastleistung (hohe Tageszunahmen) und Schlachtkörperwert (ausgeprägtes Fleischansatzvermögen). Züchterisch relevant sind hier Absetz- und Jahrestagegewicht, die ebenso im Rahmen der Leistungsprüfung wichtige Kenngrößen der Gewichtsentwicklung darstellen. Das Absetzgewicht wird

Abb. 2.4: Leistungskriterien in der Fleischrinderzucht (nach GROTHEER, 1996)

2.4 Zuchtwertschätzung Fleischrinder

2.4.1 Aufgabe der Zuchtwertschätzung

2.4.2 Wesentliche Eigenschaften des Zuchtwertschätzverfahrens

Im VIT (Vereinigte Informationssysteme Tierhaltung w.V.) wurde 1996 eine Zuchtwertschätzung für Fleischleistung bei Fleischrinderrassen in Reinzucht entwickelt und seit 1997 jährlich durchgeführt. Eine Zuchtwertschätzung erfolgt inzwischen für die Rassen Charolais, Limousin, Blonde d’Aquitaine, Salers, Angus, Hereford, Fleckvieh (Fleisch) und Uckermärker auf der Grundlage von Feld- und Stationsdaten.

Die Zuchtwertschätzung hat sich in den letzten Jahren etabliert und sowohl bei den Züchtern als auch bei den Zuchtorganisationen im Rahmen der Realisierung ihrer Zuchtprogramme an Bedeutung gewonnen. An dieser Zuchtwertschätzung beteiligen sich aktuell 12 Landesverbände (Tab. 2.2). Sie unterliegt einer ständigen Anpassung und Weiterentwicklung bezüglich immer neuer wissenschaftlicher Erkenntnisse, veränderter Zuchtzieldefinitionen oder sich ändernder marktwirtschaftlicher Gegebenheiten.

Die Informationsmerkmale im Rahmen der Feldprüfungen werden auf den Herdbuchbetrieben in zwei Wiegesaisons im Jahr (Frühjahr und Herbst) erfasst. Mitarbeiter des jeweiligen Verbandes oder die Besitzer selbst wiegen alle männlichen und weiblichen Jungtiere im Altersabschnitt von 90 bis 280 Tagen für die 200-Tage-Wiegung und im Altersabschnitt von 281 bis 500 Tagen für die 365-Tage-Wiegung. Zudem wird die Bemuskelung zum Zeitpunkt
Literaturübersicht

Nachfolgend ist das Zuchtwertschätzverfahren im Rahmen der Feldprüfung dargestellt (VIT, 2007):

- Die Zuchtwertschätzung Feldprüfung erfolgt mit fünf Merkmalen
 - Geburtsgewicht
 - Absetzgewicht (200-Tage-Gewicht)
 - Jahresgewicht (365-Tage-Gewicht)
 - Bemuskelungsnote 200-Tage
 - Bemuskelungsnote 365-Tage
Als nichtgenetische oder umweltbedingte Effekte finden Berücksichtigung

- Herde x Jahr (01.12. bis 30.11.)
- Geschlecht (männlich, weiblich)
- Geburtstyp (Einling, Zwilling)
- Geburtsmonat (12 Monate)
- Kalbenummer x Mutteralter (10 Klassen)

- Wiegealter (in Tagen) innerhalb Geschlecht

- Charolais
- Limousin
- Blonde d’ Aquitaine und Salers
- Angus
- Hereford
- Fleckvieh(Fleisch)
- Uckermärker

Tab. 2.4 zeigt die in der Zuchtwertschätzung Feldprüfung eingesetzten genetischen Parameter. An genetischen Effekten werden der zufällige Tiereffekt (Zuchtwert) für alle Merkmale und der maternal genetische Effekt (maternaler Zuchtwert) für das Absetzgewicht geschätzt.

Tab. 2.4: Heritabilitäten und genetische Korrelationen der Merkmale in der Fleischrinderzucht – Zuchtwertschätzung Feldprüfung (RUTEN und REINHARDT, 2004; VIT, 2007)

<table>
<thead>
<tr>
<th></th>
<th>GebGew</th>
<th>Gew200*</th>
<th>maternal</th>
<th>Gew365*</th>
<th>Bem200*</th>
<th>Bem365*</th>
</tr>
</thead>
<tbody>
<tr>
<td>GebGew</td>
<td>0,33</td>
<td>0,40</td>
<td>-0,10</td>
<td>0,50</td>
<td>0,20</td>
<td>0,20</td>
</tr>
<tr>
<td>Gew200*</td>
<td></td>
<td>0,23</td>
<td>-0,30</td>
<td>0,75</td>
<td>0,70</td>
<td>0,50</td>
</tr>
<tr>
<td>maternal</td>
<td></td>
<td></td>
<td>0,19</td>
<td>-0,10</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Gew365*</td>
<td></td>
<td></td>
<td></td>
<td>0,23</td>
<td>0,50</td>
<td>0,70</td>
</tr>
<tr>
<td>Bem200*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,22</td>
<td>0,80</td>
</tr>
<tr>
<td>Bem365*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,20</td>
</tr>
</tbody>
</table>

* Lebendgewicht bzw. Bemuskelung am 200. bzw. 365. Lebenstag
Die folgenden Ausführungen charakterisieren das Zuchtwertschätzverfahren im Rahmen der Stationsprüfung (VIT, 2007):

- Für die Zuchtwertschätzung Stationsprüfung erfolgt die Schätzung mit einem BLUP-Mehrerkmals-Tiermodell mit drei Merkmalen
 - Futteraufnahme
 - Jahresgewicht (365-Tage-Gewicht)
 - Bemuskelungsnote 365-Tage

- Folgende Umwelteffekte werden im Modell berücksichtigt
 - Rasse
 - Prüfjahr bzw. Prüfquartal
 - Betrieb
 - Durchschnittsgewicht während der Prüfung, genestet innerhalb Rasse
 - Durchschnittsalter während der Prüfung, genestet innerhalb Rasse

Tab. 2.5 zeigt die in der Zuchtwertschätzung Stationsprüfung eingesetzten genetischen Parameter. Als genetischer Effekt wird der zufällige Tiereffekt (Zuchtwert) für alle Merkmale geschätzt.

Tab. 2.5: Heritabilitäten und genetische Korrelationen der Merkmale in der Fleischrinderzucht – Zuchtwertschätzung Stationsprüfung (RUTEN und REINHARDT, 2004; VIT, 2007)

<table>
<thead>
<tr>
<th></th>
<th>Futteraufnahme</th>
<th>Gew365</th>
<th>Bem365</th>
</tr>
</thead>
<tbody>
<tr>
<td>Futteraufnahme</td>
<td>0,32</td>
<td>0,92</td>
<td>0,75</td>
</tr>
<tr>
<td>Gew365</td>
<td>0,35</td>
<td></td>
<td>0,71</td>
</tr>
<tr>
<td>Bem365</td>
<td></td>
<td>0,26</td>
<td></td>
</tr>
</tbody>
</table>

Die geschätzten Zuchtwerte für die Gewichte werden durch eine lineare Transformation in Zuchtwerte für tägliche Zunahmen umgeformt.

In einem Selektionsindexverfahren werden die naturalen Zuchtwerte aus den beiden Schätzungen der Feld- und Stationsergebnisse für die Merkmale Gewicht bei der 365-Tage-Wiegung und Beurteilung der Bemuskelungsnote bei der 365-Tage-Wiegung für alle Tiere mit Leistungen in beiden Schätzverfahren zu kombinierten Zuchtwerten zusammengefasst.
Als Zielgrößen für die Zusammenfassung zu einem Relativzuchtwert Fleisch (RZF; VIT, 2007) sind festgelegt:

- maternaler Zuchtwert (tägliche Zunahme bis zum 200. Tag)
- Zuchtwert für die tägliche Zunahme bis zum 365. Lebenstag
- Zuchtwert für die Bemuskelung am 365. Lebenstag

Die beiden Zuchtwerte für die tägliche Zunahme (maternal und direkt) beschreiben den Komplex der Mastleistung. Die Bemuskelungsnote steht stellvertretend für die Konformation und damit für den Schlachtkörperwert.

Der RZF erlaubt eine Gesamtrangierung aller Tiere einer Rasse, die unter Berücksichtigung der ökonomischen und züchterischen Wertigkeit der Einzelmerkmale (maternale Aufzuchtleistung 40,0 %, Tageszunahmen 40,0 %, Bemuskelung 20,0 %), über alle drei Einzelmerkmale den höchsten ökonomischen Nutzen für den Fleischrinderhalter bringen. Die Basistiere für diesen Relativzuchtwert sind jeweils die letzten drei mit Nachkommen geprüften Bullenjahrgänge der jeweiligen Rasse. Zum Stand der Veröffentlichung des Jahresberichts für 2005 sind die Bullen mit Nachkommen der Geburtsjahrgänge 1997 bis 2001 für die jeweilige Rasse die Basisstichprobe.

2.5 Modelle zur Schätzung populationsgenetischer Parameter und Kreuzungseffekte

In vielen tierzüchterischen Fragestellungen auf dem Gebiet der Varianzkomponentenschätzung wird heute von einem gemischten linearen Modell ausgegangen: \(y = Xb + Za + e \), wobei \(y \) den Vektor der Beobachtungswerte bezeichnet, \(b \) den Vektor der zu schätzenden fixen Effekte, \(a \) den Vektor der zu schätzenden zufälligen Effekte und \(e \) den Vektor der Resteffekte. \(X \) und \(Z \) sind Designmatrizen, die angeben, auf welche individuellen Klassen der fixen bzw. zufälligen Effekte \(y_i \) sich die Beobachtungswerte verteilen (SCHÜLER et al., 2001).
Erwartungswerte und Varianzen der zufälligen Variablen sind wie folgt definiert:

\[
\begin{align*}
\mathbb{E}\begin{bmatrix}
 y \\
 a \\
 e
\end{bmatrix} &= \begin{bmatrix}
 Xb \\
 0 \\
 0
\end{bmatrix}, \\
\text{Var}\begin{bmatrix}
 y \\
 a \\
 e
\end{bmatrix} &= \begin{bmatrix}
 V & ZG & R \\
 GZ' & G & 0 \\
 R & 0 & R
\end{bmatrix}
\end{align*}
\]

\(V\) stellt die Varianz/Kovarianzmatrix der Beobachtungswerte \(y_i\) dar, \(G\) die Varianz/Kovarianzmatrix der zufälligen Effekte und \(R\) die Varianz/Kovarianzmatrix der Restfehler. Es gilt: \(V = ZGZ'^+R\).

Aufgabe der Varianzkomponentenschätzung in der Tierzucht ist die Schätzung von \(G\) und \(R\). Im Ein-Merkmals-Fall, mit nur einer Beobachtung pro Tier und einem Modell mit nur dem genetischen Effekt als zufälligem Effekt, sind dies die Skalare \(\sigma_a^2\) und \(\sigma_e^2\) (additive genetische und Restvarianz). Im Tiermodell (wo jedes einzelne Tier eine Effektsstufe des Effekts Tier darstellt) gilt gleichzeitig noch, dass \(\text{Var}(a) = A\sigma_a^2\). Hierbei bezeichnet \(A\) die Verwandtschaftsmatrix, die die additiv genetischen Verwandtschaftskoeffizienten zwischen allen Tieren enthält.

Für komplexere Modelle kann eingangs genanntes Modell für die Varianzkomponentenschätzung um notwendige Effekte wie permanente Umwelteffekte, maternal genetische Effekte oder Dominanzeffekte erweitert werden (HOFER, 1998; SCHÜLER et al., 2001).

Zur Varianzanalyse wurden als fixe Effekte eine Kombination aus Herde-Jahr-Saison sowie Geschlecht, Geburtstyp (Einling oder Zwilling) und Reinzuchttanteil (\(\geq 75,0\%\) Simmental) berücksichtigt. Der Herde-Jahr-Saison Effekt wurde zudem in Managementgruppen unterteilt, soweit Daten dazu vorlagen. Zudem wurden Alter der Mutter und Alter des Kalbes zu den Wiegeterminen (ausgenommen beim Geburtsgewicht) berücksichtigt. Für die zufälligen Effekte der Modelle wurden für alle Merkmale sechs verschiedene Kombinationen von
additiv genetischen, maternal genetischen und permanenten Umwelteffekten sowie die Kovarianz zwischen additiv genetischem und maternal genetischem Effekt benutzt. Die Schätzwerte wurden im Anschluss über sogenannte Gruppenherden (insgesamt sechs) gepoolt.

Zur Schätzung von Kreuzungsparametern verwendeten DEMEKE et al. (2003a und b) fünf genetische Modelle zur Analyse von Produktionsmerkmalen (Gewichten und Zunahmen). Ein Dominanz- und vier epistatische Modelle (Dickerson-Modell, Additive x Dominanz- bzw. Dominanz x Dominanz-Interaktionsmodell und Kinghorn’s Modell). In den hier vorliegenden Untersuchungen zeigten alle Modelle eine gute Anpassung mit R^2-Werten von im Mittel 93,0 % über alle Merkmale, wobei die epistatischen Modelle für alle Merkmale die signifikant bessere Anpassung zeigten als das Dominanzmodell. Unter den epistatischen Modellen erwies sich das Dickerson-Modell mit signifikant höheren R^2-Werten und

2.6 Leistungsniveau und Schätzparameter

2.6.1 Reproduktionsmerkmale und korrelierte Effekte zur Gewichtsentwicklung

In den Anfängen der Fleischrinderzucht wurde bei der Selektion der Fleischrinderrassen hauptsächlich auf Wachstumsvermögen und Fleischansatz selektiert. Auf Informationen bzgl. genetischer Korrelationen zwischen Produktions- und Reproduktionsmerkmalen liegt seit einigen Jahrzehnten mehr und mehr das Augenmerk wissenschaftlicher Fragestellungen (vgl. MAC NEIL et al., 1984; SMITH et al., 1989; MEYER et al., 1991; REGE und FAMULA, 1993; GREGORY et al., 1995; SPLAN et al., 1998; VARONA et al., 1999; PHOCAS und SAPA, 2004).
Der Kalbeverlauf steht in unmittelbarem Zusammenhang zu Geburtsgewicht und Körpergewichtsleistungen während späterer Entwicklungsstadien. Das Geburtsgewicht gilt allgemein als Indikatormerkmal, um Kalbeprobleme zu vermeiden (MÁRQUEZ et al., 2001a; ERIKSSON et al., 2004a). In unabhängigen Untersuchungen geschätzte Korrelationen belegen den Zusammenhang zwischen „nicht überdurchschnittlichem Geburtsgewicht“ und „weniger Kalbeproblemen“ sowie die negativen Auswirkungen dieser Beziehung, da das Geburtsgewicht positiv korreliert ist mit der Gewichtsentwicklung während späterer Entwicklungsstadien (vgl. u.a. DICKERSON et al., 1974; BARLOW, 1978; MEIJERING, 1984; MOHIUDDIN, 1993; RITCHIE und STROHBen, 1993; Koots et al., 1994b; GREGORY et al., 1995; MACNEIL et al., 1998; BENNETT und GREGORY, 2001; ERIKSSON et al., 2004a).

GREGORY et al. (1991) sowie BENNETT und GREGORY (1996 und 2001) schätzten an neun Rassen und drei daraus hervorgegangenen zusammengesetzten Linien u.a. Varianzkomponenten für den Kalbeverlauf und Gewichte früher Entwicklungsstadien. Anhand von 5.986 erfassten Scores zum Kalbeverlauf schätzten die Autoren für zweijährige Färsen (von 520 Bullen und 388 Großmüttern mütterlicherseits) eine Heritabilität für die in Reinzucht abkalbenden von 0,37 und einem(maternalen Effekt von 0,23. Die Schätzwerte für die Abkalbungen der zusammengesetzten Linien lagen für die Heritabilität im Mittel bei 0,46, für den maternalen Effekt bei 0,22. Die einzelnen Shätzwerte für den Kalbeverlauf für die jeweiligen Populationen wurden als Abweichung in Prozent zum Gesamtmittel dargestellt, wobei die Rassen Angus, Limousin, Charolais und Red Poll mit bis zu 34,0 % unter dem Mittelwert lagen, demnach also deutlich weniger Kalbeschwierigkeiten zeigten als der Durchschnitt. Hereford und die zusammengesetzten Linien mit (Pinzgauer x Angus) x (Red Poll x Hereford) bzw. x (Pinzgauer x Angus) x (Hereford x Red Poll) sowie deren reziproke Kreuzungen lagen immerhin noch 2,0 bis 6,0 % unter dem Wert für den mittleren Kalbeverlauf. Die weiteren zusammengesetzten Linien ((Charolais x (Limousin x Hereford)) x ((Braunvieh x (Limousin x Angus)) bzw. ((Charolais x (Limousin x Angus)) x ((Braunvieh x (Limousin x Hereford)) und ((Gelbvieh x Hereford) x (Simmental x Angus)) bzw. ((Gelbvieh x Angus) x (Simmental x Hereford)) sowie deren reziproke Kreuzungen, einschließlich der Reinzuchtpopulationen Simmental, Gelbvieh, Pinzgauer und Braunvieh zeigten um 4,0 bis 32,0 % schlechtere Werte, und somit über dem Mittel für den Kalbeverlauf liegende Scores.

In ihrer Auswertung zu verschiedenen Reproduktionsmerkmalen bei Rotationskreuzungen mit Angus, Brahman, Charolais und Hereford konnten WILLIAMS et al. (1990) nur bei Bullenkälbern einen signifikanten Einfluss des Geburtsgewichts auf den Kalbeverlauf feststellen. Jedes Kilogramm mehr an Geburtsgewicht des Bullenkalbs ließ das Risiko notwendiger Unterstützung beim Kalben um 0,127 % ansteigen (p < 0,01). Demgegenüber verursachte ein Kilogramm mehr an Geburtsgewicht bei Kuhkälbern eine unbedeutende und nicht signifikante Risikozunahme von 0,015 % (p > 0,15).

Viele Studien bestätigen einen signifikanten Zusammenhang zwischen Geburtsgewicht und Kalbeverlauf, insbesondere in Abhängigkeit vom Laktationsstadium der Kuh (u.a. REYNOLDS et al., 1990; RITCHIE und STROHGEN, 1993; ERIKSSON et al., 2004a; PHOCAS und SHAPA, 2004).

PHOCAS und LALOË (2003) untersuchten die Geburtsverläufe von 246.576 Charolaiskälbern, einer Rasse, der allgemein Problemkalbungen nachgesagt werden. Die absolute Mehrheit der Kalbungen (56,0 %) verlief ohne Hilfe, 37,2 % hatten nur geringe Schwierigkeiten, 3,2 % benötigten mechanische Unterstützung in Form von Zughilfe und in 3,6 % der Fälle wurde ein Kaiserschnitt nötig.

PHOCAS und SHAPA (2004) verglichen Reproduktions- und Wachstumsleistungen von Färsen der Rassen Charolais, Limousin und Blonde d’ Aquitaine über mehr als 15 Jahre. Hintergrund der Untersuchung war die Schätzung genetischer Parameter für weibliche Fruchtbarkeitsmerkmale, erhoben in einem französischen Fleischrindzuchtprogramm zur...
Bullenselektion zur künstlichen Besamung. Die Nachkommen wurden auf Station getestet, um die umweltbedingte Variabilität möglichst gering zu halten. Die aufgenommenen weiblichen Merkmale umfassten das Wachstum der Färsen, ihre sexuelle Frühreife, ihre Fruchtbarkeit, ihr Kalbeverhalten im Alter von 28 Monaten und teilweise ihre Milchleistung. Die Limousinfärsen wiesen die späteste sexuelle Reife auf. Nur ca. 30,0 % der Färsen zeigten den Oestrus im Alter von 15 Monaten, verglichen mit ca. 60,0 % und mehr in den beiden anderen Rassen. Auch besaßen die Limousinfärsen die geringsten Milchmengen mit im Mittel unter 5,0 kg/d, verglichen mit Mittelwerten um die 6,0 kg/d innerhalb der beiden anderen Rassen. Im Lebendgewicht im Alter von 18 Monaten zeigten die Charolaisfärsen mit im Mittel 481,3 ± 34,34 kg das höchste Gewicht, gefolgt von Blonde d’Aquitaine mit 472,7 ± 38,78 kg und Limousin mit 420,1 ± 29,68 kg. Entsprechende Rangierung blieb auch beim Gewicht nach der ersten Abkalbung bestehen: 557,6 ± 43,97 kg, 530,4 ± 46,63 kg und 488,8 ± 39,69 kg. Diese beiden Gewichtsmerkmale waren in Höhe von 0,9 genetisch korreliert. Im Kalbeverlauf, beurteilt nach zwei Kriterien, leichtes Abkalben und schwere Zugarbeit oder Kaiserschnitt, erwiesen sich die Limousinfärsen mit im Mittel 25,8 ± 41,30 % Kalbeproblemen am schwierigsten, knapp gefolgt von Blonde d’Aquitaine mit 23,6 ± 40,57 %. Mit nur 15,4 ± 35,55 % kalbten die Charolaisfärsen im Mittel am besten ab. Die geschätzten Heritabilitäten für Kalbeprobleme lagen für Limousin bei 0,12, für Charolais bei 0,15 und für Blonde d’Aquitaine bei 0,18. Aufgrund der der Rasse Charolais allgemein nachgesagten Schwerkalbigkeit waren die eingesetzten Charolaisbullen als einzige auf Kalbeverlauf selektiert worden.

GREGORY et al. (1991) verglichen in ihrer Untersuchung zu Rasseeffekten und Heterosis u.a. Reinzuchttiere der neun eingesetzten Ausgangsrassen hinsichtlich Kalbeschwierigkeiten und Überlebensraten. Die Bewertung des Kalbeverlaufs wurde mittels einer nach subjektiven Eindrücken aufgebauten 8-Punkte-Skala vorgenommen (1 = keine Schwierigkeiten, 2 = leichte Zughilfe von Hand, 3 bis 6 = leichte, geringfügige, mäßige bzw. große mechanische Zughilfe, 7 = Kaiserschnitt und 8 = Fehllage im Mutterleib). Die in der Varianzanalyse ermittelten LSQ-Rassemittelwerte reichten von 1,2 Punkten bei der Rasse Angus als beste Bewertung bis zum höchsten (= schlechtesten) Wert für Braunvieh von 2,0 Punkten. Die neun Rassen unterschieden sich im Auftreten von Kalbeschwierigkeiten hoch signifikant (p ≤ 0,01) und waren im einzelnen wie folgt rangiert: Angus 1,2, Red Poll 1,4, Hereford und Limousin 1,5, Charolais 1,7, Gelbvieh und Simmental 1,8, Pinzgauer 1,9 und schließlich 2,0 für Braunvieh. Prozentual ausgedrückt kam es bei den Anguskühen in nur
8,0 % der Fälle zu Kalbeschwerden, während bei Pinzgauer- und Braunviehkühen in 25,5 bzw. 25,6 % der Geburten Schwierigkeiten auftraten. Im Auftreten von Totgeburten wurden keine signifikanten Rasseunterschiede festgestellt. Die Totgeburtenraten aller Kälber lagen im Bereich von 1,5 % für Charolais bis 3,1 % für Hereford relativ eng beieinander. Im Hinblick auf die Überlebensraten der Kälber innerhalb der ersten drei Lebenstage bzw. im Hinblick auf die Absetzraten unterschieden sich die Rassen signifikant (p ≤ 0,05) bzw. höchst signifikant (p ≤ 0,001). Überlebensraten von über 95,0 % lagen vor bei Red Poll (95,8 %), Charolais und Gelbvieh (95,7 bzw. 95,2 %). Mit 94,9 % folgte Braunvieh, die weiteren Rassen (Limousin, Hereford, Simmental und Angus) lagen zwischen 93,7 % und 93,2 %. Bei den Pinzgauer-kälbern lagen die Verluste innerhalb der ersten drei Lebenstage mit einer Überlebensrate von 92,9 % am höchsten.

Die höchst signifikanten Rasseunterschiede hinsichtlich der Absetzrate ergaben folgende Rangierung (in %): 93,1 Red Poll, 90,3 Gelbvieh, 90,1 Charolais, 89,7 Angus, 89,4 Hereford, 89,2 Braunvieh, 88,9 Limousin, 88,8 Pinzgauer und schließlich 86,8 Simmental.

MÁRQUEZ et al. (2001a) verglichen im Rahmen einer Varianzanalyse den Kalbeverlauf von 50 reinrassigen Limousinkühen im Norden Mexikos mit unterschiedlichem Kalbealter und betrachteten weiterführend das Geburtsgewicht, das sich als Haupteinflussfaktor herausstellte. Bei den jüngeren Färsern (durchschnittliches Kalbealter 29 Monate) traten mit 29,8 % vs. 11,45 % signifikant mehr Kalbeprobleme auf (p < 0,05) als bei den älteren mit einem durchschnittlichen Kalbealter von 57 Monaten. Die LS-Means für die Geburtsgewichte lagen für die Kälber der jüngeren Färser zwischen 36,0 und 37,9 kg. Die Geburtsgewichte der Kälber aus den älteren Kühen rangierten zwischen 38,5 bis 43,7 kg. Die über alle Tiere geschätzten Heritabilitäten lagen für den Kalbeverlauf bei 0,05 ± 0,04 und für das Geburtsgewicht bei 0,29 ± 0,07. Korrelationen zwischen Geburtsgewicht und Kalbeverlauf wurden nicht geschätzt.

WILLIAMS et al. (1990) kreuzten Angus, Charolais und Hereford jeweils mit Brahmanrindern in verschiedenen Kreuzungssystemen zur näheren Betrachtung von Reproduktionsmerkmalen. Neben den Kreuzungen wurden Reinzuchttiere als Kontrollgruppen angepaart. Von Interesse in der Untersuchung waren insbesondere Abkalbe-, Überlebens- sowie Absetzraten. Die Rotationsanpaarungssysteme zeigten untereinander vergleichbare Abkalbe- und Überlebensraten, die signifikant (p < 0,01) über denen der Reinzuchten lagen. Drei- und Vierrassenrotationssysteme wiesen mit 81,5 ± 1,1 % und 80,8 ± 2,0 % vergleichbare Absetzraten auf, wohingegen die Absetzraten bei der Zweirassenrotation mit 77,1 ± 1,2 % niedriger angesiedelt waren. Alle Dreirassenkreuzungen zeigten vergleichbare Abkalbe-, Überlebens- und Absetzraten. Rotationskombinationen erschienen den Autoren mit p < 0,05 den Reinzuchten in den angesprochenen Merkmalen überlegen zu sein.

SMITH et al. (1976) berichteten von 5,1 % Kälberverlusten innerhalb 24 h post partum bei Einfachkreuzungen aus Hereford- und Anguskühen und von Bullen der Rassen Hereford, Angus, Jersey, South Devon, Limousin, Charolais sowie Simmental. Differenziert betrachtet und in Beziehung gesetzt zum Geburtsverlauf, verstarben gemittelt über alle Herkünfte 11,5 % der Kälber, die während der Kalbung beträchtliche Unterstützung benötigten. Demgegenüber verstarben nur 3,1 % der Kälber, die problemlos oder mit nur leichter Zughilfe auf die Welt kamen. Störungen im Geburtsverlauf beeinflussten die Überlebensrate ab 24 h post partum bis zum Absetzen nicht signifikant (p > 0,05). GREGORY et al. (1978)
und GREGORY et al. (1979) berichteten in ihrer Studie von Kälberverlusten in ähnlicher Höhe von 4,0 % bzw. 5,5 %, bezogen auf einen Zeitraum von 72 h post partum bzw. von 2,8 % und 3,1 % Kälberverlusten innerhalb der ersten 24 Lebensstunden bei Angus x Hereford Kreuzungen, 1,3 % für Red Poll x Hereford und 4,4 % für Pinzgauer x Hereford Kreuzungen. LAWLOR et al. (1984) beobachteten in ihrer Untersuchung lediglich 1,0 % Kälberverluste innerhalb der ersten 24 h post partum für Kreuzungskälber aus Angus x Hereford. Die mittleren Aufzuchtverluste lagen bei REYNOLDS et al. (1990) bei 8,6 % und waren somit höher als die von GREGORY et al. (1978) und GREGORY et al. (1979) festgestellten Verluste in Höhe von 7,1 bzw. 7,4 %.

REYNOLDS et al. (1990) führten Untersuchungen zu Wachstums- und Mortalitätsraten unter Berücksichtigung des rassespezifischen Typs (Rahmen und Milchleistung) durch. Ausgewählt wurden für die Untersuchung vier Vaterrassen, wobei Angus und Red Poll als Rasserepräsentanten des mittleren Rahmens und Pinzgauer und Simmental als Vertreter der großen Rassen ausgewählt wurden. Angus und Pinzgauer standen für Rassen mit mittlerer Milchleistung und Red Poll gemeinsam mit Simmental für Rassen mit hoher Milchleistung. Diese vier Vaterrassen wurden über vier Jahre an Herefordkühe angepaart. In der Auswertung konnten Daten von insgesamt 630 Kälbern (zwischen 152 und 165 je Vaterrasse) berücksichtigt werden. Herefordkühe, die mit Bullen der beiden großrahmigen Rassen verpaart wurden, zeigten vermehrt Kalbeprobleme gegenüber den Herefordkühen, die mit Bullen mittleren Rahmens verpaart wurden, d.h. bei den Kalbungen war ein Einschreiten (leichte Zughilfe von Hand, mechanische Zughilfe bis hin zum Kaiserschnitt) notwendig (23,3 % vs. 12,0 %; p < 0,01). Das Kalbealter der Mutter beeinflusste mit p < 0,01 den Kalbeverlauf, die geschätzte Korrelation (p < 0,01) zwischen dem Alter der Mutter und dem Kalbeverlauf lag bei -0,37. Die meisten Kalbeprobleme traten bei zwei- bis dreijährigen Kühen auf. Die Vaterrasse beeinflusste das Geburtsgewicht mit p < 0,01, die Angus-Kreuungen waren die leichtesten, die Simmentalkreuungen die schwersten. Die Korrelation zwischen Geburtsgewicht und Kalbeproblemen lag bei 0,10. Kälbeverluste waren ähnlich für alle Nachkommen der verschiedenen Vaterrassen (p > 0,10). Die mittlere Kälbersterblichkeit um den Kalbezeitraum herum lag in dieser Studie bei nur 2,5 % (2,8 % weibliche Kälber gegenüber 2,3 % männlicher Kälber; p < 0,05), dies entspricht 16 Kälbern. Eine Autopsie erklärte den Tod von 14 der 16 Kälber als eine Folge tödlicher Verletzungen während des Geburtsprozesses. Die Kälber der Vaterrassen mit hohem Milchleistungs niveau (Red Poll und Simmental) übertrafen die Kälber aus Vaterrassen mit nur mittleren Milchmengen um im Mittel 1,3 kg im Geburtsgewicht (p < 0,01), jedoch nicht im Absetzgewicht oder in den
Literaturübersicht

Tageszunahmen (p > 0,10). Der signifikante Unterschied in Bezug auf die mittleren Tageszunahmen und das 200-Tage-Gewicht war bedingt von der Vaterrasse (p < 0,01), nicht vom schwereren Typ oder vom Milchniveau abhängig. Der Leistungsunterschied schlug sich in den höchsten Tageszunahmen und dem höchsten 200-Tage-Gewicht für Kälber der Vaterrasse Simmental mit 767 g/d bzw. 193,8 kg nieder, nahe dabei lagen die Kälber der Vaterrasse Angus (760 g/d und 187,0 kg). Mit deutlicherem Abstand folgten die Vaterrassen Pinzgauer und Red Poll, mit 727 g/d und 186,0 kg bzw. 714 g/d und 180,6 kg. Interaktionen zwischen Typ und Milchleistung der Vaterrassen stellten die Autoren für Geburtsgewicht, Tageszunahmen bis zum Absetzen und 200-Tage-Gewicht fest. Aus der signifikanten Interaktion zwischen der Größe der Vaterrasse und deren Milchleistungsniveau schlossen die Autoren, dass nicht die gesamte genetische Variation im Geburtsgewicht durch die Größe und das Milchleistungspotenzial der Vaterrasse erklärt werden kann. Die Effekte individueller Väter innerhalb einer Rasse auf das Geburtsgewicht sind allgemein bekannt. Kälberverluste während der Aufzucht waren signifikant zu p < 0,05 nur durch das Jahr, insbesondere durch die herrschenden Witterungsbedingungen beeinflusst. Die Wachstumsraten, ebenso wie das 200-Tage-Gewicht differierten jahresabhängig, (p < 0,01). Die mittleren Aufzuchtverluste über den gesamten Zeitraum lagen bei 8,6 %.

ERIKSSON et al. (2004a) schreiben, dass zur züchterischen Verbesserung hinsichtlich Kalbeerlauf und Totgeburten vermehrt direkte Felddaten berücksichtigt werden sollten. Die Autoren schätzten dazu in einer groß angelegten Untersuchung genetische Parameter für direkte und maternale Effekte für Kalbeprobleme, Totgeburten sowie Geburtsgewicht aus Erst- und Mehrkalbskühen der Rassen Charolais und Hereford in Schweden. Die Untersuchung berücksichtigte Geburtsgewichte von 60.309 Charolais- und 30.789 Herefordkälbern sowie Kalbeerlauße für 74.538 Charolais- und 37.077 Herefordkälber. Das Auftreten problembehafteter Kalbungen und Totgeburten lag bei ungefähr 6,0 % für Erstkalbskühe und 2,0 % für Mehrkalbskühe beider Rassen. Weniger als die Hälfte der tot geborenen Kälber stammten dabei aus Problemkalbungen. Heritabilitäten für Geburtsgewicht reichten schätzmethodenabhängig (uni- bzw. bivariat) für die Kälber beider Rassen aus Erst- und Mehrkalbskühen von 0,44 bis 0,51, Schätzwerte für den maternalen Effekt lagen zwischen 0,06 und 0,15. Für Heritabilitäten hinsichtlich der Kalbeprobleme lagen die Werte zwischen 0,11 und 0,16, der male Effekt lag für Erstkalbskühe bei 0,07 bis 0,12, für Mehrkalbskühe erwartungsgemäß niedriger (0,005 bis 0,03). Alle Heritabilitäten für Totgeburten waren mit 0,002 bis 0,016 sehr gering. Die genetischen Korrelationen zwischen den Merkmalen und Laktationsstadien innerhalb der Merkmale waren grundsätzlich mittel bis

2.6.2 Produktionsmerkmale

2.6.2.1 Leistungsniveau von und Leistungsdifferenzen zwischen Rassen sowie Varianzkomponenten

GREGORY et al. (1991) fanden in ihrer vergleichenden Untersuchung von neun Fleischrinderrassen jeweils signifikante Rasseunterschiede (p ≤ 0,05) hinsichtlich Geburtsgewicht, 200-Tage-Gewicht und mittlerer Tageszunahmen von der Geburt bis zum Alter von 200 Tagen. Von den neun Rassen wogen die Kälber der Rassen Pinzgauer, Braunvieh, Charolais, Gelbvieh und Simmental zur Geburt zwischen 46,2 und 43,0 kg. Im Bereich von 39,1 bis 33,7 kg rangierten die Kälber der Rassen Limousin, Red Poll, Hereford und Angus. Die höchsten Tageszunahmen bis zu einem Alter von 200 Tagen zeigten die Gelbvieh-(1.033 g/d) und Simmentalkälber (1.018 g/d), bei einem Lebendgewicht von 250 bzw. 247 kg. Mit Zunahmen zwischen 996 g/d und 956 g/d folgten bei einem Lebendgewicht von etwa 240 kg Kälber der Rassen Braunvieh, Pinzgauer und Charolais. Bei einem Lebendgewicht von gut 200 kg und Zunahmen zwischen 863 und 819 g/d schlossen sich die Kälber der Rassen Red Poll, Limousin und Angus an. Die geringsten Zuwachsleistungen zeigten Herefordkälber mit einem 200-Tage-Gewicht von 184 kg und Tageszunahmen bis dato von 738 g.

Am selben Tiermaterial fanden GREGORY et al. (1995) genetische Korrelationen zwischen steigendem Geburtsgewicht und zunehmenden Kalbeschwierigkeiten in Abhängigkeit vom Alter der Mutter in Höhe von 0,59 ± 0,17 für zweijährige Mütter und in Höhe von 0,44 ± 0,14 für dreijährige und ältere Kühe. In Anbetracht der Korrelation in Höhe von 0,33 ± 0,06 zwischen dem Geburtsgewicht und dem 368-Tage-Gewicht sehen die Autoren die Chance der Verringerung von Kalbeschwierigkeiten bei geringerem Geburtsgewicht bei Aufrechterhaltung des Jährlingsgewichts.
GALVAO DE ALBUQUERQUE und MEYER (2000) schätzten in ihrer Arbeit direkte und
maternale Varianzen sowie Heritabilitäten für Gewichte beim Nelorerind, einer
brasilianischen Fleischrinderrasse. Von 200.000 Tieren, die bis zum zweiten Lebensjahr alle
90 Tage gewogen wurden, lagen mehr als eine Millionen Datensätze vor. Die verwendeten
Modelle beinhalteten Tiergruppen, die zur gleichen Zeit gelebt hatten, als fixen Effekt, das
Alter der Mutter (linear und quadratisch) und das Alter des Kalbes (linear) als Kovariablen.
Als zufällige Effekte wurden der additiv direkte Effekt, der maternal genetische Effekt und
der permanente maternale Umwelteffekt berücksichtigt. Die Heritabilitätsschätzwerte waren
am höchsten für das Geburtsgewicht (0,28). Vom Zeitpunkt der Geburt nahmen die
Schätzwerte bis zu einem Alter von ca. 150 Tagen tiergruppenabhängig auf Werte um 0,12
bis 0,13 ab, verblieben dann bis hin zum Alter von etwa 270 Tagen bei 0,13 bis 0,16 mehr
oder weniger konstant. Im Anschluss daran, mit zunehmendem Alter, lagen die Schätzwerte
im Alter von 570 bis 600 Tagen zwischen 0,21 bis 0,26. Schätzwerte für den maternalen
Effekt wurden in geburtsferneren Zeiträumen größer, so von der Geburt (0,01) bis zum
Wiegealter von 180 bis 210 Tagen (0,07 bis 0,08). Von hieran sanken die Schätzwerte mit
steigendem Alter zunächst langsam, nach Erreichen von 300 Tagen dann wieder schneller ab.
Das mittlere Absetzalter lag bei 240 Tagen. Die Ergebnisse zeigen den Bedeutungsverlust des
maternalen Einflusses im absetznahen und insbesondere im darüber hinausgehenden
Zeitraum.

Um das Leistungsniveau zum Zeitpunkt des Absetzens einer Fleischrinderrasse in einer
Trockenregion im Norden Mexikos beschreiben zu können, führten MÁRQUEZ et al.
(2001b) Untersuchungen an 41 Limousinkälbern einer 50 Tiere umfassenden Mutterkuhherde
durch. Das Modell umfasste Geburtsjahr und Geschlecht des Kalbes, das Kalbealter der Kuh
(Färse bzw. Altkuh) und das Geburtsdatum des Kalbes als Kovariablen. Vater und Restfehler
wurden als zufällige Effekte berücksichtigt. Die Färsen waren zur Kalbung etwa 29 Monate
alt, die Altkühe im Mittel 57 Monate. Das mittlere Absetzgewicht aller Kälber betrug im Alter
von 200 Tagen 204 kg, dabei reichten die Absetzgewichte der Kälber der Färser von 170 bis
176 kg, die Absetzer aus Altkühen wogen zwischen 208 und 215 kg. Die weiblichen Kälber
aus den Färser waren im Mittel 5,7 % leichter als die Bullenkälber. Die
Geschlechtsdifferenzen im Absetzgewicht der Kälber aus Altkühen betrugen 5,9 %. Der am
gesamten Tiermaterial geschätzte Heritabilitätswert betrug für das Absetzgewicht 0,23 ± 0,06.
SINGH et al. (1970) untersuchten Einflussfaktoren auf die Gewichtsentwicklung von Herefordkälbern bis zum Absetzen, mit besonderem Augenmerk auf dem Einfluss des Gewichts der Kuh zum Zeitpunkt der Kalbung und während der Aufzuchtperiode. Die Herden grasten auf naturbelassenen Weiden in Kansas, USA. Geburts- und Absetzgewichte (durchschnittliches Absetzalter 263 Tage) von 619 Kälbern, die männlichen Kälber wurden im Alter von einem Monat kastriert, standen zur Verfügung. Die Kälber entstammten sechs Jahrgängen und 13 Vatertieren. Die Muttertiere wurden unverzüglich nach der Kalbung sowie beim Absetzen der Kälber gewogen. Das Modell zur Varianzanalyse enthielt die fixen Effekte Kuhalter (fünf Altersklassen: drei-, vier- und fünf- bis siebenjährig, acht- bis elfjährig, sowie zwölfjährig und älter), Vater, Geschlecht des Kalbes, Geburtsmonat und -jahr, Geburtsgewicht, Absetzalter sowie die Gewichtsdifferenz der Kuh zwischen Kalbung und Absetzen. Das Gewicht der Kuh zur Kalbung, von 385 bis zu 725 kg, im Mittel 521 ± 2,1 kg, besaß einen signifikanten Einfluss (p < 0,01) auf das Geburtsgewicht (34,5 ± 0,16 kg), die Korrelation zwischen den beiden Merkmalen lag bei +0,26. Absetzgewicht (219 ± 1,3 kg) und Tageszunahmen (710 ± 5,0 g/d) bis dahin unterlagen keiner Beeinflussung durch das Gewicht der Kuh. Die leichtesten Kühe (zwischen 385 und 430 kg) brachten die leichtesten Kälber zur Welt, Kühe mit einem Lebendgewicht zur Kalbung von 589 bis 610 kg brachten die schwersten Kälber zur Welt. Kälber aus Kühen der Gewichtsklasse von 452 bis 542 kg wuchsen zügiger und waren schwerer beim Absetzen als die Kälber von leichteren oder schwereren Kühen der vorgenannten Gewichtsklassen (maximale Differenz von 36 g/d und Tier). Die Gewichtsveränderungen der Kühe während der Säugezeit waren in 10 Klassen zwischen 45 kg und 112 kg Gewichtsveränderung eingeteilt. Die Gewichtsveränderung der Mütter beeinflusste Absetzgewicht und Zunahmen der Kälber mit p < 0,01. Jedes Prozent, das eine Kuh an Gewicht zwischen Kalbung und Absetzen einbüßte, fügte dem Absetzgewicht des Kalbes 0,14 bis 1,09 kg hinzu. Die Gewichtsverluste der jüngeren Kühe waren deutlicher als die der älteren (7,2 vs. 0,7 %).

Die im Anschluss aufgeführte Tab. 2.6 enthält eine Zusammenstellung von Heritabilitäten, maternalen Effekten und Korrelationen zwischen diesen beiden Effekten aus ausgewählten, groß angelegten Untersuchungen verschiedener Autoren zu Produktionsmerkmalen bei Fleischrindern. Die Schätzwerte unterscheiden sich jeweils merkmals-, untersuchungs- und rasseabhängig. Nichts desto trotz lassen sich Größenordnungen der einzelnen Parameter erkennen und Verlaufstendenzen in Abhängigkeit vom Alter der Tiere.
Tab. 2.6: Heritabilitäten, maternale Effekte und Korrelationen zwischen additiv genetischem und maternalem Effekt für ausgewählte Produktionsmerkmale (nach verschiedenen Autoren)

<table>
<thead>
<tr>
<th>Rasse/Land</th>
<th>h^2</th>
<th>ma^2</th>
<th>$r_{h^2ma^2}$</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geburtsgewicht</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angus (CAN)</td>
<td>0,37</td>
<td>0,13</td>
<td>-0,34</td>
<td>TRUS und WILTON (1988)</td>
</tr>
<tr>
<td>Angus (AUS)</td>
<td>0,38</td>
<td>0,07</td>
<td></td>
<td>MEYER (1995)</td>
</tr>
<tr>
<td>Angus (New Zealand)</td>
<td>0,29</td>
<td>0,096</td>
<td></td>
<td>MEYER (1995)</td>
</tr>
<tr>
<td>Brangus (USA)</td>
<td>0,25</td>
<td>0,13</td>
<td>-0,12</td>
<td>BERTRAND und BENYSHEK (1987)</td>
</tr>
<tr>
<td>Charolais (CAN)</td>
<td>0,42</td>
<td>0,17</td>
<td>-0,39</td>
<td>TRUS und WILTON (1988)</td>
</tr>
<tr>
<td>Charolais (AUS)</td>
<td>0,21</td>
<td>0,04</td>
<td></td>
<td>MEYER (1993)</td>
</tr>
<tr>
<td>Gelbvieh (USA)</td>
<td>0,26</td>
<td>0,60</td>
<td></td>
<td>VARONA et al. (1999)</td>
</tr>
<tr>
<td>Hereford (USA)</td>
<td>0,36</td>
<td>0,82</td>
<td>-0,51</td>
<td>NELSON et al. (1984)</td>
</tr>
<tr>
<td>Hereford (USA)</td>
<td>0,18</td>
<td>0,21</td>
<td>-1,05</td>
<td>CANTET et al. (1988)</td>
</tr>
<tr>
<td>Hereford (CAN)</td>
<td>0,39</td>
<td>0,13</td>
<td>-0,39</td>
<td>TRUS und WILTON (1988)</td>
</tr>
<tr>
<td>Hereford (AUS)</td>
<td>0,43</td>
<td>0,11</td>
<td></td>
<td>MEYER und GRASER (1994)</td>
</tr>
<tr>
<td>Polled Hereford (AUS)</td>
<td>0,43</td>
<td>0,11</td>
<td></td>
<td>MEYER et al. (1993)</td>
</tr>
<tr>
<td>Limousin (USA)</td>
<td>0,22</td>
<td>0,05</td>
<td>-0,16</td>
<td>BERTRAND und BENYSHEK (1987)</td>
</tr>
<tr>
<td>Simmental (USA)</td>
<td>0,21</td>
<td>0,11</td>
<td>-0,24</td>
<td>BURFENING et al. (1981)</td>
</tr>
<tr>
<td>Simmental (USA)</td>
<td>0,16</td>
<td>0,06</td>
<td></td>
<td>QUAAS et al. (1985)</td>
</tr>
<tr>
<td>Simmental (CAN)</td>
<td>0,34</td>
<td>0,20</td>
<td>-0,22</td>
<td>TRUS und WILTON (1988)</td>
</tr>
<tr>
<td>Simmental (USA)</td>
<td>0,44</td>
<td>0,12</td>
<td>-0,38</td>
<td>GARRICK et al. (1989)</td>
</tr>
<tr>
<td>Simmental (USA)</td>
<td>0,28</td>
<td>0,07</td>
<td></td>
<td>WOODWARD et al. (1992)</td>
</tr>
<tr>
<td>Simmental (AUS)</td>
<td>0,33</td>
<td>0,07</td>
<td>-0,04</td>
<td>SWALVE (1993)</td>
</tr>
<tr>
<td>über neun Rassen* (USA)</td>
<td>0,47</td>
<td></td>
<td></td>
<td>BENNETT und GREGORY (1996)</td>
</tr>
<tr>
<td>Absetzgewicht</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angus (AUS)</td>
<td>0,23</td>
<td>0,08</td>
<td></td>
<td>MEYER (1995)</td>
</tr>
<tr>
<td>Angus (New Zealand)</td>
<td>0,20</td>
<td>0,08</td>
<td></td>
<td>MEYER (1995)</td>
</tr>
<tr>
<td>Angus (USA)</td>
<td>0,25</td>
<td>0,11</td>
<td>-0,15</td>
<td>DODENHOFF et al. (1999)</td>
</tr>
<tr>
<td>Brangus</td>
<td>0,28</td>
<td>0,20</td>
<td>-0,29</td>
<td>BERTRAND und BENYSHEK (1987)</td>
</tr>
<tr>
<td>Charolais (AUS)</td>
<td>0,13</td>
<td>0,25</td>
<td></td>
<td>MEYER (1993)</td>
</tr>
<tr>
<td>Hereford (USA)</td>
<td>0,32</td>
<td>0,27</td>
<td>-0,57</td>
<td>CANTET et al. (1998)</td>
</tr>
<tr>
<td>Hereford (AUS)</td>
<td>0,19</td>
<td>0,14</td>
<td></td>
<td>MEYER und GRASER (1994)</td>
</tr>
<tr>
<td>Polled Hereford (AUS)</td>
<td>0,19</td>
<td>0,136</td>
<td></td>
<td>MEYER et al. (1993)</td>
</tr>
<tr>
<td>Limousin (USA)</td>
<td>0,16</td>
<td>0,15</td>
<td>-0,30</td>
<td>BERTRAND und BENYSHEK (1987)</td>
</tr>
<tr>
<td>Simmental (USA)</td>
<td>0,22</td>
<td>0,25</td>
<td>-0,10</td>
<td>DODENHOFF et al. (1999)</td>
</tr>
<tr>
<td>Simmental (AUS)</td>
<td>0,10</td>
<td>0,13</td>
<td>0,04</td>
<td>GRASER und HAMMOND (1985)</td>
</tr>
<tr>
<td>Simmental (USA)</td>
<td>0,12</td>
<td>0,08</td>
<td></td>
<td>QUAAS et al. (1985)</td>
</tr>
<tr>
<td>Simmental (USA)</td>
<td>0,36</td>
<td>0,19</td>
<td>-0,32</td>
<td>GARRICK et al. (1989)</td>
</tr>
<tr>
<td>Simmental (USA)</td>
<td>0,12</td>
<td>0,09</td>
<td>0,16</td>
<td>WRIGHT et al. (1987)</td>
</tr>
<tr>
<td>Simmental (USA)</td>
<td>0,18</td>
<td>0,18</td>
<td></td>
<td>WOODWARD et al. (1992)</td>
</tr>
<tr>
<td>Simmental (AUS)</td>
<td>0,35</td>
<td>0,18</td>
<td>-0,39</td>
<td>SWALVE (1993)</td>
</tr>
<tr>
<td>Rasse/Land</td>
<td>h²</td>
<td>ma²</td>
<td>r_{h²},ma²</td>
<td>Quelle</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----</td>
<td>-----</td>
<td>-------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Absetzgewicht</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>über neun Rassen# (USA)</td>
<td>0,29</td>
<td></td>
<td></td>
<td>BENNETT und GREGORY (1996)</td>
</tr>
<tr>
<td>Tageszunahmen bis zum Absetzen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angus (CAN)</td>
<td>0,39</td>
<td>0,21</td>
<td>-0,54</td>
<td>TRUS und WILTON (1988)</td>
</tr>
<tr>
<td>Charolais (CAN)</td>
<td>0,27</td>
<td>0,16</td>
<td>-0,26</td>
<td>TRUS und WILTON (1988)</td>
</tr>
<tr>
<td>Hereford (CAN)</td>
<td>0,30</td>
<td>0,27</td>
<td>-0,42</td>
<td>TRUS und WILTON (1988)</td>
</tr>
<tr>
<td>Simmental (CAN)</td>
<td>0,43</td>
<td>0,20</td>
<td>-0,45</td>
<td>TRUS und WILTON (1988)</td>
</tr>
<tr>
<td>über neun Rassen# (USA)</td>
<td>0,46</td>
<td></td>
<td></td>
<td>BENNETT und GREGORY (1996)</td>
</tr>
<tr>
<td>Jährlingsgewicht</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angus (AUS)</td>
<td>0,31</td>
<td>0,04</td>
<td></td>
<td>MEYER (1995)</td>
</tr>
<tr>
<td>Angus (New Zealand)</td>
<td>0,28</td>
<td>0,04</td>
<td></td>
<td>MEYER (1995)</td>
</tr>
<tr>
<td>Charolais (AUS)</td>
<td>0,32</td>
<td>0,00</td>
<td></td>
<td>MEYER (1993)</td>
</tr>
<tr>
<td>Polled Hereford (AUS)</td>
<td>0,20</td>
<td>0,09</td>
<td></td>
<td>MEYER et al. (1993)</td>
</tr>
<tr>
<td>Simmental (AUS)</td>
<td>0,37</td>
<td>0,11</td>
<td>-0,22</td>
<td>SWALVE (1993)</td>
</tr>
<tr>
<td>Endgewicht</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angus (AUS)</td>
<td>0,32</td>
<td>0,03</td>
<td></td>
<td>MEYER (1995)</td>
</tr>
<tr>
<td>Angus (New Zealand)</td>
<td>0,30</td>
<td>0,03</td>
<td></td>
<td>MEYER (1995)</td>
</tr>
<tr>
<td>Charolais (AUS)</td>
<td>0,44</td>
<td>0,01</td>
<td></td>
<td>MEYER (1993)</td>
</tr>
<tr>
<td>Polled Hereford (AUS)</td>
<td>0,36</td>
<td>0,08</td>
<td></td>
<td>MEYER et al. (1993)</td>
</tr>
<tr>
<td>Simmental (AUS)</td>
<td>0,30</td>
<td></td>
<td></td>
<td>SWALVE (1993)</td>
</tr>
</tbody>
</table>

\# Red Poll, Hereford, Angus, Limousin, Braunvieh, Pinzgauer, Gelbvieh, Simmental, Charolais
2.6.2.2 Kreuzungsparameter

Im extensiven Fleischrinderbereich liegen, im Verhältnis zur praktizierten Kreuzungszucht, kaum Schätzungen für Kreuzungsparameter vor. Selbstverständlich wird Kreuzungszucht praktiziert (vgl. GOLZE, 1997), doch in den wenigsten Fällen mit systematischer Leistungserfassung.

Es werden hierbei vornehmlich Einfachkreuzungen verwendet. Derartige Kreuzungssysteme erlauben dem Fleischrinderzüchter die jeweiligen Rassemerkmale des Bullen auf die der Kuh abzustimmen. Hauptsächlich bedeutet dies, dass der Bulle gutes Wachstum und wünschenswerte Schlachtkörperqualität an die Nachkommen weitergibt, während die Kuh ausreichend Milch für zügiges Kälberwachstum bereitstellt und jedes Jahr ein gesundes Kalb bringt (ALENDA et al, 1980b; KRESS und NELSEN, 1988; GREINER, 2002; ABDEL-AZIZ et al., 2003).

In Ergänzung kann die Charakterisierung genetischer und maternaler Effekte mit Bezug zu der einzelnen Rasse bzw. der jeweiligen Rassenkombination dem Rinderzüchter helfen, genetische Ressourcen effektiver zu nutzen und die Effizienz in der Produktion zu erhöhen. Die Schätzwerte helfen, die Leistungsfähigkeit des jeweiligen Kreuzungssystems einzuschätzen zu können (ALENDA et al, 1980b; KRESS und NELSEN, 1988; GREEN et al., 1999; GREINER, 2002; ABDEL-AZIZ et al., 2003; DEMEKE et al., 2003b).

Zur Schätzung additiver Rasseeffekte, individueller und maternaler Heterosis haben ABDEL-AZIZ et al. (2003) an reinrassigen und Kreuzungskälbern, bestehend aus verschiedenen Rasseanteilen von afrikanischen Rassen, Charolais, Simmental, Hereford sowie Hereford mit Aberdeen Angus, die Merkmale Geburts- und Absetzgewicht sowie Tageszunahmen bis dahin betrachtet. Die Einfachkreuzungen Charolais x afrikanische Rassen (n = 87) wogen bei der Geburt durchschnittlich 40,4 ± 0,54 kg, zum Absetzen 197 ± 2,8 kg bei mittleren Tageszunahmen bis dato von 761 ± 13,0 g/d. Die Kreuzungskälber aus Simmental x afrikanische Rassen (n = 308) zeigten entsprechend 35,6 ± 0,32 kg, 195 ± 1,7 kg und 773 ± 7,0 g/d. Die Hereford x Aberdeen Angus Kreuzungstiere (n = 1.049), die im Weiteren als Elternrasse eingesetzt wurde, wiesen entsprechend 32,2 ± 0,20 kg, 174 ± 1,1 und 682 ± 5,0 g/d als durchschnittliche Produktions-leistungen auf, die Simmental-Reinzuchttiere (n = 32) lagen durchschnittlich auf höherem Niveau mit entsprechend 36,1 ± 0,87 kg, 206 ± 4,5 g/d und 820 ± 21,0 g/d. Auch in weiterführenden Dreirassekreuzungen zeigten die Kreuzungen mit höheren Charolais- oder Simmentalanteilen stets höhere Geburts- und Absetzgewichte als die übrigen Kreuzungen und Reinzuchten. Individuelle Heterosis und maternale Effekte für afrikanische Rassen, Charolais, Simmental und Hereford x Angus waren nicht signifikant, direkte und maternale Effekte für das Absetzgewicht waren ebenfalls nicht signifikant und charakterisiert durch hohe Standardfehler. Individuelle und maternale Heterosis waren hingegen signifikant (p < 0,01) für das Absetzgewicht mit 5,34 und 2,19 kg. Im Merkmal Tageszunahmen erwiesen sich lediglich die maternalen Effekte als signifikant, mit höheren Schätzwerten für afrikanische Rassen und Simmental, was die mütterliche Überlegenheit dieser Rassen widerspiegelt.

DEMEKE et al. (2003a und b) untersuchten frühe Wachstumsleistungen von Bos taurus x Bos indicus Kreuzungen. Sie verwendeten einen Datensatz von fast 5.000 Kälbern 38 verschiedener genetischer Herkünfte, hervorgegangen aus Zwei- und Dreirassenkreuzungen
Literaturübersicht

der Rassen Friesian, Jersey und Simmental mit drei äthiopischen Bos indicus - Rindern Boran, Barca und Horro u.a. zur Schätzung von Rasseunterschieden und Heterosis. Die Least-Square-Means der drei Reinzuchtgenotypen (n = 591) lagen mit Bereichen von 19,9 bis 22,9 kg im Geburtsgewicht, 88,0 bis 95,2 kg im Absetzgewicht und Tageszunahmen bis dato von 378 bis 401 g/d eng beieinander. Die Einfachkreuzungen entstanden aus der Verpaarung von Friesian-, Jersey- und Simmentalbullen mit Kühen der drei einheimischen Rassen. Die Jerseybullen vermochten die Leistungen ihrer F₁-Generationen (n = 474) im Geburtsgewicht kaum, in Absetzgewicht und Zunahmen bis dato um sechs bis sieben kg bzw. um 36 bis 51 g/d anzuheben. Die Simmental- (n = 448) und Friesiankreuzungen (n = 677) zeigten in allen Produktionsmerkmalen deutlich höhere Leistungsniveaus (höhere mittlere Geburtsgewichte von bis zu 4,0 kg, Mehrzunahmen von über 100 g/d, um bis zu 22 kg schwerere Absetzgewichte). Die Unterschiede zwischen den Genotypen erwiesen sich für die Merkmale Geburts-, Absetzgewicht und Zunahmen bis zum Absetzen mit p < 0,01 als signifikant. Die heterotischen Effekte erwiesen sich als signifikant negativ (p < 0,01) für Geburtsgewicht für alle Friesian- undSimmentalkreuzungen (-2,1 ± 0,6 kg bzw. -2,3 ± 0,6 kg), positiv für alle übrigen Merkmale bei allen Kreuzungsgenotypen. Die mittlere Heterosis, geschätzt innerhalb der Rassen Friesian, Jersey und Simmental, betrug 8,8 ± 2,1, 11,8 ± 2,3 und 13,7 ± 2,4 kg für Absetzgewicht und 60,4 ± 11,3, 64,8 ± 12,3 und 90,6 ± 12,7 g/d für die Zunahmen. Die Autoren zogen hieraus den Schluss, dass Rasseunterschiede und Heterosis wichtige genetische Faktoren hinsichtlich früher Wachstumsleistungen in den untersuchten Rassekreuzungen sein können.

ABDEL-AZIZ et al. (2003) kreuzten Simmentaler bzw. Charolais mit afrikanischen Rassen. Während die Geburtsgewichte mit 35,6 ± 0,32 kg für Simmental x afrikanische Rassen und 40,1 ± 0,54 kg für Charolais x afrikanische Rassen mit 4,5 kg deutlich auseinander lagen, zeigten die Tiere im Absetzgewicht mit 196 ± 1,7 kg bzw. 197 ± 2,8 kg kaum Differenzen. Entsprechendes gilt für die Tageszunahmen bis zum Absetzen, die mit 773 ± 7,0 g/d vs. 761 ± 13,0g/d gleichfalls kaum differierten.

ALENDA et al. (1980a) erzielten mit verschiedenen Kreuzungen u.a. der Rasse Angus mit Charolais und Hereford überdurchschnittliche Geburts- und Absetzgewichte im Vergleich zu reinrassigen Tieren der Rasse Angus. Während die reinrassigen Angustiere ein Geburtsgewicht von 28,7 kg und ein Absetzgewicht von 174 kg aufwiesen, lagen die Geburtsgewichte der Kreuzungen zwischen 31,9 und 34,9 kg, die Absetzgewichte zwischen 180 und 200 kg.
Auch LASTER et al. (1973) beschrieben in ihren Untersuchungen an Kreuzungstieren eine Steigerung im Geburtsgewicht und wiesen auf die mögliche Gefahr parallel zunehmender Kalbeprobleme hin.

GRAHAM et al. (1999) kreuzten Bullen der Rassen Angus, Hereford, Limousin und Simmental mit weiblichen Tieren der Rassen Angus und Hereford mit dem Ziel der Produktivitätserhöhung durch die Verpaarung unterschiedlichster Genotypen. Daher fiel die Wahl auf Angus und Hereford, als zwei Hauptrassen in Südaustralien, gefolgt von Limousin und Simmental, als europäische Rassenvertreter. Die Kälber mit Angus als Mutterrasse waren im Mittel ein halbes kg leichter als die Kälber mit Hereford als Mutterrasse (37,7 vs. 38,2 kg). Die Mutterrasse erwies sich hierbei allerdings als nicht signifikant (p ≥ 0,05). Dagegen ging von der Vaterrasse und dem Geschlecht des Kalbes jeweils ein signifikanter Einfluss aus (p < 0,05). Die mittleren Geburtsgewichte der insgesamt 820 Kälber nahmen für die Kälber mit der Mutterrasse Angus in Abhängigkeit von der Vaterrasse von 36,4 ± 5,5 kg für Angus über Hereford und Limousin bis hin zu Simmental mit 39,1 ± 4,6 kg zu, bei entsprechender Rangierung für die Vaterrasse lagen die mittleren Geburtsgewichte der Kälber aus Hereford-müttern zwischen 37,4 ± 5,7 und 40,0 ± 6,4 kg. Innerhalb der einzelnen Anpaarungen lagen die Geburtsgewichte der Bullenkälber zwischen 1,9 und 3,3 kg über denen der Kuhkälber.

Tab. 2.7 präsentiert Schätzwerte für individuelle Heterosis aus mehr oder weniger groß angelegten Kreuzungsprogrammen, einschließlich des Signifikanzniveaus der Schätzwerte. Wie zuvor bei den Varianzkomponenten, so sind auch Kreuzungsparameter immer individuell für die Population anzusiedeln, an der die Parameter geschätzt wurden.
Tab. 2.7: Individuelle Heterosis für Merkmale der Gewichtsentwicklung (nach verschiedenen Autoren)

<table>
<thead>
<tr>
<th>Rassen/Genotypen (Anzahl Datensätze##)</th>
<th>Individuelle Heterosis</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geburtsgewicht (kg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angus x Charolais (231)</td>
<td>0,6 (1,6 %) n.s.</td>
<td>ALENDA et al. (1980a)</td>
</tr>
<tr>
<td>Angus x Hereford (239)</td>
<td>1,2 (3,9 %) p < 0,01</td>
<td>ALENDA et al. (1980a)</td>
</tr>
<tr>
<td>Charolais x Hereford (232)</td>
<td>0,4 n.s.</td>
<td>ALENDA et al. (1980a)</td>
</tr>
<tr>
<td>Simmental x Bos indicus**</td>
<td>-2,3 **</td>
<td>DEMEKE et al. (2003b)</td>
</tr>
<tr>
<td>Friesian x Bos indicus**</td>
<td>-2,1 **</td>
<td>DEMEKE et al. (2003b)</td>
</tr>
<tr>
<td>Jersey x Bos indicus**</td>
<td>0,2 n.s.</td>
<td>DEMEKE et al. (2003b)</td>
</tr>
<tr>
<td>über neun Rassen" (1.863)</td>
<td>1,7 **</td>
<td>GREGORY et al. (1991)</td>
</tr>
<tr>
<td>Absetzgewicht (kg; 200 - 205 Tage)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angus x Charolais (231)</td>
<td>6,5 (3,5 %) p < 0,01</td>
<td>ALENDA et al. (1980a)</td>
</tr>
<tr>
<td>Angus x Hereford (239)</td>
<td>9,6 (5,5 %) p < 0,01</td>
<td>ALENDA et al. (1980a)</td>
</tr>
<tr>
<td>Charolais x Hereford (232)</td>
<td>3,8 (2,0 %) P < 0,1</td>
<td>ALENDA et al. (1980a)</td>
</tr>
<tr>
<td>Friesian x Bos indicus**</td>
<td>8,8 *</td>
<td>DEMEKE et al. (2003b)</td>
</tr>
<tr>
<td>Jersey x Bos indicus**</td>
<td>11,8 **</td>
<td>DEMEKE et al. (2003b)</td>
</tr>
<tr>
<td>Simmental x Bos indicus**</td>
<td>13,7 **</td>
<td>DEMEKE et al. (2003b)</td>
</tr>
<tr>
<td>über neun Rassen (1.863)</td>
<td>20,1 **</td>
<td>GREGORY et al. (1991)</td>
</tr>
<tr>
<td>Tageszunahmen (g/d; 200 Tage)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1 (1.863###)</td>
<td>92,0 **</td>
<td>GREGORY et al. (1991)</td>
</tr>
<tr>
<td>Friesian x Bos indicus**</td>
<td>60,4 **</td>
<td>DEMEKE et al. (2003b)</td>
</tr>
<tr>
<td>Jersey x Bos indicus**</td>
<td>64,8 **</td>
<td>DEMEKE et al. (2003b)</td>
</tr>
<tr>
<td>Simmental x Bos indicus**</td>
<td>90,6 **</td>
<td>DEMEKE et al. (2003b)</td>
</tr>
<tr>
<td>Jährlingsgewicht (kg; 300 – 500 Tage)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friesian x Bos indicus**</td>
<td>19,8 **</td>
<td>DEMEKE et al. (2003b)</td>
</tr>
<tr>
<td>Jersey x Bos indicus**</td>
<td>19,5 **</td>
<td>DEMEKE et al. (2003b)</td>
</tr>
<tr>
<td>Simmental x Bos indicus**</td>
<td>20,8 **</td>
<td>DEMEKE et al. (2003b)</td>
</tr>
</tbody>
</table>

Red Poll, Hereford, Angus, Limousin, Braunvieh, Pinzgauer, Gelbvieh, Simmental, Charolais

Anzahl verwendeter Kreuzungskälber

Frisian, Jersey und Simmental wurden an je drei *Bos indicus*-Rassen (Barca, Horro und Boran) angepaart

* *** höchst signifikant (p < 0,001)
** ** hoch signifikant (p < 0,01)
* * signifikant (p < 0,05)
n.s. nicht signifikant (p ≥ 0,05)
2.7 Weitere Forschungsgebiete im Bereich der Fleischrinderhaltung

National wie international nehmen nach wie vor Möglichkeiten zur Erlössicherung bzw. -steigerung durch eine Erhöhung des Produktions- und Reproduktionenniveaus einen bedeutsamen Raum in der Forschung ein, u.a. im Hinblick auf die Optimierung von Zuchtprogrammen in Bezug auf Wirtschaftlichkeit und genetischen Fortschritt sowie im Hinblick auf die optimale Rassenwahl für bestimmte Klimaregionen bzw. Kreuzungszuchtprogramme und auf eine schnellstmögliche Anpassung an aktuelle Marktveränderungen (vgl. u.a. MIESENBERGER et al., 1998; STEINE und SEHESTED, 1999; JÄGER, 2003; VAN RADEN und SANDERS, 2003; KULAK et al., 2004; AVERBECK, 2005; MAGAÑA und SEGURA-CORREA, 2006; PEREIRA et al., 2006; ISHIWATA et al., 2006; WOLFOVÁ et al., 2006).

In weiterführenden Untersuchungen, um neue, z.B. funktionale Merkmale in Zuchtprogramme einbinden zu können, wird untersucht, inwieweit solche Merkmale erblich bedingt sind, wie eine routinemäßige Leistungserfassung möglich sein könnte, und ob eventuell molekulargenetische Untersuchungen unterstützend genutzt werden könnten (vgl. u.a. GAULY et al., 2001; SCHMUTZ et al., 2001; HIENDLEDER et al., 2003; KÜHN et al., 2003; SWALVE, 2003).
3 Material und Methoden

3.1 Mutterkuhherde des Lehr- und Versuchsbetriebs Rudlos

Die Untersuchungen waren eingebettet in den Sonderforschungsbereich 299 „Landnutzungskonzepte für periphere Regionen“ im Rahmen des Teilprojekts „Nutzung funktionaler Merkmale in der Rinder- und Schafzucht für extensive Haltungsverfahren unter ökologischen und ökonomischen Gesichtspunkten“.

3.2 Haltung und Fütterung

Die Wintermonate verbrachten die Tiere im Stall in verschiedenen Haltungssystemen (Vollspaltenboden mit Liegeboxen für ein knappes Drittel der Tiere, der übrige Teil der Herde war in verschiedenen Tieflaufstall-Systemen untergebracht). Bei jedem Haltungssystem war ein Kälberschlupf mit Stroheinstreu integriert.

Den Kälbern wurde in Kälberschlüpfen Heu ad libitum sowie Kraftfutter angeboten, welches ihnen nach einer Anfütterungsperiode ebenfalls zur freien Aufnahme zur Verfügung stand. In den ersten Jahren wurde pelletiertes Kraftfutter der Energietufe II mit 10,2 MJ ME und 18,0 % Rohprotein verwendet, ab dem Jahr 2001 eine hofeigene Mischung mit durchschnittlich 40,0 % Gerste, 35,0 % Weizen, 22,0 % Sojaschrot und 3,0 % Mineralfutter(Zusammensetzung vgl. Tab. 9.1). Bei dieser hofeigenen Mischung lag der Rohproteingehalt bei etwa 18,6 %, der Energiegehalt betrug 12,7 MJ ME.

Wasser stand allen Tieren durchgängig zur freien Aufnahme zur Verfügung.

Die Rationskomponenten je Mutterkuh und Tag in Abhängigkeit vom Reproduktionsstadium zeigt Tab. 3.1.
Tab. 3.1: Durchschnittliche Tagesration pro Mutterkuh und Tag in Winterfütterung in Abhängigkeit vom Reproduktionsstadium

<table>
<thead>
<tr>
<th>Reproduktionsstadium Mutterkuh</th>
<th>Rationskomponenten (Verfütterung in kg/Tier und d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maissilage</td>
</tr>
<tr>
<td>laktierend</td>
<td>11</td>
</tr>
<tr>
<td>gravid</td>
<td>7</td>
</tr>
</tbody>
</table>

Die Wasserversorgung der Tiere auf den Weideflächen erfolgte bei arrondierten Flächen durch Wasserleitungen vom Hof, auf fernab gelegenen Flächen wurde die Wasserversorgung mittels Wasserfass oder natürlicher Gewässer sichergestellt.

Auch auf den Weiden standen allen Tieren zusätzlich Minerallecksteine (Zusammensetzung vgl. Tab. 9.2) zur Verfügung.

3.3 Deckmanagement

Anfang Mai wurden die Tiere auf die Weidenaufgetrieben, in Gruppen zu etwa 30 weiblichen Tieren, zusätzlich mit dem jeweiligen (Besamungs-)Bullen.

3.4 Anpaarungen und Tierzahlen

Die beiden nachfolgenden Tabellen (Tab. 3.2 bzw. 3.3) vermitteln einen Überblick zu den Anzahlen eingesetzter weiblicher Tiere je Zuchtjahr und den aus diesen Anpaarungen hervorgegangenen Kälbern in den Reinzucht- und Kreuzungsjahren. Bei den Kreuzungskälbern gibt jeweils die erstgenannte Rasse die des Vaters an, die zweitgenannte die der Mutter.
Tab. 3.2: In den Zuchtjahren 1997/98 bis 2001/02 eingesetzte Anzahl Mutterkühe und aus deren Anpaarung hervorgegangene Anzahl an Kälbern

<table>
<thead>
<tr>
<th>Zuchtjahr</th>
<th>Dt. Angus</th>
<th>Dt. Fleckvieh</th>
<th>bd. Rassen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kühe</td>
<td>Kühe</td>
<td>Kühe</td>
</tr>
<tr>
<td></td>
<td>Kälber</td>
<td>Kälber</td>
<td>Kälber</td>
</tr>
<tr>
<td>1997/98</td>
<td>149</td>
<td>144</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>147</td>
<td>131</td>
<td>278</td>
</tr>
<tr>
<td>1998/99</td>
<td>148</td>
<td>148</td>
<td>296</td>
</tr>
<tr>
<td></td>
<td>147</td>
<td>130</td>
<td>277</td>
</tr>
<tr>
<td>1999/2000</td>
<td>146</td>
<td>137</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>145</td>
<td>141</td>
<td>286</td>
</tr>
<tr>
<td>2000/01</td>
<td>154</td>
<td>117</td>
<td>271</td>
</tr>
<tr>
<td></td>
<td>155</td>
<td>116</td>
<td>271</td>
</tr>
<tr>
<td>2001/02</td>
<td>156</td>
<td>117</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>151</td>
<td>111</td>
<td>262</td>
</tr>
<tr>
<td>Σ</td>
<td>753</td>
<td>663</td>
<td>1.416</td>
</tr>
<tr>
<td></td>
<td>745</td>
<td>629</td>
<td>1.374</td>
</tr>
</tbody>
</table>

Ursprünglich waren die Mutterkühe über alle fünf Reinzuchtjahre hinweg 1.433 mal zur Bedeckung vorgesehen. 17 unter den jährlichen Deckperioden bzw. innerhalb eines Zuchtjahres verendete oder verkaufte Mutterkühe wurden für die statistische Auswertung nicht berücksichtigt. Somit verblieben 753 geplante Bedeckungen innerhalb der Rasse Dt. Angus und 663 innerhalb der Rasse Dt. Fleckvieh, gesamt 1.416 gewünschte Bedeckungen.

Eine detaillierte Aufstellung zur Einsatzdauer der Bullen und zur Anzahl geborener Kälber je Bulle ist den Anhangstabellen (Tab. 9.3 und 9.4) zu entnehmen.
Tab. 3.3: In den Zuchten 2002/03 und 2003/04 eingesetzte Anzahl Mutterkühe und aus deren Anpaarung hervorgegangene Anzahl an Kälbern

<table>
<thead>
<tr>
<th>Zuchtjahr</th>
<th>Kühe</th>
<th>Kälber</th>
<th>Kühe</th>
<th>Kälber</th>
<th>Kühe</th>
<th>Kälber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dt. Angus - Reinzucht</td>
<td>27</td>
<td>27</td>
<td>52</td>
<td>49</td>
<td>79</td>
<td>76</td>
</tr>
<tr>
<td>Dt. Fleckvieh - Reinzucht</td>
<td>27</td>
<td>25</td>
<td>62</td>
<td>59</td>
<td>89</td>
<td>84</td>
</tr>
<tr>
<td>Σ</td>
<td>54</td>
<td>52</td>
<td>114</td>
<td>108</td>
<td>168</td>
<td>160</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zuchtjahr</th>
<th>Kühe</th>
<th>Kälber</th>
<th>Kühe</th>
<th>Kälber</th>
<th>Kühe</th>
<th>Kälber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dt. Fleckvieh x Dt. Angus</td>
<td>71</td>
<td>65</td>
<td>110</td>
<td>102</td>
<td>181</td>
<td>167</td>
</tr>
<tr>
<td>Dt. Angus x Dt. Fleckvieh</td>
<td>70</td>
<td>72</td>
<td>106</td>
<td>102</td>
<td>176</td>
<td>174</td>
</tr>
<tr>
<td>Σ</td>
<td>141</td>
<td>137</td>
<td>216</td>
<td>204</td>
<td>357</td>
<td>341</td>
</tr>
</tbody>
</table>

Einsatzdauer der Bullen und Anzahl geborener Kälber je Bulle sind in den Anhangstabellen (Tab. 9.3 und 9.4) aufgeführt.

Mussten innerhalb einer Zuchtgruppe Bullen ausgetauscht bzw. ersetzt werden, wurde bei den Kälbern eine Abstammungskontrolle anhand einer Mikrosatellitenanalyse im institutseigenen Labor durchgeführt.
Zu Beginn der Deckperiode für die Erstellung des Kälberjahrgangs 2005, gleichzusetzen mit dem Beginn des achten Zuchtjahres, waren noch 50,0 %, entsprechend 150 der 300 im Winter 1996/97 eingekauften weiblichen Rinder als Zuchttiere im Einsatz. Einzeln nach Rassen ausgedrückt bedeutet dies, dass nach Abschluss der vorliegenden Arbeit an der Herde noch 54,0 % der ursprünglich zugekauften Dt. Anguskühe (81 Tiere) und 46,0 % der ursprünglich zugekauften Dt. Fleckviehkühe (69 Tiere) zur Weiterzucht verfügbar waren.

3.5 Produktionszyklus im Jahresverlauf und Parametererfassung

Im Jahresverlauf gab es auf dem Lehr- und Versuchsbetrieb Rudlos feststehende Aktionen im Betriebsablauf zur Erfassung der Parameter der Reproduktions- und Produktionsleistung (vgl. Tab. 3.4).

Zeitpunkt aus den Zuchtgruppen herausgenommen und teilweise Färsen zur Erstbelegung zugeteilt.

Gewogen wurden die Tiere in einem mobilen, kombinierten Wiege- und Behandlungsstand mit integrierter elektronischer Viehwaage der Firma Texas Trading. Die Erfassung des Körpergewichts diente als Kontrolle der Gewichtsentwicklung und somit als Grundlage zur Berechnung der Tageszunahmen.

Neben den hier aufgeführten Aktionen wurden die Tiere zusätzlich bei Weideumtrieben und beginnender Zufütterung gewogen.

Tab. 3.4: Überblick zu durchgeführten Aktionen im Jahresverlauf und zur Erfassung der Parameter

<table>
<thead>
<tr>
<th>Aktion</th>
<th>Umschreibung</th>
<th>erfasste Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abkalbung (Winter/Frühjahr)</td>
<td>Absetzen der Kälber von der Mutter, gleichzeitig Wiegung der Absetzer (Reinzuchttiere) für das Fleisch-rinderherdbuch</td>
<td>Kalbeverlauf, Geschlecht, Geburtstyp, Geburtsgewicht, Körpergewicht</td>
</tr>
<tr>
<td>Weideauftrieb (April/Mai)</td>
<td>Auftrieb der Mutterkühe mit Kälbern bei Fuß, Einsetzen der Bullen in die einzelnen Zuchtgruppen</td>
<td>Körpergewicht</td>
</tr>
<tr>
<td>Herdentrennen (August/September)</td>
<td>Trennen der Mutterkühe mit männlichen von denen mit weiblichen Kälbern, Herausnahme der Bullen aus den einzelnen Zuchtgruppen</td>
<td>Körpergewicht</td>
</tr>
<tr>
<td>Absetzen (um den 220. Lebenstag)</td>
<td>Trennen der Kälber von der Mutter, gleichzeitig Wiegung der Absetzer (Reinzuchttiere) für das Fleisch-rinderherdbuch</td>
<td>Körpergewicht</td>
</tr>
<tr>
<td>Aufstallung (Oktober/November)</td>
<td>Verteilen der Tiere auf die einzelnen Stallsysteme bzw. auf die Winterweide</td>
<td>Körpergewicht</td>
</tr>
</tbody>
</table>
3.6 Statistische Auswertung

3.6.1 Datenverarbeitung und Datenverwaltung

Für die Datenbeschreibung im Rahmen der deskriptiven Statistik sowie zur weitergehenden varianzanalytischen Auswertung einschl. der phänotypischen Korrelationen, des \(\chi^2 \)-Tests und der Schätzung der Kreuzungsparameter wurde das Programmpaket SAS (Statistical Analysis System, Version 8.1) verwendet.

3.6.2 Datenauswertung Mutterkühe

Die Verluste durch tot geborene Kälber sind von den Kälberverlusten, die teilweise nur wenige Minuten nach der Geburt aufraten zu unterscheiden. Die angegebene Prozentzahl beschreibt das Auftreten tot geborener Kälber im Verhältnis zur Gesamtanzahl geborener Kälber.

Neugeborenen abhängig ist, wurden diese Verluste innerhalb der ersten beiden Lebenswochen gesondert betrachtet. Rechnerische Bezugsbasis für die Aufzuchtverluste stellt die Anzahl der lebend geborenen Kälber dar.

Neben der Varianzanalyse, in der alle Effekte auf den Kalbeverlauf gleichzeitig (multifaktoriell) berücksichtigt wurden, wurden die Leistungen der beiden Ausgangsrassen zur weitergehenden Interpretation im Merkmal Kalbeverlauf bzgl. der Frage „mit/ohne Hilfe?“ sowie hinsichtlich der Frage „abgekalbt – ja/nein?“ im Chi²-Test miteinander auf signifikante Unterschiede zwischen den Rassen mit einer Fehlerwahrscheinlichkeit von unter 5,0 % verglichen.

3.6.3 Datenauswertung Kälber

3.6.3.1 Produktionsleistungen

Neben der ausführlichen Datenbeschreibung des Datenmaterials der Kälber wurden für die Varianzanalyse die Produktionsmerkmale Geburtsgewicht, Absetzgewicht und Tageszunahmen bis zum Absetzen (errechnet aus dem Lebendgewicht der Kälber zum Absetztermin abzüglich des Geburtsgewichtes, dividiert durch das Absetzalter in Tagen), jeweils getrennt nach Betrachtungszeitraum für Rein- und Kreuzungszuchtjahre, ausgewählt.

Für die varianzanalytische Auswertung der Kälberdaten der Reinzuchtjahre 1997/98 bis 2001/02 wurde die SAS-Prozedur GLM verwendet. Wie auch schon bei der Varianzanalyse
Material und Methoden

im Merkmal Kalbeverlauf der Mutterkühe wurde aufgrund der nicht mehr vorliegenden „echten Nestung“ des Vaters innerhalb seiner Rasse für die Auswertung der Kreuzungsjahre 2002/03 und 2003/04 die SAS-Prozedur MIXED verwendet, wiederum mit dem Vater als zufälligem Effekt.

Das nachfolgend aufgeführte statistische Modell präsentiert die Varianzanalyse im Merkmal Geburtsgewicht der Kälber der Reinzuchtjahre 1997/98 bis 2001/02 beispielhaft für die weiteren durchgeführten Varianzanalysen in den jeweiligen Merkmalen zur Erfassung der Produktionsleistungen.

\[y_{ijklmno} = \mu + r_i + g_j + s_k + l_m + (r_i \times s_k) + (r_i \times k_j) + v_{in} + e_{ijklmno} \]

mit:

\[y_{ijklmno} = \text{beobachteter Merkmalswert des Einzeltieres (Geburtsgewicht)} \]

\[\mu = \text{Populationsmittel} \]

\[r_i = \text{fixer Effekt der Rasse des Kalbes, mit } i = 1, 2 \]

(1 = Dt. Angus, 2 = Dt. Fleckvieh)

\[g_j = \text{fixer Effekt des Geburtstyps des Kalbes, mit } j = 1, 2 \]

(1 = Einling, 2 = Zwilling)

\[s_k = \text{fixer Effekt des Geschlechts des Kalbes, mit } k = 1, 2 \]

(1 = männlich, 2 = weiblich)

\[k_j = \text{fixer Effekt der Kalbesaison mit } l = 1 \text{ bis } 15 \]

(1 = 1998-1, 2 = 1998-2, 3 = 1998-3, 4 = 1999-1, 5 = 1999-2, 6 = 1999-3, u.w.)

\[l_m = \text{fixer Effekt der Laktationsnummer der Mutterkuh mit } m = 1 \text{ bis } 5 \]

(1 = erste, 2 = zweite, 3 = dritte, 4 = vierte, 5 = fünfte Laktation)

\[(r_i \times s_k) = \text{Interaktion zwischen der Rasse und dem Geschlecht des Kalbes} \]

\[(r_i \times k_j) = \text{Interaktion zwischen der Rasse des Kalbes und der Kalbesaison} \]

\[v_{in} = \text{zufälliger Effekt des Vaters innerhalb Rasse} \]

(\(n_{Dt.\, Angus} = 1 \text{ bis } 9 \text{ bzw. } n_{Dt.\, Fleckvieh} = 1 \text{ bis } 8 \))

\[e_{ijklmno} = \text{zufälliger Restfehler} \]

Im Folgenden sind alle verwendeten Modelle mit ihren jeweiligen Einflussfaktoren erwähnt.

Zusätzlich zu den genannten Effekten wurde beim Modell für das Geburtsgewicht die Laktationsnummer als fixer Effekt berücksichtigt (erste bis siebte Laktation).

Im Modell für das Absetzgewicht wurde ebenfalls die Laktationsnummer als fixer Effekt berücksichtigt, jedoch nur mit zwei Klassen (erste bis vierte und fünfte bis siebte Laktation).

Als Kovariablen gingen das Geburtsgewicht, wiederum als Abweichung vom Rassemittel, das Absetzalter und das Kalbealter der Mutterkuh innerhalb Laktationsnummer mit ein. Auch hier
wurde wieder die Abweichung vom mittleren Kalbealter innerhalb der beiden Klassen der Laktationsnummer verwendet.

Die sich anschließende Tab. 3.5 präsentiert die für die Varianzanalyse der jeweiligen Merkmale im Modell berücksichtigten Einflussfaktoren in einer Übersicht. Dabei sind die Einflussfaktoren von oben nach unten in der Reihenfolge fixe Effekte, Kovariablen, Interaktionen und zufällige Effekte gelistet, in der ersten Spalte zunächst für die Reinzuchtjahre, in der zweiten Spalte für die beiden Kreuzungsjahre.

Tab. 3.5: Darstellung des Modellaufbaus für die einzelnen Produktionsmerkmale der Kälber der Zuchtjahre 1997/98 bis 2001/02 sowie 2002/03 und 2003/04 für die Varianzanalyse

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rasse/Genotyp</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geburtstyp</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geschlecht</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zuchtjahr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kalbesaison</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LaktNr.</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GebGew</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AbsAlter</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KalbealterMK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rasse*Geschlecht</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rasse*Geburtstyp</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rasse*Kalbesaison</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vater</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.6.3.2 Varianzkomponenten

 Folgendes statistisches Modell wurde in der Varianzkomponentenschätzung für das Merkmal Geburtsgewicht (n = 1.284) und gleichzeitig für das Merkmal Tageszunahmen von der Geburt bis zum Absetzen (n = 1.181) verwendet:

\[y_{ijklmn} = \mu + r_i + g_j + s_k + z_l + l_m + a + d + e_{ijklmn} \]

mit:

- \(y_{ijklmn} \) = beobachteter Merkmalswert des Einzeltieres im jeweiligen Merkmal
- \(\mu \) = Populationsmittel
- \(r_i \) = fixer Effekt der Rasse des Kalbes, mit \(i = 1,2 \)
 (1 = Dt. Angus, 2 = Dt. Fleckvieh)
- \(g_j \) = fixer Effekt des Geburtstyps des Kalbes, mit \(j = 1,2 \)
 (1 = Einling, 2 = Zwilling)
- \(s_k \) = fixer Effekt des Geschlechts des Kalbes, mit \(k = 1,2 \)
 (1 = männlich, 2 = weiblich)
- \(z_l \) = fixer Effekt des Zuchtjahres mit \(l = 1 \text{ bis } 5 \)
- \(l_m \) = fixer Effekt der Laktationsnummer der Mutterkuh mit \(m = 1, 2, 3 \)
 (1 = erste, 2 = zweite, 3 = dritte bis fünfte Laktation)
- \(a \) = zufälliger Tiereffekt
- \(d \) = zufälliger maternaler Effekt
- \(e_{ijklmn} \) = zufälliger Restfehler

Für die Schätzung der Varianzkomponenten im Merkmal Absetzgewicht (n = 1.181) wurde das vorgenannte Modell um die beiden Kovariablen Geburtsgewicht (innerhalb Rasse) und Absetzalter ergänzt.
3.6.3.3 Kreuzungsparameter

In der Berechnung nach DICKERSON (1969, 1973) wird für jede Rasse ein maternaler (m), ein paternaler (p) und ein genetischer Effekt (g) zur Parameterschätzung berücksichtigt:

- **Differenz zwischen Reinzuchtpopulationen**
 \[FLV - DA = g_{FLV} - g_{DA} + m_{FLV} - m_{DA} + p_{FLV} - p_{DA} \]

- **Schätzen der individuellen Heterosis**
 \[\frac{1}{2} (DA \times FLV + FLV \times DA) - \frac{1}{2} (DA + FLV) = h_{DA*FLV} \]

- **Differenz zwischen reziproken Kreuzungen** (Stellungseffekte)
 \[DA \times FLV - FLV \times DA = m_{FLV} - m_{DA} + p_{DA} - p_{FLV} \]
4 Ergebnisse

4.1 Reproduktionsleistungen Mutterkühe

4.1.1 Abkalberaten und Anzahl geborener Kälber

Tab. 4.1 präsentiert zunächst die Abkalberaten der Mutterkühe der Rassen Dt. Angus und Dt. Fleckvieh in den einzelnen Zuchtjahren. Im Rassevergleich während der fünf Reinzuchtjahre zeigten die Mutterkühe der Rasse Dt. Angus stets die um 0,8 bis 8,4 % höheren Abkalberaten. Erstmalig im zweiten Kreuzungsjahr 2003/04 übertrafen die Dt. Fleckvieh- die Dt. Anguskühe mit Abkalberaten in Reinzucht von 93,5 vs. 92,6 und in Kreuzung mit 100,0 % vs. 91,5 %.

Tab. 4.1: Abkalberaten für die Mutterkühe beider Rassen der Zuchtjahre 1997/98 bis 2001/02 sowie 2002/03 und 2003/04

<table>
<thead>
<tr>
<th>Zuchtjahr</th>
<th>Mutterkuh</th>
<th>Rasse Mutterkuh</th>
<th>n</th>
<th>abgekalbt</th>
<th>in %</th>
<th>n</th>
<th>abgekalbt</th>
<th>in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997/98</td>
<td>Dt. Angus</td>
<td>149</td>
<td>145</td>
<td>97,3</td>
<td>144</td>
<td>128</td>
<td>88,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dt. Fleckv</td>
<td>148</td>
<td>144</td>
<td>97,3</td>
<td>148</td>
<td>123</td>
<td>83,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(120)</td>
<td>114</td>
<td>95,0</td>
</tr>
<tr>
<td>1998/99</td>
<td>Dt. Angus</td>
<td>146</td>
<td>143</td>
<td>97,9</td>
<td>137</td>
<td>133</td>
<td>97,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dt. Fleckv</td>
<td>154</td>
<td>152</td>
<td>98,7</td>
<td>117</td>
<td>112</td>
<td>95,7</td>
<td></td>
</tr>
<tr>
<td>1999/2000</td>
<td>Dt. Angus</td>
<td>156</td>
<td>151</td>
<td>96,8</td>
<td>117</td>
<td>107</td>
<td>91,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dt. Fleckv</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000/01</td>
<td>Dt. Angus</td>
<td>154</td>
<td>152</td>
<td>98,7</td>
<td>117</td>
<td>112</td>
<td>95,7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dt. Fleckv</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001/02</td>
<td>Dt. Angus</td>
<td>156</td>
<td>151</td>
<td>96,8</td>
<td>117</td>
<td>107</td>
<td>91,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dt. Fleckv</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td></td>
<td>753</td>
<td>735</td>
<td>97,6</td>
<td>663</td>
<td>603</td>
<td>91,0</td>
<td></td>
</tr>
<tr>
<td>2002/03</td>
<td>Reinzucht</td>
<td>27</td>
<td>27</td>
<td>92,7</td>
<td>52</td>
<td>47</td>
<td>88,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kreuzung</td>
<td>110</td>
<td>100</td>
<td></td>
<td>71</td>
<td>62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003/04</td>
<td>Reinzucht</td>
<td>27</td>
<td>25</td>
<td>91,7</td>
<td>62</td>
<td>58</td>
<td>97,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kreuzung</td>
<td>106</td>
<td>97</td>
<td></td>
<td>70</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td></td>
<td>270</td>
<td>249</td>
<td>92,2</td>
<td>255</td>
<td>237</td>
<td>92,9</td>
<td></td>
</tr>
</tbody>
</table>

1) Alle weiblichen Rinder wurden besamt und anschließend mit dem jeweiligen (Besamungs-)Bullen auf die Weiden aufgetrieben (vgl. Kap. 3.3).

Ein detaillierter Überblick zur Anzahl aller geborenen Kälber nach Rasse, Zuchtjahr und Unterscheidung in Einling oder Zwilling ist Tab. 4.2 zu entnehmen.

Tab. 4.2: Anzahl geborener Reinzucht- und Kreuzungskälber der Zuchtjahre 1997/98 bis 2001/02 sowie 2002/03 und 2003/04

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dt. Angus Einling</td>
<td>143</td>
<td>141</td>
<td>141</td>
<td>149</td>
<td>151</td>
<td>27</td>
<td>25</td>
</tr>
<tr>
<td>Zwilling</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>∑</td>
<td>147</td>
<td>147</td>
<td>145</td>
<td>155</td>
<td>151</td>
<td>27</td>
<td>25</td>
</tr>
<tr>
<td>Dt. Fleckvieh Einling</td>
<td>125</td>
<td>116</td>
<td>125</td>
<td>108</td>
<td>103</td>
<td>45</td>
<td>57</td>
</tr>
<tr>
<td>Zwilling</td>
<td>6</td>
<td>14</td>
<td>16</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>∑</td>
<td>131</td>
<td>130</td>
<td>141</td>
<td>116</td>
<td>111</td>
<td>49</td>
<td>59</td>
</tr>
<tr>
<td>Dt. Angus x Dt. Fleckvieh Einling</td>
<td>59</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zwilling</td>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>∑</td>
<td>65</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dt. Fleckvieh x Dt. Angus Einling</td>
<td>98</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zwilling</td>
<td>4</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>∑</td>
<td>102</td>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gesamt</td>
<td>278</td>
<td>277</td>
<td>286</td>
<td>271</td>
<td>262</td>
<td>243</td>
<td>258</td>
</tr>
</tbody>
</table>
4.1.2 Chi²-Test zur Häufigkeit der Abkalbungen

Zum Vergleich der beiden Mutterkuhrassen hinsichtlich der Frage „abgekalbt – ja/nein?“ wurde der Chi²-Test durchgeführt. Dabei wurde die Art der Abkalbung hinsichtlich Einlings- oder Zwillingsgeburt ebenso wenig mitberücksichtigt wie das Alter bzw. die Laktationsnummer der Mutterkuh. Rechnerische Grundlagen der Testdurchführung waren die unter Tab. 4.1 dargestellten Abkalberaten der beiden Ausgangsrassen, wobei aufgrund des uneinheitlichen Deckmanagements das erste Zuchtjahr und im zweiten Zuchtjahr eine Bullengruppe aufgrund der durchgeführten künstlichen Besamung im Chi²-Test nicht berücksichtigt wurden.

Festzuhalten aus der durchgeführten Berechnung bleibt der hoch signifikante Unterschied in der Abkalberate (p < 0,01) für alle bis einschl. zum Zuchtjahr 2001/02 zur Belegung im Natursprung in Reinzucht eingesetzten Kühe, wobei die Dt. Anguskühe mit 97,7 % die Kühe der Rasse Dt. Fleckvieh (94,9 %) um fast 3,0 % übertrafen. Die sich im Jahresvergleich für denselben Zeitraum ergebenden Unterschiede zwischen den beiden Ausgangsrassen waren nicht signifikant.

Für die zur Bedeckung vorgesehenen Mutterkühe in den beiden Kreuzungsjahren ergab sich hinsichtlich der Frage „abgekalbt – ja/nein“ kein signifikanter Unterschied in Bezug auf die Unterscheidung in die Art der Anpaarung, ebenso wenig wie bei der Unterscheidung in die zwei einzelnen Kreuzungszuchtjahre.
4.1.3 Totgeburten und Aufzuchtverluste

Tab. 4.3 präsentiert zunächst die Verluste durch tot geborene Kälber. Dabei beschreibt die angegebene Prozentzahl das Auftreten tot geborener Kälber im Verhältnis zur Gesamtanzahl geborener Kälber.

Tab. 4.3: Verlustgeschehen in Form von Totgeburten der Reinzucht- und Kreuzungskälber der Zuchtjahre 1997/98 bis 2001/02 sowie 2002/03 und 2003/04

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3,4 %</td>
<td>2,0 %</td>
<td>2,1 %</td>
<td>3,2 %</td>
<td>2,0 %</td>
<td>2,6%</td>
<td>0,0 %</td>
<td>8,0 %</td>
<td>3,9%</td>
</tr>
<tr>
<td></td>
<td>3,8 %</td>
<td>6,9 %</td>
<td>7,8 %</td>
<td>5,2 %</td>
<td>2,7 %</td>
<td>5,4 %</td>
<td>2,0 %</td>
<td>0,0 %</td>
<td>0,9 %</td>
</tr>
<tr>
<td>Dt. Angus x Dt. Fleckvieh</td>
<td>4/65</td>
<td>1/72</td>
<td>5/137</td>
<td>6,2 %</td>
<td>1,4 %</td>
<td>3,7 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dt. Fleckvieh x Dt. Angus</td>
<td>1/102</td>
<td>3/102</td>
<td>4/204</td>
<td>1,0 %</td>
<td>2,9 %</td>
<td>2,0 %</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bei der Rasse Dt. Fleckvieh traten sowohl im direkten Jahresvergleich mit der Rasse Dt. Angus als auch im Mittel der fünf Reinzuchtjahre 1997/98 bis 2001/02 mit 5,4 % vs. 2,6 % jeweils mehr Totgeburten auf. Innerhalb der Rasse Dt. Angus traten mit Werten zwischen 2,0 und 3,4 % Totgeburten für die Jahre 1997/98 bis 2001/02 keine Extreme auf, wohingegen die Totgeburtenraten innerhalb der Rasse Dt. Fleckvieh mit Werten zwischen 2,7 und 7,8 % hohe Variationen aufwiesen. Bezogen auf die einzelnen Väter innerhalb der beiden Rassen lagen die Totgeburtenraten für die einzelnen Dt. Angusbullen zwischen 0,0 und 6,7 %, im Mittel bei 2,6 %. Bei den Bullen der Rasse Dt. Fleckvieh ergab sich mit 2,1 bis 9,6 % tot geborenen Kälbern je Bulle ein ungünstigeres Bild. Gemittelt über alle Dt. Fleckviehbullen lag die Totgeburtenrate bei 5,4 %.
Für den Zeitraum der beiden Kreuzungsjahrgänge traten im Mittel bei den Reinzuchtkälbern mit 2,4 % weniger Totgeburten auf als bei den Kreuzungskälbern mit durchschnittlich 2,9 %. Die Totgeburtenraten für die Kälber der Zuchtjahre 2002/03 und 2003/04 lauteten für die einzelnen Genotypen wie folgt: Dt. Angus 3,9 %, Dt. Fleckvieh 0,9 %, Dt. Angus x Dt. Fleckvieh 3,7 % und Dt. Fleckvieh x Dt. Angus 2,0 %. Die einzelnen Totgeburten je Rasse bzw. je Anpaarung lassen keine Tendenzen erkennen. Die Totgeburtenraten je Bulle lagen zwischen 0,0 und 9,5 % bei Dt. Angusbullen, gemittelt 3,7 %, und zwischen 0,0 und 3,9 % für Dt. Fleckviehbullen, gemittelt 1,6 %.

Verluste während der Aufzucht wurden getrennt betrachtet, unterschieden in Verluste innerhalb der ersten 14 Tage post partum (VEI) und von da an weiter bis zum Absetzen (VEII). Rechnerische Bezugsbasis für die Aufzuchtverluste stellt die Anzahl der lebend geborenen Kälber dar (vgl. Tab. 4.4).

Tab. 4.4: Verlustgeschehen in Form von Aufzuchtverlusten der Reinzucht- und Kreuzungskälber der Zuchtjahre 1997/98 bis 2001/02 sowie 2002/03 und 2003/04

<table>
<thead>
<tr>
<th>Rasse/Genotyp</th>
<th>Aufzuchtverluste/Zuchtjahr im Verhältnis zur Anzahl lebend geborener Kälber (nlebgeb.)</th>
<th>VEI (%)</th>
<th>VEII (%)</th>
<th>∑ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dt. Angus</td>
<td>142 144 142 150 148 726 27 23 50</td>
<td>4,4 %</td>
<td>2,1 %</td>
<td>9,9 %</td>
</tr>
<tr>
<td>Dt. Fleckvieh</td>
<td>126 121 130 110 108 595 48 59 107</td>
<td>8,4 %</td>
<td>3,5 %</td>
<td>12,7 %</td>
</tr>
<tr>
<td>Dt. Angus x Dt. Fleckvieh</td>
<td>61 71 132</td>
<td>1,5 %</td>
<td>0,0 %</td>
<td>0,0 %</td>
</tr>
<tr>
<td>Dt. Fleckvieh x Dt. Angus</td>
<td>101 99 201</td>
<td>4,0 %</td>
<td>2,5 %</td>
<td>5,0 %</td>
</tr>
</tbody>
</table>
Detailliert formuliert für die einzelnen Phasen traten bei den Dt. Anguskälbern 4,4 % Aufzuchtverluste innerhalb der ersten 14 Tage post partum auf, weniger als die Hälfte im sich daran anschließenden Zeitraum bis zum Absetzen mit 2,1 %.

Eine ähnliche Verteilung ergibt sich bei den Dt. Fleckviehkälbern mit 8,4 % Verlusten innerhalb der ersten und 3,5 % Verlusten innerhalb der zweiten Phase. Zusammengefasst traten bei der Rasse Dt. Angus Aufzuchtverluste von 6,5 % gegenüber 11,9 % bei der Rasse Dt. Fleckvieh auf.

Die Aufzuchtverluste innerhalb der einzelnen Genotypen der beiden Kreuzungsjahre ergibt ein anderes Bild. Innerhalb der Rasse Dt. Angus lagen die Aufzuchtverluste bei 14,5 %, demgegenüber bei der Rasse Dt. Fleckvieh mit 9,3 % deutlich niedriger. Die Aufzuchtverluste bei den Kreuzungskälbern lagen mit 1,5 % für den Genotyp Dt. Angus x Dt. Fleckvieh und 6,5 % für den Genotyp Dt. Fleckvieh x Dt. Angus unter denen der Reinzuchtkälber.

Von den 726 lebend geborenen Kälbern der Rasse Dt. Angus wurden 679 Kälber aufgezogen. Dies entspricht einer Aufzuchtrate von 93,5 %. Bei der Rasse Dt. Fleckvieh wurden 524 von 595 lebend geborenen Kälbern aufgezogen, was eine Aufzuchtrate von 88,1 % ergibt.

4.1.4 Kalbeverlauf

4.1.4.1 Deskriptive Betrachtung und prozentualer Vergleich der Ausgangsrassen

Insgesamt kam es im Betrachtungszeitraum der fünf Reinzuchtjahre 1997/98 bis 2001/02 zu 1.338 Abkalbungen. 1.257 dieser Abkalbungen, entsprechend 93,9 %, verließen unter Beobachtung der Tierpfleger, so dass in die Auswertung des Kalbeverlaufs 691 Beobachtungen der Rasse Dt. Angus und 566 der Rasse Dt. Fleckvieh eingehen konnten.

In dem zweijährigen Betrachtungszeitraum Kreuzungszucht kam es zu 486 Abkalbungen. 30 davon verließen unbeaufsichtigt, 456 Beobachtungen (entsprechend 93,8 %) konnten demnach in der weiteren Auswertung verwendet werden.
Prozentual ausgedrückt kalbten in den Reinzuchtjahren die Mutterkühe der Rasse Dt. Angus in 92,9 % aller Kalbungen ohne Hilfe, in 5,4 % war leichte Zughilfe von Nöten, in 1,6 % beträchtliche Hilfe. In 0,1 % der Abkalbungen mussten die Kälber über Kaiserschnitt entwickelt werden. Für die Rasse Dt. Fleckvieh ergaben sich entsprechend prozentuale Kalbeverläufe von 86,4 %, 12,0 %, 1,4 % bzw. 0,2 %.

In den beiden Kreuzungsjahren kalbten die in Reinzucht angepaarten Kühe der Rasse Dt. Angus zu 84,3 % ohne Hilfe ab, 13,7 % der Abkalbungen verliefen mit leichter Zughilfe und 2,0 % erfolgten mit beträchtlicher Hilfe. Bei den Dt. Fleckviehkühen verliefen 96,1 % ohne Hilfe, die restlichen 3,9 % der Abkalbungen verlangten vom Stallpersonal leichte Zughilfe.

Die Abkalbungen der mit Dt. Fleckviehbullen angepaarten Dt. Anguskühe verliefen zu 98,0 % ohne Hilfe, in 2,0 % der Abkalbungen war leichte Zughilfe angebracht. Die mit Dt. Angusbullen angepaarten Dt. Fleckviehkühe kalbten zu 96,9 % ohne Hilfe, in 2,3 % mit leichter Zughilfe und in 0,8 % aller Abkalbungen mit beträchtlicher Hilfe. Kaiserschnitte kamen in den beiden Kreuzungsjahren nicht vor.

Tab. 4.5 verschafft einen Überblick zum mittleren Kalbeverlauf der Mutterkühe beider Rassen, differenziert nach Einlings- und Zwillingsabkalbungen sowie nach der Art der Anpaarung (bzgl. der Rasse des Paarungspartners in den beiden Kreuzungszuchtjahren).
Tab. 4.5: Mittelwerte, Standardabweichungen, Minima und Maxima für den Kalbeverlauf der Mutterkühe beider Rassen der Zuchtjahre 1997/98 bis 2001/02 sowie 2002/03 und 2003/04

<table>
<thead>
<tr>
<th>Rasse</th>
<th>Kalbeverlauf (Pkte.)</th>
<th>n</th>
<th>(\bar{x})</th>
<th>s</th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997/98 bis 2001/02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dt. Angus</td>
<td>Einlingsabkalbung</td>
<td>683</td>
<td>1,09</td>
<td>0,35</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Zwillingsabkalbung</td>
<td>8</td>
<td>1,00</td>
<td>0,00</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(\Sigma)</td>
<td>691</td>
<td>1,09</td>
<td>0,35</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Dt. Fleckvieh</td>
<td>Einlingsabkalbung</td>
<td>541</td>
<td>1,15</td>
<td>0,41</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Zwillingsabkalbung</td>
<td>25</td>
<td>1,29</td>
<td>0,50</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(\Sigma)</td>
<td>566</td>
<td>1,15</td>
<td>0,41</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2002/03 und 2003/04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dt. Angus</td>
<td>Einlingsabkalbung</td>
<td>51</td>
<td>1,18</td>
<td>0,43</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Zwillingsabkalbung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\Sigma)</td>
<td>51</td>
<td>1,18</td>
<td>0,43</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Dt. Fleckvieh</td>
<td>Einlingsabkalbung</td>
<td>75</td>
<td>1,04</td>
<td>0,20</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Zwillingsabkalbung</td>
<td>2</td>
<td>1,00</td>
<td>0,00</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(\Sigma)</td>
<td>77</td>
<td>1,04</td>
<td>0,19</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Dt. Angus x Dt. Fleckvieh</td>
<td>Einlingsabkalbung</td>
<td>127</td>
<td>1,02</td>
<td>0,20</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Zwillingsabkalbung</td>
<td>4</td>
<td>1,50</td>
<td>0,58</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(\Sigma)</td>
<td>131</td>
<td>1,04</td>
<td>0,23</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Dt. Fleckvieh x Dt. Angus</td>
<td>Einlingsabkalbung</td>
<td>190</td>
<td>1,02</td>
<td>0,14</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Zwillingsabkalbung</td>
<td>7</td>
<td>1,00</td>
<td>0,00</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(\Sigma)</td>
<td>197</td>
<td>1,02</td>
<td>0,14</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
4.1.4.2 Ergebnisse der Einflussfaktoren auf den Kalbeverlauf aus der Varianzanalyse

In den fünf Reinzuchtjahren erwies sich die Rasse des Kalbes als ein nicht signifikanter Einflussfaktor. Demgegenüber erwies sich die Art der Anpaarung, gleichbedeutend mit dem Genotyp des Kalbes, in den beiden Kreuzungsjahren als höchst signifikant (p < 0,001). Die Laktationsnummer der Mutterkuh hatte für beide Betrachtungszeiträume einen hoch signifikanten (p < 0,01) bzw. einen höchst signifikanten (p < 0,001) Einfluss. Ein Einfluss des Geburtstyps auf den Verlauf der Kalbung konnte in den Reinzuchtjahren nicht festgestellt werden, wohl aber bei den Kälbern der Kreuzungsjahre. Kalbesaison und Geburtsgewicht bzw. dessen Summen bei Zwillingskälbern erwiesen sich in den Reinzuchtjahren als höchst signifikant (p < 0,001), während die Kalbesaisons der beiden Kreuzungsjahre einen hoch signifikanten Einfluss (p < 0,01) und die Geburtsgewichte einen signifikanten Einfluss auf den Kalbeverlauf besaßen (p < 0,05; vgl. Tab. 4.6).

Tab. 4.6: Ergebnisse der fixen Einflussfaktoren auf den Kalbeverlauf der Mutterkühe beider Rassen der Zuchtjahre 1997/98 bis 2001/02 sowie 2002/03 und 2003/04

<table>
<thead>
<tr>
<th>Rasse/Genotyp Kalb</th>
<th>Kalbesaison</th>
<th>LaktNr.</th>
<th>GebTyp</th>
<th>Summe GebGew 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997/98 bis 2001/02</td>
<td>n.s.</td>
<td>***</td>
<td>*</td>
<td>***</td>
</tr>
<tr>
<td>2002/03 und 2003/04</td>
<td>***</td>
<td>**</td>
<td>n.s.</td>
<td>***</td>
</tr>
</tbody>
</table>

2) Summe GebGew = ((addiertes) Geburtsgewicht – mittlere Summe innerhalb Geburtstyp)

*** = höchst signifikant (p < 0,001)
** = hoch signifikant (p < 0,01)
* = signifikant (p < 0,05)
n.s. = nicht signifikant (p ≥ 0,05)

Der im Modell für die fünf Reinzuchtjahre als zufälliger Effekt berücksichtigte Vater erwies sich als nicht signifikant.

Im Modell für die Zuchtjahre 2002/03 und 2003/04 erklärt der Vater 0,23 % der totalen Varianz.
4.1.4.3 LSQ-Mittelwerte mit Standardfehlern für den Kalbeverlauf

Der nicht signifikante Einfluss der Rasse wird an den in Tab. 4.7 präsentierten eng bieinander liegenden LSQ-Rassemittelwerten für die Reinzuchtjahre 1997/98 bis 2001/02 offensichtlich. 0,02 Punkte Differenz zwischen den Rassen sind demnach zu vernachlässigen. In den beiden Folgejahren zeigten die Dt. Angus Mutterkühe einen um 0,14 Punkte angestiegenen Kalbeverlauf, während der Wert bei den Mutterkühen der Rasse Dt. Fleckvieh um 0,02 Punkte abgesunken war. Aufgrund der geringen Tierzahlen, trotz vergleichbarer Standardfehler der in Reinzucht abkalbenden Mutterkühe in den Zuchtjahren 2002/03 und 2003/04, ist dieses Ergebnis zunächst vorsichtig zu interpretieren, und es wird auf die Ergebnisse des Chi²-Tests unter Kap. 4.1.4.4 verwiesen. Der Kalbeverlauf für die in Kreuzung angepaarten Dt. Fleckviehkühe lag mit 1,10 Punkten leicht unter dem Wert für die mit Dt. Fleckviehbullen angepaarten Dt. Anguskühe (1,13 Punkte).

Tab. 4.7: LSQ-Rassemittelwerte mit Standardfehlern (SE) für den Kalbeverlauf der Mutterkühe beider Rassen der Zuchtjahre 1997/98 bis 2001/02 sowie 2002/03 und 2003/04

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LSQ</td>
<td>SE</td>
<td>LSQ</td>
</tr>
<tr>
<td>Dt. Angus</td>
<td>1,10</td>
<td>0,04</td>
<td>1,24</td>
</tr>
<tr>
<td>Dt. Fleckvieh</td>
<td>1,08</td>
<td>0,03</td>
<td>1,06</td>
</tr>
<tr>
<td>Dt. Angus x Dt. Fleckvieh</td>
<td></td>
<td></td>
<td>1,10</td>
</tr>
<tr>
<td>Dt. Fleckvieh x Dt. Angus</td>
<td></td>
<td></td>
<td>1,13</td>
</tr>
</tbody>
</table>

Tab. 4.8 enthält die LSQ-Kalbesaisonmittelwerte mit Standardfehlern für alle sieben Zuchtjahre.

Tab. 4.8: LSQ-Kalbesaisonmittelwerte mit Standardfehlern (SE) für den Kalbeverlauf der Mutterkühe beider Rassen der Zuchtjahre 1997/98 bis 2001/02 sowie 2002/03 und 2003/04

<table>
<thead>
<tr>
<th>Kalbesaison</th>
<th>1997/98 bis 2001/02</th>
<th>Kalbeverlauf (Pkte.)</th>
<th>2002/03 und 2003/04</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSQ</td>
<td>SE</td>
<td>LSQ</td>
<td>SE</td>
</tr>
<tr>
<td>1998-1</td>
<td>1,33</td>
<td>0,06</td>
<td>2003-1</td>
</tr>
<tr>
<td>1998-2</td>
<td>1,25</td>
<td>0,06</td>
<td>2003-2</td>
</tr>
<tr>
<td>1998-3</td>
<td>1,02</td>
<td>0,07</td>
<td>2003-3</td>
</tr>
<tr>
<td>1999-1</td>
<td>1,08</td>
<td>0,05</td>
<td>2004-1</td>
</tr>
<tr>
<td>1999-2</td>
<td>1,08</td>
<td>0,05</td>
<td>2004-2</td>
</tr>
<tr>
<td>1999-3</td>
<td>1,19</td>
<td>0,06</td>
<td>2004-3</td>
</tr>
<tr>
<td>2000-1</td>
<td>1,03</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>2000-2</td>
<td>1,00</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>2000-3</td>
<td>1,05</td>
<td>0,07</td>
<td></td>
</tr>
<tr>
<td>2001-1</td>
<td>1,00</td>
<td>0,07</td>
<td></td>
</tr>
<tr>
<td>2001-2</td>
<td>0,97</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>2001-3</td>
<td>0,97</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>2002-1</td>
<td>1,15</td>
<td>0,06</td>
<td></td>
</tr>
<tr>
<td>2002-2</td>
<td>1,13</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>2002-3</td>
<td>1,09</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 4.9: LSQ-Laktationsnummernmittelwerte mit Standardfehlern (SE) für den Kalbeverlauf der Mutterkühe beider Rassen der Zuchtjahre 1997/98 bis 2001/02 sowie 2002/03 und 2003/04

<table>
<thead>
<tr>
<th>Kalbeverlauf (Pkte.)</th>
<th>1997/98 bis 2001/02</th>
<th>2002/03 und 2003/04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kühe</td>
<td>LSQ</td>
<td>SE</td>
</tr>
<tr>
<td>erste Laktation</td>
<td>370</td>
<td>1,18</td>
</tr>
<tr>
<td>zweite Laktation</td>
<td>293</td>
<td>1,06</td>
</tr>
<tr>
<td>dritte Laktation</td>
<td>266</td>
<td>1,09</td>
</tr>
<tr>
<td>vierte Laktation</td>
<td>228</td>
<td>1,14</td>
</tr>
<tr>
<td>fünfte Laktation</td>
<td>181</td>
<td>0,98</td>
</tr>
<tr>
<td>sechste Laktation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>siebte Laktation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Der Geburtstyp, im Anschluss in Tab. 4.10 dargestellt, erweist sich in den beiden Kreuzungsjahren bereits auf den ersten Blick hin als deutlicher Einflussfaktor mit höheren Werten für die Zwillingsabkalbungen. Nach dem jeweils verwendeten Modell besaß der Geburtstyp in den Reinzuchtjahren keinerlei Einfluss, wohingegen der Kalbeverlauf in den beiden anschließenden Zuchtjahren einem hoch signifikantem Einfluss durch den Geburtstyp unterlag (p < 0,01). Jedoch ist auch hier wieder die Anzahl der aufgetretenen Zwillingsabkalbungen im Verhältnis zur Anzahl aller Abkalbungen zu berücksichtigen.

Tab. 4.10: LSQ-Geburtstypmittelwerte mit Standardfehlern (SE) für den Kalbeverlauf der Mutterkühe beider Rassen der Zuchtjahre 1997/98 bis 2001/02 sowie 2002/03 und 2003/04

<table>
<thead>
<tr>
<th>Kalbeverlauf (Pkte.)</th>
<th>1997/98 bis 2001/02</th>
<th>2002/03 und 2003/04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geburtstyp</td>
<td>LSQ</td>
<td>SE</td>
</tr>
<tr>
<td>Einling</td>
<td>1,08</td>
<td>0,01</td>
</tr>
<tr>
<td>Zwilling</td>
<td>1,10</td>
<td>0,06</td>
</tr>
</tbody>
</table>
Die Regression der addierten Geburtsgewichte auf das untersuchte Merkmal stellt sich wie folgt dar.
Für die Reinzuchtjahre 1997/98 bis 2001/02 wirkt sich ein Anstieg um eine Einheit, hier also um ein kg im Geburtsgewicht bzw. deren Summe bei Zwillingskälbern, dahingehend aus, dass der Kalbeverlauf bei Einlingen um 0,007 Punkte (SE = 0,002) ansteigt, bei Zwillingskälbern entsprechend um 0,022 Punkte (SE 0,006), was etwa einer Verdreifachung gleichkommt. Ein Anstieg im betrachteten Merkmal ist gleichzusetzen mit einer Verschlechterung, d.h. mit einer Zunahme von Kalbeschwierigkeiten.
Für die zwei nachfolgenden Kreuzungsjahre 2002/03 und 2003/04 bewirkt eine entsprechende Zunahme im Geburtsgewicht einen Anstieg im Kalbeverlauf bei Einlingen um 0,004 Punkte (SE 0,002), bei Zwillingskälbern entsprechend um 0,008 Punkte (SE 0,009), was ebenfalls einer Verdopplung gleichkommt.

4.1.4.4 Chi²-Test zum Kalbeverlauf der Mutterkühe

Tab. 4.11: Beobachtungen im Kalbeverlauf zum Chi²-Test für die Mutterkühe beider Rassen der Zuchtjahre 1997/98 bis 2001/02 sowie 2002/03 und 2003/04 nach Art der Anpaarung

<table>
<thead>
<tr>
<th>Kalbeverlauf</th>
<th>Art der Anpaarung</th>
<th>Dt. Angus</th>
<th>Dt. Fleckvieh</th>
<th>Dt. Angus x Dt. Fleckvieh</th>
<th>Dt. Fleckvieh x Dt. Angus</th>
</tr>
</thead>
<tbody>
<tr>
<td>ohne Hilfe</td>
<td></td>
<td>685 (92,3 %)</td>
<td>563 (87,6 %)</td>
<td>127 (96,9 %)</td>
<td>193 (98,0 %)</td>
</tr>
<tr>
<td>mit Hilfe</td>
<td></td>
<td>57 (7,7 %)</td>
<td>80 (12,4 %)</td>
<td>4 (3,1 %)</td>
<td>4 (2,0 %)</td>
</tr>
<tr>
<td>leicht Zughilfe</td>
<td></td>
<td>44</td>
<td>71</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>beträchtliche Hilfe</td>
<td></td>
<td>12</td>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Kaiserschnitt</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>∑</td>
<td></td>
<td>742</td>
<td>643</td>
<td>131</td>
<td>197</td>
</tr>
</tbody>
</table>

Über den Betrachtungszeitraum der ersten fünf Zuchtjahre unterschieden sich die beiden Ausgangsrassen Dt. Angus mit 92,9 % problemlosen Abkalbungen und Dt. Fleckvieh mit 86,4 % problemlosen Abkalbungen höchst signifikant (p < 0,001) voneinander. Die Unterschiede zwischen den Mutterkühen in den beiden Kreuzungsjahren erwiesen sich hinsichtlich der Art der Anpaarung ebenfalls als höchst signifikant verschieden (p < 0,001; vgl. Kap. 4.1.4.1).

4.2 Produktionsleistungen Kälber

4.2.1 Datenbeschreibung für die ausgewählten Produktionsmerkmale

Unter die ausgewählten Produktionsmerkmale der Kälber fielen Geburts- und Absetzgewicht einschließlich des Absetzalters und der täglichen Zunahmen von der Geburt bis zum Absetzen.

Die im Anschluss aufgelisteten Tab. 4.12 bis 4.14 enthalten die beobachteten Leistungen in Form von Rohmittelwerten, Standardabweichungen und Schwankungsbreiten in den Produktionsmerkmalen. Die detaillierte Ergebnisdarstellung der erzielten Produktionsleistungen erfolgt mit Kapitel 4.2.2 im Rahmen der Varianzanalyse.

Die Geburtsgewichte (vgl. Tab. 4.12) der Reinzuchtnachkommen lagen in beiden Betrachtungszeiträumen (Zuchtjahre 1997/98 bis 2001/02 sowie Zuchtjahre 2002/03 und
2003/04) auf vergleichbarem Niveau. Dabei übertrafen jeweils die Dt. Fleckvieh- die Dt. Anguskälber um 6,0 bis 7,0 kg. Die Geburtsgewichte der Reinzuchtkälber im Zuchtabchnitt 2002/03 und 2003/04 lagen leicht höher und näher beieinander, wobei aber die geringeren Tierzahlen (1.284 vs. 157) nicht außer Betracht gelassen werden sollten. Die Kreuzungskälber zeigten zwischen den Reinzuchten liegende Geburtsgewichte, wobei die Kreuzung aus Dt. Angus x Dt. Fleckvieh die der anderen Einfachkreuzung um fast 2,0 kg übertraf.

Tab. 4.12: Mittelwerte, Standardabweichungen, Minima und Maxima für die Geburtsgewichte der Kälber aller Rassen der Zuchtjahre 1997/98 bis 2001/02 sowie 2002/03 und 2003/04, einschl. der Zwillingskälber

<table>
<thead>
<tr>
<th>Rasse/Genotyp</th>
<th>Geburtsgewicht (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>s</td>
</tr>
<tr>
<td>1997/98 bis 2001/02</td>
<td></td>
</tr>
<tr>
<td>Dt. Angus</td>
<td></td>
</tr>
<tr>
<td>♂ (n = 363)</td>
<td>38,1</td>
</tr>
<tr>
<td>♀ (n = 353)</td>
<td>36,1</td>
</tr>
<tr>
<td>♂♀ (n = 716)</td>
<td>37,1</td>
</tr>
<tr>
<td>Dt. Fleckvieh</td>
<td></td>
</tr>
<tr>
<td>♂ (n = 293)</td>
<td>46,0</td>
</tr>
<tr>
<td>♀ (n = 275)</td>
<td>42,4</td>
</tr>
<tr>
<td>♂♀ (n = 568)</td>
<td>44,3</td>
</tr>
<tr>
<td>2002/03 und 2003/04</td>
<td></td>
</tr>
<tr>
<td>Dt. Angus</td>
<td></td>
</tr>
<tr>
<td>♂ (n = 30)</td>
<td>39,6</td>
</tr>
<tr>
<td>♀ (n = 20)</td>
<td>37,2</td>
</tr>
<tr>
<td>♂♀ (n = 50)</td>
<td>38,6</td>
</tr>
<tr>
<td>Dt. Fleckvieh</td>
<td></td>
</tr>
<tr>
<td>♂ (n = 54)</td>
<td>46,5</td>
</tr>
<tr>
<td>♀ (n = 53)</td>
<td>42,4</td>
</tr>
<tr>
<td>♂♀ (n = 107)</td>
<td>44,5</td>
</tr>
<tr>
<td>Dt. Angus x Dt. Fleckvieh</td>
<td></td>
</tr>
<tr>
<td>♂ (n = 63)</td>
<td>45,2</td>
</tr>
<tr>
<td>♀ (n = 69)</td>
<td>42,7</td>
</tr>
<tr>
<td>♂♀ (n = 132)</td>
<td>43,9</td>
</tr>
<tr>
<td>Dt. Fleckvieh x Dt. Angus</td>
<td></td>
</tr>
<tr>
<td>♂ (n = 97)</td>
<td>44,1</td>
</tr>
<tr>
<td>♀ (n = 100)</td>
<td>40,2</td>
</tr>
<tr>
<td>♂♀ (n = 197)</td>
<td>42,1</td>
</tr>
</tbody>
</table>
Zwischen den Geburtstypen gab es offensichtliche Unterschiede im Geburtsgewicht. Während der fünf Reinzuchtjahre zeigten die 698 Einlingskälber der Rasse Dt. Angus ein mittleres Geburtsgewicht von $37,3 \pm 5,08$ kg, demgegenüber wogen die 18 Zwillingskälber im Mittel $28,4 \pm 4,40$ kg zur Geburt. Auch bei den Dt. Fleckviehkälbern waren die 42 Zwillingskälber zum Zeitpunkt der Geburt gegenüber den 526 Einlingskälbern mit im Mittel $35,7 \pm 4,96$ kg vs. $44,9 \pm 5,93$ kg deutlich leichter.

Während der Kreuzungsjahre kamen bei der Rasse Dt. Angus keine Zwillinge zur Welt. Bei Dt. Fleckvieh wurden sechs Zwillinge mit einem mittleren Geburtsgewicht von $36,8 \pm 3,82$ kg zur Welt gebracht. Die 101 Einlinge lagen mit $45,0 \pm 4,87$ kg wiederum ca. 10 kg darüber. Die Zwillingskälber, aus den Kreuzungen hervorgegangen, zeigten wie auch die Kreuzungseinlinge höhere mittlere Geburtsgewichte. Die Einlingskälber aus Dt. Angus und Dt. Fleckvieh ($n = 124$) wogen im Mittel $44,4 \pm 4,77$ kg, die acht Zwillinge $37,6 \pm 2,39$ kg. Die Einlinge der zweiten reziproken Kreuzung ($n = 188$) wogen zur Geburt im Mittel $42,7 \pm 5,41$ kg, die neun Zwillinge $32,9 \pm 4,04$ kg.

Aufgrund der sehr geringen Tierzahlen insbesondere der Reinzuchtkälber dieser beiden Zuchtjahre sollte dieser Differenz, die zudem auf deskriptiven Daten beruht, keine allzu große Bedeutung beigemessen werden.

<table>
<thead>
<tr>
<th>Rasse/Genotyp</th>
<th>Absetzgewicht (kg)</th>
<th>Absetzalter (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\bar{x})</td>
<td>(s)</td>
</tr>
<tr>
<td>1997/98 bis 2001/02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dt. Angus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ (n = 338)</td>
<td>245</td>
<td>35,1</td>
</tr>
<tr>
<td>♀ (n = 331)</td>
<td>226</td>
<td>31,5</td>
</tr>
<tr>
<td>♂♀ (n = 669)</td>
<td>236</td>
<td>34,6</td>
</tr>
<tr>
<td>Dt. Fleckvieh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ (n = 255)</td>
<td>288</td>
<td>46,5</td>
</tr>
<tr>
<td>♀ (n = 357)</td>
<td>254</td>
<td>41,5</td>
</tr>
<tr>
<td>♂♀ (n = 512)</td>
<td>271</td>
<td>47,2</td>
</tr>
<tr>
<td>2002/03 und 2003/04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dt. Angus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ (n = 23)</td>
<td>261</td>
<td>43,1</td>
</tr>
<tr>
<td>♀ (n = 19)</td>
<td>240</td>
<td>37,0</td>
</tr>
<tr>
<td>♂♀ (n = 42)</td>
<td>252</td>
<td>41,3</td>
</tr>
<tr>
<td>Dt. Fleckvieh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ (n = 52)</td>
<td>301</td>
<td>43,6</td>
</tr>
<tr>
<td>♀ (n = 44)</td>
<td>269</td>
<td>40,8</td>
</tr>
<tr>
<td>♂♀ (n = 96)</td>
<td>286</td>
<td>45,2</td>
</tr>
<tr>
<td>Dt. Angus x Dt. Fleckvieh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ (n = 62)</td>
<td>301</td>
<td>34,7</td>
</tr>
<tr>
<td>♀ (n = 68)</td>
<td>277</td>
<td>34,2</td>
</tr>
<tr>
<td>♂♀ (n = 130)</td>
<td>289</td>
<td>36,4</td>
</tr>
<tr>
<td>Dt. Fleckvieh x Dt. Angus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ (n = 89)</td>
<td>281</td>
<td>33,4</td>
</tr>
<tr>
<td>♀ (n = 97)</td>
<td>258</td>
<td>28,7</td>
</tr>
<tr>
<td>♂♀ (n = 186)</td>
<td>269</td>
<td>32,9</td>
</tr>
</tbody>
</table>
Tab. 4.14 zeigt die Tageszunahmen für die Kälber aus beiden Betrachtungszeiträumen, unterteilt nach Geschlecht innerhalb Rasse bzw. Genotyp.

Tab. 4.14: Mittelwerte, Standardabweichungen, Minima und Maxima für die Tageszunahmen bis zum Absetzen der Kälber aller Rassen der Zuchthäuser 1997/98 bis 2001/02 sowie 2002/03 und 2003/04, einschl. der Zwillingskälber

<table>
<thead>
<tr>
<th>Rasse/Genotyp</th>
<th>(\bar{x})</th>
<th>Zunahmen (g/d)</th>
<th>(s)</th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997/98 bis 2001/02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dt. Angus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ (n = 338)</td>
<td>959</td>
<td>163,5</td>
<td>477</td>
<td>1.330</td>
<td></td>
</tr>
<tr>
<td>♀ (n = 331)</td>
<td>878</td>
<td>144,8</td>
<td>435</td>
<td>1.177</td>
<td></td>
</tr>
<tr>
<td>♂♀ (n = 669)</td>
<td>919</td>
<td>159,6</td>
<td>434</td>
<td>1.330</td>
<td></td>
</tr>
<tr>
<td>Dt. Fleckvieh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ (n = 255)</td>
<td>1.137</td>
<td>205,0</td>
<td>528</td>
<td>1.673</td>
<td></td>
</tr>
<tr>
<td>♀ (n = 257)</td>
<td>984</td>
<td>179,7</td>
<td>438</td>
<td>1.391</td>
<td></td>
</tr>
<tr>
<td>♂♀ (n = 512)</td>
<td>1.061</td>
<td>207,2</td>
<td>438</td>
<td>1.673</td>
<td></td>
</tr>
<tr>
<td>2002/03 und 2003/04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dt. Angus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ (n = 23)</td>
<td>1.012</td>
<td>184,9</td>
<td>677</td>
<td>1.383</td>
<td></td>
</tr>
<tr>
<td>♀ (n = 19)</td>
<td>914</td>
<td>160,4</td>
<td>633</td>
<td>1.197</td>
<td></td>
</tr>
<tr>
<td>♂♀ (n = 42)</td>
<td>968</td>
<td>179,2</td>
<td>633</td>
<td>1.383</td>
<td></td>
</tr>
<tr>
<td>Dt. Fleckvieh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ (n = 52)</td>
<td>1.205</td>
<td>199,1</td>
<td>813</td>
<td>1.573</td>
<td></td>
</tr>
<tr>
<td>♀ (n = 44)</td>
<td>1.026</td>
<td>138,3</td>
<td>665</td>
<td>1.263</td>
<td></td>
</tr>
<tr>
<td>♂♀ (n = 96)</td>
<td>1.122</td>
<td>194,8</td>
<td>665</td>
<td>1.573</td>
<td></td>
</tr>
<tr>
<td>Dt. Angus x Dt. Fleckvieh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ (n = 62)</td>
<td>1.188</td>
<td>146,9</td>
<td>711</td>
<td>1.454</td>
<td></td>
</tr>
<tr>
<td>♀ (n = 68)</td>
<td>1.063</td>
<td>138,0</td>
<td>522</td>
<td>1.284</td>
<td></td>
</tr>
<tr>
<td>♂♀ (n = 130)</td>
<td>1.123</td>
<td>155,1</td>
<td>522</td>
<td>1.454</td>
<td></td>
</tr>
<tr>
<td>Dt. Fleckvieh x Dt. Angus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ (n = 89)</td>
<td>1.087</td>
<td>148,9</td>
<td>469</td>
<td>1.379</td>
<td></td>
</tr>
<tr>
<td>♀ (n = 97)</td>
<td>993</td>
<td>136,2</td>
<td>561</td>
<td>1.421</td>
<td></td>
</tr>
<tr>
<td>♂♀ (n = 186)</td>
<td>1.038</td>
<td>149,5</td>
<td>469</td>
<td>1.421</td>
<td></td>
</tr>
</tbody>
</table>
4.2.2 Ergebnisse der Einflussfaktoren aus der Varianzanalyse – 1997/98 bis 2001/02 sowie 2002/03 und 2003/04

Die Tab. 4.15 und 4.16 vermitteln neben dem Modellaufbau für die Varianzanalyse auch die Signifikanzniveaus der jeweiligen Einflussfaktoren für die untersuchten Produktionsmerkmale in beiden Betrachtungszeiträumen Reinzucht und Kreuzung. Aufgrund des unterschiedlichen Modellaufbaus für die beiden Betrachtungszeiträume und somit zur verständlicheren Darstellung finden sich für die Reinzuchtkälber der Zuchtjahre 1997/98 bis 2001/02 die LSQ-Mittelwerte mit Standardfehlern im anschließenden Unterkapitel 4.2.3. Unterkapitel 4.2.4 enthält eine entsprechende Darstellung für die Kälber der beiden Kreuzungsjahre 2002/03 und 2003/04.

Tab. 4.15: Signifikanzniveaus der fixen Einflussfaktoren, Kovariablen und Interaktionen auf die Produktionsmerkmale der Reinzuchtkälber der Zuchtjahre 1997/98 bis 2001/02

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Rasse</th>
<th>Gesch</th>
<th>GebTyp</th>
<th>GebGew</th>
<th>ZunGebAbs</th>
<th>Kalbesaison</th>
<th>LaktNr.</th>
<th>GebTyp</th>
<th>Zuchjahr</th>
<th>GebGew</th>
<th>AbsAlter</th>
<th>Rasse x Kalbesaison</th>
<th>Rasse x Gesch</th>
<th>Rasse x GebTyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997/98 bis 2001/02</td>
<td></td>
</tr>
<tr>
<td>GebGew</td>
<td>***</td>
</tr>
<tr>
<td>AbsGew</td>
<td>***</td>
</tr>
<tr>
<td>ZunGebAbs</td>
<td>***</td>
</tr>
</tbody>
</table>

*** = höchst signifikant (p < 0,001)
** = hoch signifikant (p < 0,01)
* = signifikant (p < 0,05)
n.s. = nicht signifikant (p ≥ 0,05)

Der als zufälliger Effekt berücksichtigte Vater besaß im Modell für das Geburtsgewicht und im Modell für das Absetzgewicht jeweils einen höchst signifikantem Einfluss (p < 0,001), im Modell für die Tageszunahmen von der Geburt bis zum Absetzen besaß der Vater mit p < 0,01 einen hoch signifikanten Einfluss.
Tab. 4.16: Signifikanzniveaus der fixen Einflussfaktoren und Kovariablen auf die Produktionsmerkmale der Kälber aller Rassen der Zuchtjahre 2002/03 und 2003/04

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Rasse</th>
<th>Geschlecht</th>
<th>GebTyp</th>
<th>LaktNr.</th>
<th>Zuchtjahr</th>
<th>GebGew</th>
<th>AbsAlter</th>
<th>KalbealterMutterkuh</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002/03 und 2003/04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GebGew</td>
<td>***</td>
<td>***</td>
<td>1)</td>
<td>*</td>
<td>n.s.</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>AbsGew</td>
<td>***</td>
<td>***</td>
<td>1)</td>
<td>***</td>
<td>n.s.</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>ZunGebAbs</td>
<td>***</td>
<td>***</td>
<td>1)</td>
<td>n.s.</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td></td>
</tr>
</tbody>
</table>

1) Zwillingskälber wurden nicht berücksichtigt

** = hoch signifikant (p < 0,01)
* = signifikant (p < 0,05)
n.s. = nicht signifikant (p ≥ 0,05)

Für den Betrachtungszeitraum der Zuchtjahre 2002/03 und 2003/04 erklärt der Vater im Modell für das Geburtsgewicht 9,89 % der totalen Varianz, in den Modellen für das Absetzgewicht und für die Tageszunahmen von der Geburt bis zum Absetzen geht die Vatervarianz jeweils gegen 0.
4.2.3 LSQ-Mittelwerte mit Standardfehlern und phänotypische Korrelationen zwischen den Merkmalen – Zuchtjahre 1997/98 bis 2001/02

4.2.3.1 Geburts- und Absetzgewicht

Die Geburts- und Absetzgewichte unterlagen einem höchst signifikantem Einfluss durch Rasse und Geschlecht. Die Interaktion zwischen Rasse und Geschlecht des Kalbes beeinflusste das Geburtsgewicht signifikant (p < 0,05), das Absetzgewicht hoch signifikant (p < 0,01).

Geschlechterübergreifend übertrafen die Dt. Fleckvieh- die Dt. Anguskälber im Geburtsgewicht im Mittel um ca. 8 kg, innerhalb der Rassen zeigten die Bullenkälber die um 2,0 bis 3,0 kg höheren Geburtsgewichte. Diese Verhältnismäßigkeit (Dt. Fleckvieh schwerer als Dt. Angus bzw. Bullenkälber schwerer als Kuhkälber) blieb auch beim Absetzgewicht bestehen (vgl. Tab. 4.17).

Tab. 4.17: LSQ-Rassemittelwerte mit Standardfehlern (SE) für Geburts- und Absetzgewichte der Reinzuchtkälber der Zuchtjahre 1997/98 bis 2001/02

<table>
<thead>
<tr>
<th>Rasse</th>
<th>Geschlecht</th>
<th>Geburtsgewicht (kg)</th>
<th>Absetzgewicht (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LSQ</td>
<td>SE</td>
</tr>
<tr>
<td>Dt. Angus</td>
<td>♂</td>
<td>34,1</td>
<td>0,47</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>32,0</td>
<td>0,48</td>
</tr>
<tr>
<td></td>
<td>♂♀</td>
<td>33,0</td>
<td>0,44</td>
</tr>
<tr>
<td>Dt. Fleckvieh</td>
<td>♂</td>
<td>33,0</td>
<td>0,44</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>41,8</td>
<td>0,41</td>
</tr>
<tr>
<td></td>
<td>♂♀</td>
<td>38,6</td>
<td>0,41</td>
</tr>
<tr>
<td></td>
<td>♂♀</td>
<td>40,2</td>
<td>0,36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dt. Angus</td>
<td>Dt. Fleckvieh</td>
<td>LSQ</td>
<td>SE</td>
<td>LSQ</td>
<td>SE</td>
<td>LSQ</td>
</tr>
<tr>
<td>1998-1</td>
<td>31,0 0,81</td>
<td>38,1 1,10</td>
<td>208</td>
<td>3,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998-2</td>
<td>33,0 1,07</td>
<td>39,2 0,81</td>
<td>246</td>
<td>2,9</td>
<td>+38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998-3</td>
<td>33,7 1,31</td>
<td>40,0 1,06</td>
<td>258</td>
<td>2,9</td>
<td>+12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999-1</td>
<td>31,6 0,82</td>
<td>39,5 0,96</td>
<td>257</td>
<td>2,8</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999-2</td>
<td>34,3 0,89</td>
<td>40,4 0,88</td>
<td>261</td>
<td>3,1</td>
<td>+4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999-3</td>
<td>34,2 1,27</td>
<td>39,8 0,93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000-1</td>
<td>31,1 0,75</td>
<td>43,1 0,93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000-2</td>
<td>33,0 0,95</td>
<td>40,4 0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000-3</td>
<td>35,5 1,92</td>
<td>41,5 0,91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001-1</td>
<td>31,8 1,00</td>
<td>38,7 1,92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001-2</td>
<td>33,1 0,78</td>
<td>40,7 0,81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001-3</td>
<td>33,6 1,10</td>
<td>42,4 0,80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002-1</td>
<td>32,6 0,93</td>
<td>37,4 1,28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002-2</td>
<td>33,1 0,84</td>
<td>40,5 0,93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002-3</td>
<td>33,8 0,94</td>
<td>41,3 0,74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) meint die Differenz (in kg) zum vorhergehenden Zuchtjahr

Bereits in der Varianzanalyse zum Kalbeverlauf der Mutterkühe erwies sich die Kalbesaison in Überlagerung mit der Laktationsnummer der Mutterkühe als ein bedeutsamer Einflussfaktor.

Den höchsten signifikanten Einfluss der Laktationsnummer der Mutterkuh auf das Geburtsgewicht präsentiert Tab. 4.19. Steigen die Geburtsgewichte von der ersten zur dritten Kalbung hin noch an, pendeln sie sich ab der dritten Kalbung auf etwa gleich bleibendem Niveau ein. Die Differenzen im Geburtsgewicht, abhängig von der Laktationsnummer der Mutterkuh, gelten wiederum für die Kälber beider Rassen.
Ergebnisse

Tab. 4.19: LSQ-Laktationsnumeremittelwerte mit Standardfehlern (SE) und Gewichtsdifferenzen für die Geburtsgewichte der Reinzuchtkälber der Zuchtjahre 1997/98 bis 2001/02

<table>
<thead>
<tr>
<th>Laktationsnummer</th>
<th>Geburtsgewicht (kg)</th>
<th>Absetzgewicht (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LSQ</td>
<td>SE</td>
</tr>
<tr>
<td>erste Laktation</td>
<td>33,5</td>
<td>0,53</td>
</tr>
<tr>
<td>zweite Laktation</td>
<td>36,5</td>
<td>0,56</td>
</tr>
<tr>
<td>dritte Laktation</td>
<td>37,7</td>
<td>0,58</td>
</tr>
<tr>
<td>vierte Laktation</td>
<td>37,6</td>
<td>0,66</td>
</tr>
<tr>
<td>fünfte Laktation</td>
<td>37,7</td>
<td>0,68</td>
</tr>
</tbody>
</table>

1) meint die Differenz (in kg) zur vorhergehenden Laktation

Aufgrund der nicht signifikanten Interaktion sind die Differenzen (10,1 kg) innerhalb der Rassen zwischen den Geburtstypen vergleichbar, wenn auch die Absolutwerte der einzelnen Rassen auf unterschiedlichem Niveau lagen.

Im Absetzgewicht erwies sich die Interaktion zwischen der Rasse und dem Geburtstyp als höchst signifikant. Während sich zwischen den LSQ-Werten für beide Geburtstypen der Rasse Dt. Angus kein Unterschied zeigt, klaffen die Dt. Fleckvieh Werte um gut 30 kg auseinander (vgl. Tab. 4.20).

Tab. 4.20: LSQ-Geburtstypmittelwerte mit Standardfehlern (SE) für Geburts- und Absetzgewichte der Reinzuchtkälber der Zuchtjahre 1997/98 bis 2001/02

<table>
<thead>
<tr>
<th>Geburtstyp</th>
<th>Geburtsgewicht (kg)</th>
<th>Absetzgewicht (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>beide Rassen</td>
<td>Dt. Angus</td>
</tr>
<tr>
<td></td>
<td>LSQ</td>
<td>SE</td>
</tr>
<tr>
<td>Einling</td>
<td>41,7</td>
<td>0,21</td>
</tr>
<tr>
<td>Zwilling</td>
<td>31,6</td>
<td>0,63</td>
</tr>
</tbody>
</table>

1) meint die Differenz (in kg) zwischen Einling und Zwilling

Im Modell für das Absetzgewicht der Reinzuchtkälber wurden als Kovariablen Geburtsgewicht und Absetzalter (Einfluss jeweils höchst signifikant) berücksichtigt. Die Regressionskoeffizienten lauten wie folgt: \(b_{\text{GewGebGew}} = 2,579 \) sowie \(b_{\text{GewAlte}} = 1,048 \).
Letzteres bedeutet, dass mit jedem Tag, den das Kalb älter wird, sein Körpergewicht etwa um ein kg zunimmt bzw. mit jedem kg mehr an Geburtsgewicht das Absetzgewicht um etwa 2,5 kg höher liegt. Die phänotypische Korrelation zwischen dem Geburtsgewicht und dem Absetzgewicht lag bei 0,45.

4.2.3.2 Tageszunahmen bis zum Absetzen

Bei der Betrachtung der Tageszunahmen der Reinzuchtkälber von der Geburt bis zum Absetzen ergibt sich ein ähnliches Bild wie auch schon bei Betrachtung der deskriptiven Leistungsbeschreibung. Die Kälber der Rasse Dt. Fleckvieh übertrafen die der Rasse Dt. Angus, innerhalb der Rassen übertrafen die Bullen- die Kuhkälber (vgl. Tab. 4.21).

Tab. 4.21: LSQ-Rassemittelwerte nach Geschlecht mit Standardfehlern (SE) für die Tageszunahmen von der Geburt bis zum Absetzen der Reinzuchtkälber der Zuchtjahre 1997/98 bis 2001/02

<table>
<thead>
<tr>
<th>Rasse</th>
<th>Geschlecht</th>
<th>ZunahmeGebAbs (g/d)</th>
<th>LSQ</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dt. Angus</td>
<td>♂</td>
<td>937</td>
<td>17,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>♂♀</td>
<td>857</td>
<td>18,1</td>
<td></td>
</tr>
<tr>
<td>Dt. Fleckvieh</td>
<td>♂♀</td>
<td>897</td>
<td>17,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>♂</td>
<td>1.055</td>
<td>12,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>♂♀</td>
<td>919</td>
<td>12,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>♂♀</td>
<td>987</td>
<td>11,2</td>
<td></td>
</tr>
</tbody>
</table>

Beim Blick auf die Tageszunahmen der Einlings- und Zwillingskälber beider Rassen ist zunächst auf die stark einseitige Tierzahlenverteilung zugunsten der Einlingskälber hinzuweisen, was auch die relativ hohen Standardfehler bei den Zwillingskälbern erklärt (vgl. Tab. 4.20). Sowohl vom Geburtstyp selber als auch von der Interaktion zwischen Rasse und Geburtstyp rührte der höchst signifikante Einfluss auf die Tageszunahmen. Innerhalb der Rasse Dt. Angus übertreffen die Einlingskälber die Zwillingskälber um im Mittel 66 g/d. Der Unterschied innerhalb der Kälber der Rasse Dt. Fleckvieh fiel mit einer Mehrzunahme von durchschnittlich 226 g/d der Einlings- gegenüber der Zwillingskälber bedeutend größer aus.
Die Tageszunahmen unter Berücksichtigung des höchst signifikanten Einflusses der Laktationsnummer der Mutter zeigten insbesondere von der ersten zur zweiten Laktation einen Anstieg von gut 100 g/d. Mit zunehmender Laktationsnummer waren weiterhin höhere Zunahmen zu verzeichnen, wenn auch in abgeschwächterem Maße (vgl. Tab. 4.23). Die Differenzen gelten wiederum für die Kälber beider Rassen.

Aus Tab. 4.24 wird ersichtlich, dass auch mit fortschreitenden Zuchtjahren nach der ersten Laktation die Tageszunahmen der Kälber mehr oder weniger stark anstiegen.
Tab. 4.24: LSQ-Zuchttarzmittelwerte mit Standardfehlern (SE) und Differenzen für die Tageszunahmen von der Geburt bis zum Absetzen der Reinzuchtkalber der Zuchtjahre 1997/98 bis 2001/02

<table>
<thead>
<tr>
<th>Zuchtjahr</th>
<th>Zunahme_{GebAbs} (g/d) beider Rassen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LSQ</td>
</tr>
<tr>
<td>1997/98</td>
<td>867</td>
</tr>
<tr>
<td>1998/99</td>
<td>964</td>
</tr>
<tr>
<td>1999/2000</td>
<td>987</td>
</tr>
<tr>
<td>2000/01</td>
<td>941</td>
</tr>
<tr>
<td>2001/02</td>
<td>950</td>
</tr>
</tbody>
</table>

1) meint die Differenz (in g) zur vorhergehenden Laktation

Die phänotypische Korrelation zwischen den Tageszunahmen von der Geburt bis zum Absetzen und dem Geburtsgewicht lag mit 0,45 im mittleren positiven Bereich, die phänotypische Korrelation zwischen den Tageszunahmen und dem Absetzgewicht lag bei 0,92.

4.2.4 LSQ-Mittelwerte mit Standardfehlern – Zuchtjahre 2002/03 und 2003/04

4.2.4.1 Geburtsgewicht

In der angewandten Varianzanalyse erwiesen sich als Einflussfaktoren auf das Geburtsgewicht die Faktoren Rasse und Geschlecht der Kalber als höchst signifikant (p < 0,001; vgl. Tab. 4.25). Die Dt. Fleckviehkalber lagen mit einem mittleren Geburtsgewicht von 45,2 kg sechs Kilogramm über den mittleren Gewichten der Dt. Angus Kalber. Die beiden Kreuzungen lagen erwartungsgemäß dazwischen, mit 44,8 kg für den Genotyp Dt. Angus x Dt. Fleckvieh bzw. 42,8 kg für den Genotyp Dt. Fleckvieh x Dt. Angus. Über alle Genotypen hinweg übertrafen die Bullenkalber die Kuhkalber im Geburtsgewicht im Mittel um 3,6 kg.

Der Einfluss der Laktationsnummer auf das Geburtsgewicht der Kalber war signifikant (p < 0,05). Hier ist eine ungleichmäßige Zunahme im Geburtsgewicht bis zur vierten Laktation zu verzeichnen. Mit der fünften Laktation werden die Geburtsgewichte wieder geringer, die mittleren Geburtsgewichte der Kalber aus Müttern in der siebten Laktation liegen 0,5 kg über den mittleren Geburtsgewichten der Kalber aus Erstkalbinnen.
Die mittleren Geburtsgewichte in den beiden Zuchtjahren unterscheiden sich mit einer Differenz von 0,6 kg nur geringfügig.

Tab. 4.25: LSQ-Mittelwerte mit Standardfehlern (SE) für die Geburtsgewichte der Kälber aller Rassen der Zuchtjahre 2002/03 und 2003/04 (ohne Zwillingskälber)

<table>
<thead>
<tr>
<th>Einfluss/Signifikanzniveau</th>
<th>Geburtsgewicht (kg)</th>
<th>LSQ</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rasse Kalb ***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dt. Angus (n = 50)</td>
<td>39,2</td>
<td>0,96</td>
<td></td>
</tr>
<tr>
<td>Dt. Fleckvieh (n = 101)</td>
<td>45,2</td>
<td>0,76</td>
<td></td>
</tr>
<tr>
<td>Dt. Angus x Dt. Fleckvieh (n = 124)</td>
<td>44,7</td>
<td>0,81</td>
<td></td>
</tr>
<tr>
<td>Dt. Fleckvieh x Dt. Angus (n = 188)</td>
<td>42,8</td>
<td>0,70</td>
<td></td>
</tr>
<tr>
<td>Geschlecht Kalb ***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂</td>
<td>44,8</td>
<td>0,56</td>
<td></td>
</tr>
<tr>
<td>♀</td>
<td>41,2</td>
<td>0,57</td>
<td></td>
</tr>
<tr>
<td>Laktationsnummer *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>erste Laktation</td>
<td>41,4</td>
<td>0,81</td>
<td></td>
</tr>
<tr>
<td>zweite Laktation</td>
<td>42,3</td>
<td>0,79</td>
<td></td>
</tr>
<tr>
<td>dritte Laktation</td>
<td>42,5</td>
<td>0,93</td>
<td></td>
</tr>
<tr>
<td>vierte Laktation</td>
<td>45,2</td>
<td>1,05</td>
<td></td>
</tr>
<tr>
<td>fünfte Laktation</td>
<td>44,2</td>
<td>1,06</td>
<td></td>
</tr>
<tr>
<td>sechste Laktation</td>
<td>43,5</td>
<td>0,66</td>
<td></td>
</tr>
<tr>
<td>siebte Laktation</td>
<td>41,9</td>
<td>0,72</td>
<td></td>
</tr>
<tr>
<td>Zuchtjahr n.s.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002/03</td>
<td>42,7</td>
<td>0,64</td>
<td></td>
</tr>
<tr>
<td>2003/04</td>
<td>43,3</td>
<td>0,61</td>
<td></td>
</tr>
</tbody>
</table>

*** höchst signifikant (p < 0,001)
** hoch signifikant (p < 0,01)
* signifikant (p < 0,05)
n.s. nicht signifikant (p ≥ 0,05)

4.2.4.2 Absetzgewicht

Genotyp- und geschlechterabhängig ergibt sich im Absetzgewicht (Tab. 4.26) von der Verteilung her ein entsprechendes Bild wie bereits zuvor beim Geburtsgewicht. Rasse und Geschlecht des Kalbes waren gleichfalls höchst signifikante Einflussfaktoren (p < 0,001).

Der Einfluss der Laktationsnummer, die aufgrund von teilweise schwacher Subzellenbesetzung (bedingt durch Verluste von 32 Kälbern während der Aufzuchtperiode) auf zwei Effektklassen reduziert wurde, vermittelt den Eindruck, dass Mehrkalbskühe, sicherlich nur bis zu einem gewissen Alter, im Geburts- und daraus resultierend im Absetzgewicht tendenziell schwerere Kälber hervorbringen.
Die Zuchtjahre, ohne signifikanten Einfluss, unterscheiden sich kaum in den Werten für das mittlere Absetzgewicht.

Tab. 4.26: LSQ-Mittelwerte mit Standardfehlern (SE) für die Absetzgewichte der Kälber aller Rassen der Zuchtjahre 2002/03 und 2003/04 (ohne Zwillingskälber)

<table>
<thead>
<tr>
<th>Einfluss /Signifikanzniveau</th>
<th>Absetzgewicht (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LSQ</td>
</tr>
<tr>
<td>Rasse Kalb ***</td>
<td></td>
</tr>
<tr>
<td>Dt. Angus (n = 42)</td>
<td>258</td>
</tr>
<tr>
<td>Dt. Fleckvieh (n = 91)</td>
<td>297</td>
</tr>
<tr>
<td>Dt. Angus x Dt. Fleckvieh (n = 122)</td>
<td>287</td>
</tr>
<tr>
<td>Dt. Fleckvieh x Dt. Angus (n = 176)</td>
<td>264</td>
</tr>
<tr>
<td>Geschlecht Kalb ***</td>
<td></td>
</tr>
<tr>
<td>♂</td>
<td>287</td>
</tr>
<tr>
<td>♀</td>
<td>266</td>
</tr>
<tr>
<td>Laktationsnummer ***</td>
<td></td>
</tr>
<tr>
<td>erste bis vierte Laktation</td>
<td>267</td>
</tr>
<tr>
<td>fünfte bis siebte Laktation</td>
<td>286</td>
</tr>
<tr>
<td>Zuchtjahr n.s.</td>
<td></td>
</tr>
<tr>
<td>2002/03</td>
<td>277</td>
</tr>
<tr>
<td>2003/04</td>
<td>276</td>
</tr>
</tbody>
</table>

*** = höchst signifikant (p < 0,001)
** = hoch signifikant (p < 0,01)
* = signifikant (p < 0,05)
n.s. = nicht signifikant (p ≥ 0,05)

Im Modell für das Absetzgewicht der Kälber der beiden Zuchtjahre wurden als Kovariablen das Geburtsgewicht, das Absetzalter und das Kalbealter der Mutterkuh innerhalb Laktationsnummer berücksichtigt, die allesamt höchst signifikanten Einfluss auf das untersuchte Merkmal zeigten (p < 0,001). Die Regressionskoeffizienten mit Standardfehlern lauten wie folgt: $b_{\text{AbsGebGew}} = 2,1252$ (SE = 0,3239), $b_{\text{AbsGewAlte}} = 0,5836$ (SE = 0,1174) und $b_{\text{AbsGewKalbealter}} = 0,8617$ (SE = 0,1493). Demnach bewirkt eine Veränderung um eine Einheit, d.h. um ein kg im Geburtsgewicht bzw. um einen Tag mehr im Absetzalter des Kalbes oder um einen Monat mehr im Alter der Mutterkuh innerhalb der beiden Laktationsklassen eine Zunahme im Absetzgewicht des Kalbes um 2,1, 0,6 bzw. 0,9 kg entsprechend.
4.2.4.3 Tageszunahmen bis zum Absetzen

Die LSQ-Mittelwerte für die Tageszunahmen einschließlich des Signifikanzniveaus der untersuchten Einflussfaktoren zeigt Tab. 4.27.

Für die berücksichtigte Kovariable, das Kalbealter der Mutterkuh, ergab sich ein Regressionskoeffizient von $b_{\text{EmuKalbealb}} = 1,7746$ (SE = 0,2951).

<table>
<thead>
<tr>
<th>Einfluss/Signifikanzniveau</th>
<th>Tageszunahmen (g/d)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LSQ</td>
<td>SE</td>
</tr>
<tr>
<td>Rasse Kalb ***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dt. Angus (n = 42)</td>
<td>996</td>
<td>22,6</td>
</tr>
<tr>
<td>Dt. Fleckvieh (n = 91)</td>
<td>1.161</td>
<td>16,1</td>
</tr>
<tr>
<td>Dt. Angus x Dt. Fleckvieh (n = 122)</td>
<td>1.123</td>
<td>13,3</td>
</tr>
<tr>
<td>Dt. Fleckvieh x Dt. Angus (n = 176)</td>
<td>1.034</td>
<td>10,9</td>
</tr>
<tr>
<td>Geschlecht Kalb ***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>♀</td>
<td>1.141</td>
<td>10,4</td>
</tr>
<tr>
<td>♂</td>
<td>1.017</td>
<td>10,6</td>
</tr>
<tr>
<td>Zuchtjahr n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002/03</td>
<td>1.078</td>
<td>10,7</td>
</tr>
<tr>
<td>2003/04</td>
<td>1.080</td>
<td>10,4</td>
</tr>
</tbody>
</table>

*** = höchst signifikant (p < 0,001)
** = hoch signifikant (p < 0,01)
* = signifikant (p < 0,05)
n.s. = nicht signifikant (p ≥ 0,05)
4.3 Varianzkomponenten

In Tab. 4.28 werden die am Tiermaterial der ersten fünf Reinzuchtjahre 1997/98 bis 2001/02 geschätzten additiv genetischen und maternalen Varianzen sowie die Kovarianzen präsentiert. Aus dem Datensatz 1.374 geborener Kälber wurden zur Varianzkomponentenschätzung 1.284 Geburtsgewichte und 1.181 Absetzgewichte bzw. Tageszunahmen verwendet.

Tab. 4.28: Varianz-/Kovarianzmatrix aus bivariater Schätzung für Geburts-, Absetzgewichte und Tageszunahmen von der Geburt bis zum Absetzen der Reinzuchtkälber der Zuchttjahre 1997/98 bis 2001/02

<table>
<thead>
<tr>
<th>Merkmale</th>
<th>GebGew</th>
<th>AbsGew</th>
<th>ZunGebAbs</th>
<th>GebGew</th>
<th>AbsGew</th>
<th>ZunGebAbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>GebGew</td>
<td>5,265</td>
<td>2,281</td>
<td>-17,994</td>
<td>1,411</td>
<td>17,778</td>
<td>73,392</td>
</tr>
<tr>
<td>AbsGew</td>
<td>72,754</td>
<td>338,608</td>
<td>-3,982</td>
<td>50,055</td>
<td>206,369</td>
<td></td>
</tr>
<tr>
<td>ZunGebAbs</td>
<td></td>
<td></td>
<td>2.025,844</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GebGew</td>
<td>4,538</td>
<td>16,059</td>
<td>48,892</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AbsGew</td>
<td></td>
<td>182,110</td>
<td>784,703</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZunGebAbs</td>
<td></td>
<td></td>
<td>3.537,572</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In entsprechender Darstellung zur vorab präsentierten Varianz/Kovarianzmatrix zeigt Tab. 4.29 auf der oberen Diagonale die Heritabilitäten, auf der unteren Diagonale die Maternaleffekte einschließlich der genetischen Korrelationen innerhalb und zwischen den einzelnen Merkmalen.

Die Heritabilität im Geburtsgewicht (vgl. Tab. 4.29) liegt mit 0,22 im mittleren Bereich. Während die Schätzwerte für die Heritabilitäten für die Merkmale, die im späteren Alter erfasst werden geringer werden ($h^2_{\text{AbsGew}} = 0,082$ und $h^2_{\text{ZunGebAbs}} = 0,106$), nehmen die Werte für die Maternaleffekte im Verlauf der Aufzuchtperiode zu. Der materne Einfluss auf das Geburtsgewicht wurde mit 19,1 % geschätzt, Absetzgewicht und Zunahmen wiesen maternalen Einfluss in Höhe von 20,6 % bzw. 18,4 % auf.

Die Korrelationen zwischen additiv genetischem und maternalem Effekt fielen für alle drei Merkmale positiv aus. Sie liegen für das Geburtsgewicht mit 0,29, für das Absetzgewicht und die Tageszunahmen bis dahin mit 0,44 bzw. 0,41 deutlich höher im positiven Bereich.
Die additiv genetische Korrelation zwischen Geburts- und Absetzgewicht lag bei 0,11, für Geburtsgewicht und Tageszunahmen bis zum Absetzen ergab sich mit -0,16 eine negative Korrelation. Die entsprechende Korrelation zwischen Absetzgewicht und Tageszunahmen fiel mit 0,99 erwartungsgemäß hoch aus, da diese beiden Merkmale den nahezu gleichen Informationsgehalt aufweisen. Entsprechend hoch positiv mit 0,997 fiel die maternale Korrelation zwischen Absetzgewicht und Tageszunahmen aus, auch die maternalen Korrelationen zwischen Geburtsgewicht und Absetzgewicht bzw. Tageszunahmen fielen mit 0,54 bzw. 0,39 noch mehr oder weniger hoch positiv aus.

Die Korrelationen zwischen additiv genetischem und maternalem Effekt zwischen den einzelnen Merkmalen waren für Geburts- und Absetzgewicht bzw. Geburtsgewicht und Tageszunahmen nahezu identisch (0,56 bzw. 0,55), zwischen Absetzgewicht und Zunahmen bei 0,42 leicht geringer, aber ebenfalls im mittleren bis hoch positiven Bereich. Die verbleibenden additiv genetischen-maternalen Korrelationen zwischen dem Absetzgewicht und dem Geburts-gewicht bzw. zwischen den Tageszunahmen und dem Geburtsgewicht fielen mit -0,21 und -0,29 beide negativ aus. Die entsprechende Korrelation zwischen den Tageszunahmen und dem Absetzgewicht lag bei 0,45.

<table>
<thead>
<tr>
<th>Merkmale</th>
<th>GebGew</th>
<th>AbsGew</th>
<th>ZunGebAbs</th>
<th>GebGew</th>
<th>AbsGew</th>
<th>ZunGebAbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>add. gen.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GebGew</td>
<td>0,221</td>
<td>0,112</td>
<td>-0,164</td>
<td>0,289</td>
<td>0,555</td>
<td>0,548</td>
</tr>
<tr>
<td>AbsGew</td>
<td></td>
<td>0,082</td>
<td>0,988</td>
<td>-0,210</td>
<td>0,435</td>
<td>0,417</td>
</tr>
<tr>
<td>ZunGebAbs</td>
<td></td>
<td></td>
<td>0,106</td>
<td>-0,287</td>
<td>0,452</td>
<td>0,410</td>
</tr>
<tr>
<td>maternal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GebGew</td>
<td></td>
<td></td>
<td></td>
<td>0,191</td>
<td>0,539</td>
<td>0,394</td>
</tr>
<tr>
<td>AbsGew</td>
<td></td>
<td></td>
<td></td>
<td>0,206</td>
<td>0,997</td>
<td></td>
</tr>
<tr>
<td>ZunGebAbs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,184</td>
</tr>
</tbody>
</table>

Tab. 4.29: Heritabilitäten und Maternaleffekte für Geburts-, Absetzgewichte und Tageszunahmen von der Geburt bis zum Absetzen der Reinzuchtkälber der Zuchtjahre 1997/98 bis 2001/02 auf der Diagonalen, genetische Korrelationen zwischen den Merkmalen sowie Korrelationen zwischen additiv genetischem und maternalem Effekt oberhalb der Diagonalen
4.4 Kreuzungsparameter

4.4.1 Differenzen zwischen den Reinzuchten

Im Vergleich der Reinzuchten (Dt. Angus – Dt. Fleckvieh) ergaben sich in allen drei Produktionsmerkmalen höchst signifikante Unterschiede zugunsten der Rasse Dt. Fleckvieh (p < 0,001; vgl. Tab. 4.30). Prozentual waren die Tiere der Rasse Dt. Fleckvieh denen der Rasse Dt. Angus (= 100 %) um jeweils 15,3 % im Geburts- und um 15,1 % im Absetzgewicht überlegen (= 6 bzw. 39 kg) und um 16,6 % (= 165 g/d) in den Tageszunahmen bis zum Absetzen.

Tab. 4.30: Differenzen zwischen den Reinzuchten in den ausgewählten Produktionsmerkmalen anhand der LSQ-Rassemittelwerte und Standardfehler (SE) für die Kälber der Zuchtjahre 2002/03 und 2003/04

<table>
<thead>
<tr>
<th>Rassedifferenzen (Dt. Angus – Dt. Fleckvieh)</th>
<th>GebGew (kg)</th>
<th>AbsGew (kg)</th>
<th>ZunGebAbs (g/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n LSQ ± SE</td>
<td>n LSQ ± SE</td>
<td>n LSQ ± SE</td>
<td></td>
</tr>
<tr>
<td>Dt. Angus</td>
<td>50 39,2 ± 0,96</td>
<td>42 258 ± 4,7</td>
<td>996 ± 22,6</td>
</tr>
<tr>
<td>Dt. Fleckvieh</td>
<td>101 45,2 ± 0,76</td>
<td>91 297 ± 3,3</td>
<td>1,161 ± 16,1</td>
</tr>
<tr>
<td>Differenz, Signifikanz</td>
<td>6 kg ***</td>
<td>39 kg ***</td>
<td>165 g/d ***</td>
</tr>
</tbody>
</table>

*** höchst signifikant (p < 0,001)
** hoch signifikant (p < 0,01)
* signifikant (p < 0,05)
n.s. nicht signifikant (p ≥ 0,05)

4.4.2 Individuelle Heterosis

Die Schätzwerte für individuelle Heterosis (Kreuzung – Reinzucht) waren für Absetzgewicht und Tageszunahmen jeweils nicht signifikant. Der Schätzwert für das Absetzgewicht fiel sogar negativ aus, die Kreuzungskälber waren den Reinzuchtkälbern im Absetzgewicht um -0,68 % unterlegen. Der Schätzwert für die Tageszunahmen bis zum Absetzen war zwar mit 0,02 % positiv, doch nahe bei Null. Nur für das Geburtsgewicht erwies sich der Schätzwert für individuelle Heterosis mit +3,7 % als hoch signifikant (p < 0,01; vgl. Tab. 4.31).
Tab. 4.31: Individuelle Heterosis in den drei ausgewählten Produktionsmerkmalen für die Kälber der Zuchtjahre 2002/03 und 2003/04

<table>
<thead>
<tr>
<th></th>
<th>Individuelle Heterosis (Kreuzung – Reinzucht)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schätzer ± SE</td>
</tr>
<tr>
<td>GebGew (kg)</td>
<td>1,548 ± 0,56</td>
</tr>
<tr>
<td>AbsGew (kg)</td>
<td>-1,887 ± 3,77</td>
</tr>
<tr>
<td>ZunGebAbs (g/d)</td>
<td>0,254 ± 17,82</td>
</tr>
</tbody>
</table>

4.4.3 Stellungseffekte

Die Rasse Dt. Fleckvieh auf der Muttersseite zeigt im Geburtsgewicht eine ca. 4,5 %ige Überlegenheit gegenüber der reziproken Kreuzung, die aber nicht signifikant ist (p ≥ 0,05).

Am Ende der Aufzuchtperiode hingegen zeigt sich diese Rasse als Mutter der reziproken Kreuzung mit 8,4 % im Absetzgewicht bzw. 8,6 % in den Tageszunahmen höchst signifikant überlegen (p < 0,001; vgl. Tab. 4.32).

Tab. 4.32: Stellungseffekte in den drei ausgewählten Produktionsmerkmalen für die Kälber der Zuchtjahre 2002/03 und 2003/04

<table>
<thead>
<tr>
<th></th>
<th>Stellungseffekte [(Dt. Angus x Dt. Fleckvieh) – (Dt.Fleckvieh x Dt. Angus)]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schätzer ± SE</td>
</tr>
<tr>
<td>GebGew (kg)</td>
<td>1,914 ± 1,03</td>
</tr>
<tr>
<td>AbsGew (kg)</td>
<td>22,245 ± 3,67</td>
</tr>
<tr>
<td>ZunGebAbs (g/d)</td>
<td>88,498 ± 16,82</td>
</tr>
</tbody>
</table>

*** höchst signifikant (p < 0,001)
** hoch signifikant (p < 0,01)
* signifikant (p < 0,05)
n.s. nicht signifikant (p ≥ 0,05)
Die nachfolgenden Abb. 4.1 bis 4.3 präsentieren – in Anlehnung an die drei vorab dargestellten Tab. 4.30 bis 4.32 – die Leistungen der Kälber aller Rassen der beiden Kreuzungsjahrgänge für die drei Produktionsmerkmale im graphischen Vergleich innerhalb bzw. zwischen Reinzucht und Kreuzung.

Abb. 4.1: Graphische Darstellung der LSQ-Rassemittelwerte mit Standardfehlern (SE) im Merkmal Geburtsgewicht der Kälber aller Rassen der Zuchtjahre 2002/03 und 2003/04

Abb. 4.2: Graphische Darstellung der LSQ-Rassemittelwerte mit Standardfehlern (SE) im Merkmal Absetzgewicht der Kälber aller Rassen der Zuchtjahre 2002/03 und 2003/04
Abb. 4.3: Graphische Darstellung der LSQ-Rassemittelwerte mit Standardfehlern (SE) im Merkmal Tageszunahmen von der Geburt bis zum Absetzen der Kälber aller Rassen der Zuchtjahre 2002/03 und 2003/04
5 Diskussion

5.1 Leistungskriterien – Reproduktions- und Produktionsmerkmale

5.1.1 Reproduktionsleistungen Mutterkühe

5.1.1.1 Abkalberaten

Der Vergleich der beiden Ausgangsrassen, die im Natursprung während der Reinzuchtjahre eingesetzt wurden, erbrachte einen hoch signifikanten Unterschied (p < 0,01) zugunsten der Rasse Dt. Angus mit einer Abkalberate von 97,7 % vs. 94,9 % bei der Rasse Dt. Fleckvieh (Chi²-Test). Im direkten Jahresvergleich ergaben sich keine signifikanten Unterschiede (p ≥ 0,05). Auch in den beiden Kreuzungsjahren zeigte sich kein signifikanter Unterschied zwischen den beiden Rassen, weder mit Augenmerk auf der Art der Anpaarung, noch bei der Unterscheidung in die zwei einzelnen Kreuzungszuchtjahre.
5.1.1.2 Kalbeverlauf der Mutterkühe

In der Varianzanalyse zum Kalbeverlauf der Mutterkühe in den fünf Reinzuchtjahren zeigte sich die Rasse ohne Bedeutung (Dt. Angus 1,10 ± 0,04 vs. Dt. Fleckvieh 1,08 ± 0,03; vgl. Tab. 4.7). Demgegenüber erbrachte der Chi²-Test für denselben Analysezeitraum einen höchst signifikanten Unterschied zugunsten der Rasse Dt. Angus (92,9 % vs. 86,4 %; vgl. Kap. 4.1.4.1). Diese unterschiedlichen Ergebnisse sind auf die jeweiligen unterschiedlichen statistischen Ansätze zurückzuführen. Wurden im Rahmen der Varianzanalyse alle Einflüsse multifaktoriell betrachtet, erfolgte im Chi²-Test ausschließlich die Betrachtung der Rasse als einzelner Faktor.

In der Varianzanalyse für die beiden Kreuzungsjahre erwies sich die Art der Anpaarung als ein höchst signifikanter Einflussfaktor (p < 0,001; vgl. Tab. 4.7). Dieser muss aber aufgrund der geringen Tierzahlen insbesondere in den Reinzucht-Kontrollgruppen abgeschwächt werden. Zudem liegen die LSQ-Rassemittelwerte mit 1,06 für den „leichtesten Kalbeverlauf“ und 1,24 für den „schlechtesten Kalbeverlauf“ auf einem guten Niveau beieinander. Ein ähnliches Ergebnis erbrachte diesbezüglich auch der Chi²-Test. Die Kreuzungskälber kamen tendenziell problemloser zur Welt als die Reinzuchtkälber (vgl. u.a. GREGORY et al., 1991; BENNETT und GREGORY, 1996 und 2001), wobei die Geburten mit der Rasse Dt. Angus auf der Mutterseite weniger Einschreiten seitens der Tierpfleger erforderten (98,0 % ohne Hilfe vs. 96,9 % ohne Hilfe bei der reziproken Kreuzung mit Dt. Fleckvieh auf der Mutterseite; vgl. Kap. 4.1.4.1 bzw. Tab. 4.11). Unerwartet hoch im Vergleich zum
fünfjährigen Mittel aus den Reinzuchtjahren fiel hier im prozentualen Vergleich die Differenz zwischen den Abkalbungen in Reinzucht der Zuchtjahre 2002/03 und 2003/04 aus (unproblematische Kalbungen bei Dt. Angus zu „nur“ 84,3 % vs. 96,1 % bei Dt. Fleckvieh). Insbesondere hinsichtlich der Validität der Chi²-Testergebnisse bleibt an dieser Stelle aber zu bemerken, dass bei manchen Unterscheidungen ein Viertel bis die Hälfte der Subzellen weniger als fünf Beobachtungen enthielten, und so die gefundenen Unterschiede insbesondere der beiden Kreuzzungsjahre vorsichtig zu interpretieren sind. Zudem ging ein beträchtlicher Anteil der Bewertungen „leichte Zughilfe“ in die Kategorie „mit Hilfe“ ein, was insgesamt einen schlechteren Gesamteindruck impliziert.

Der in den Reinzuchtjahren höchst signifikante Einfluss des Geburtsgewichtes auf den Kalbeverlauf steht in Übereinstimmung mit der Literatur (vgl. u.a. RITCHIE und STROHBNEN, 1993; MÁRQUEZ et al., 2001a; ERIKSSON et al., 2004a) und schlägt sich durch die Überlagerung mit dem allerdings nicht signifikanten Effekt des Geburtstyps in einem Regressionskoeffizient von +0,007 Pkte. für Einlingskälber und +0,022 Pkte. für Zwillingskälber je zusätzlichem kg Geburtsgewicht nieder. Der nicht signifikante Einfluss des Geburtstyps mag auf den ersten Blick widersprüchlich erscheinen, erklärt sich aber vor dem Hintergrund der 33 Zwillingskälber bei insgesamt 1.257 Kälbern und der Überlagerung mit dem gebildeten Effekt der addierten Geburtsgewichte. In den beiden Kreuzzungsjahren fallen die 13 Zwillinge von insgesamt 456 Kälbern hoch signifikant (p < 0,01) ins Gewicht, wobei anzumerken bleibt, dass während dieses Betrachtungszeitraumes in der Rasse Dt. Angus keine Zwillingsabkalbungen auftraten. Die Geburtsgewichte der Kälber der beiden Kreuzzungsjahrgänge zeigten erwartungsgemäß einen signifikanten Einfluss auf den Kalbeverlauf (p < 0,05) und schlugen sich in ansteigenden LSQ-Mittelwerten bei jeweils höheren Geburtsgewichten nieder.

Der in der Literatur vielfach bestätigte Zusammenhang zwischen dem Geburtsgewicht und dem Kalbeverlauf in Abhängigkeit vom Alter der Kuh (vgl. REYNOLDS et al., 1990; RITCHIE und STROHBNEN, 1993; ERIKSSON et al., 2004a; PHOCAS und SHAPA, 2004) konnte auch in der eigenen Untersuchung mit dem hoch bzw. höchst signifikantem Einfluss der Laktationsnummer der Mutterkuh in beiden Betrachtungszeiträumen bestätigt werden. MÁRQUEZ et al. (2001a) führen signifikant mehr Kalbeprobleme (zu ca. 18,0 %) bei Färsen gegenüber Mehrkalbskühen an, auch bei REYNOLDS et al. (1990) beeinflusste das Kalbealter der Mutter den Kalbeverlauf signifikant, wobei auch hier wieder die meisten
Probleme bei zwei- bis dreijährigen Kühen auftraten. ERIKKSON et al. (2004a) sprechen von einem verstärkten Auftreten von Kalbeproblemen bei Erstkalbinnen zu ca. 4,0 % im Gegensatz zu Mehrkalbskühen. In der eigenen Untersuchung zeigten die Erstkalbinnen in den beiden Betrachtungszeiträumen ebenfalls die höchsten Scores für Probleme im Kalbeverlauf, die bereits in der nachfolgenden Laktation um ca. 10,0 bis 16,0 % geringer waren (1,18 Pkte. vs. 1,06 Pkte. in den Reinzuchtjahren; 1,28 Pkte. vs. 1,07 Pkte. in den Kreuzungsjahren). Grundsätzlich gestaltet sich der Vergleich der LSQ-Mittelwerte für den Kalbeverlauf aus verschiedenen Untersuchungen sehr schwierig, da verschiedene Abstufungen zur Bewertung des Kalbeverlaufes zugrunde gelegt wurden.

5.1.1.3 Kälberverluste

Die Totgeburtenraten innerhalb der Rasse Dt. Angus schwankten jährlich zwischen 2,0 und 3,4 % für die Jahre 1997/98 bis 2001/02, ohne extreme Ausreißer in eine Richtung aufzuweisen. Das Auftreten von Totgeburten innerhalb der Rasse Dt. Fleckvieh hingegen fiel sowohl im jährlichen Rassevergleich als auch in der absoluten Höhe deutlich stärker aus. Für den Zeitraum der beiden Kreuzungsjahrgänge 2002/03 und 2003/04 traten im Mittel bei den Reinzuchtkälbern mit 2,4 % weniger Totgeburten auf als bei den Kreuzungskälbern mit durchschnittlich 2,9 %. Dabei lassen die einzelnen Totgeburten je Rasse bzw. je Anpaarung keine Tendenzen erkennen.

Umwelt das gehaltvollere Kolostrum sich nicht in geringeren Verlusten um den Geburtszeitraum herum niederschlug.

In der Literatur finden sich verschiedene Angaben zu Totgeburten und Kälberverlusten (u.a. SMITH et al., 1976; GREGORY et al., 1978; GREGORY et al., 1979; MEIJERING, 1980; LAWLOR et al., 1984; WILLIAMS et al., 1990; ERIKSSON et al., 2004a). Hier wird grundsätzlich der geringe genetische Einfluss deutlich und die viel stärker Einfluss nehmende Umweltkomponente, die sich in unzählige Einzelfaktoren wie Klima, Witterung, Haltungsbedingungen, Gesundheitszustand der Mutterkühe, Management, Tierbeobachtungen, u.s.w. aufspalten lässt. Diese vielen Einzelkomponenten wirken in jeder Studie unterschiedlich stark zusammen oder gegeneinander und nehmen so immer wieder neu Einfluss auf die variierenden Verlustangaben. Der Literatur entnommene Verlustraten für den Zeitraum bis 72 h post partum variieren zwischen 1,0 und 7,1 %, für Totgeburten, untersuchungsabhängig unterschiedlich definiert (von tot geboren bis wenige Minuten bis Stunden nach der Geburt verendet) finden sich Spannweiten zwischen 2,0 und 6,0 % (vgl. u.a. SMITH, 1976; LAWLOR, 1984; GREGORY et al., 1991).

Die während der Aufzucht verendeten Kälber waren entweder ohne offensichtlichen Grund verunfallt, oder wurden aufgrund von Weideverletzungen oder Fundamentproblemen gemerzt. Auch virale Infektionen und Diarrhöen traten weiterhin während der Aufzucht auf und führten zu Verlusten.

Die innerhalb der Rasse Dt. Angus erreichten Absetzraten lagen für die fünf Reinzuchtjahrgänge bei 93,5 %, innerhalb der Rasse Dt. Fleckvieh bei 88,1 %. In den sich anschließenden zwei Kreuzungsjahren lagen die Aufzuchtraten der beiden Reinzuchten mit 85,5 % für Dt. Angus und 90,7 % für Dt. Fleckvieh nahezu entgegengesetzt. Von den Kreuzungskälbern des Genotyps Dt. Angus x Dt. Fleckvieh der beiden Zuchtjahre konnten 98,5 % abgesetzt werden, bei der reziproken Kreuzung waren es 93,5 %. Die in der eigenen Untersuchung erreichten Absetzraten lagen somit tendenziell in Übereinstimmung mit den in der Literatur erwähnten Bereichen von 77,1 % bis 93,1 %, wobei die meisten Aufzuchtraten im Bereich zwischen ca. 86,0 und 90,0 % einzuordnen sind (vgl. u.a. REYNOLDS, 1990; WILLIAMS, 1990; GREGORY et al., 1991).

Diese eigenen Ergebnisse bestätigen den in der Literaturübersicht dargestellten Zusammenhang zwischen Kalbeverlauf und Mortalitätsrate, den starken Einfluss der Umweltkomponenten sowie die den Kreuzungskälbern allgemein nachgesagte bessere Vitalität (SMITH et al., 1976; GREGORY et al., 1978; GREGORY et al., 1979;
MEIJERING, 1980; LAWLER et al., 1984; WILLIAMS et al., 1990; ERIKSSON et al., 2004a). Eine Erklärung, sowohl für die 8,0 % Totgeburten bei der Rasse Dt. Angus im Jahr 2003/04, als auch für die außerordentlich hohen Aufzuchtverluste der Rasse Dt. Angus von 21,7 % im selben Zuchtjahr kann nicht abgeleitet werden.

5.1.2 Produktionsleistungen Kälber

Den Ergebnissen der Fleischleistungsprüfung im Feld in Mutterkuhherden im Jahr 2006 (BDF, 2007) sind für die Rassen Dt. Angus und Dt. Fleckvieh im Vergleich zum eigenen Tiermaterial der beiden Rassen aus den Reinzuchtjahren folgende Werte zu entnehmen:

<table>
<thead>
<tr>
<th>Rasse / Geschlecht</th>
<th>Geburtsgewicht (kg)</th>
<th>200-Tage-bzw. Absetzgewicht (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ergebnisauszug</td>
<td>eigenes Tiermaterial</td>
</tr>
<tr>
<td>Dt. Angus ♂</td>
<td>34,9</td>
<td>34,1</td>
</tr>
<tr>
<td></td>
<td>32,4</td>
<td>32,0</td>
</tr>
<tr>
<td>Dt. Fleckvieh ♂</td>
<td>40,6</td>
<td>41,8</td>
</tr>
<tr>
<td></td>
<td>38,4</td>
<td>38,6</td>
</tr>
</tbody>
</table>

Obwohl die in der Tab. 5.1 abgebildeten Gewichte einen Vergleich der absoluten Leistungen nahe legen, können sie nicht „1 zu 1“ mit den Geburts- und Absetzgewichten der Kälber der eigenen Untersuchung verglichen werden, schließlich sind diese auf ein mittleres Absetzalter
von 215 Tagen korrigiert. Gleichzeitig bleibt zu bedenken, dass die in der Tabelle dargestellten Auszüge aus der Fleischleistungsprüfung im Feld zwar nach Rassen differenzieren, aber zahlreiche unterschiedliche Haltungs- und Fütterungssysteme an vielfältigen Standorten widerspiegeln. Leistungsparameter sind populationsspezifisch zu interpretieren, überall wirken verschiedene Umwelteffekte in unterschiedlicher Intensität. Das eigene Tiermaterial repräsentiert einen Standort mit nur einem Haltungs- und Fütterungssystem. Diese Erklärung gilt für den Vergleich und die Interpretation der Tageszunahmen in gleicher Weise. Die Leistungsüberlegenheit der Rasse Dt. Fleckvieh im Lebendgewicht um den Absetzzeitraum herum ist ebenso am Datenmaterial der eigenen Untersuchung als auch an dem der Fleischleistungsprüfung zu erkennen. Beide Male beträgt die Leistungsdifferenz zwischen den Rassen ca. 30,0 kg. Dabei liegen die Absetzgewichte des eigenen Tiermaterials trotz eines um zwei Wochen höher korrigierten Alters leicht unter den Werten der Rinder aus der Fleischleistungsprüfung, was aber wohl auf die ungleichen Systeme zurückzuführen ist. Die Geburtsgewichte liegen aufgrund der zum Zeitpunkt der Abkalbungen abgeschwächten Auswirkungen unterschiedlicher Haltungs- und Fütterungseinflüsse sehr eng beieinander, die übereinstimmenden Differenzen zwischen den Rassen liegen bei ca. 5,0 kg, wiederum zugunsten der Dt. Fleckviehtiere.

Die Rangierung zwischen den einzelnen Rassen bzw. Genotypen (die Leistungen der beiden Kreuzungen liegen tendenziell zwischen denen der beiden Reinzuchten), sowie die Rangierung der Geschlechter innerhalb der Rassen bzw. Genotypen (Bullenkälber zeigen höhere Geburts- und Absetzgewichte sowie höhere Tageszunahmen als Kuhkälber) befinden sich auch in Übereinstimmung mit der Literatur (vgl. u.a. ALENDA et al., 1980a; GRAHAM et al., 1999; MÁRQUEZ et al., 2001b; ABDEL-AZIZ et al., 2003). Die Red Poll- und Simmentalkreuzungen, jeweils mit Herefordkühen verpaart, übertrafen bei REYNOLDS et al. (1990) die Kreuzungen mit Dt. Angus und Pinzgauer auf der Vaterseite um im Mittel 1,3 kg im Geburtsgewicht. In Absetzgewicht und Tageszunahmen waren die Dt. Angus- den Simmentalkreuzungen um nur ca. 6,8 kg bzw. 7 g/d unterlegen. Die Differenzen beim eigenen Tiermaterial lagen bei 23,0 kg im Absetzgewicht und bei 89 g/d in den Tageszunahmen, aber jeweils zugunsten der reziproken Kreuzung mit Dt. Fleckvieh auf der Muttersseite. Auch GREGORY et al. (1991) fanden signifikante Rasseunterschiede zwischen Tieren der Rassen Dt. Angus und Simmental sowohl in Geburts- und Absetzgewicht als auch im Merkmal Tageszunahmen jeweils zugunsten der Rasse Simmental in Höhe von ca. 9,0 kg im Geburtsgewicht, ca. 47,0 kg im Absetzgewicht und ca. 200 g in den Tageszunahmen.
5.2 Schätzwerte – Heritabilitäten und maternale Effekte

Die geschätzten Heritabilitätswerte liegen für das Geburtsgewicht mit 0,22 im unteren Bereich der aus der Literatur entnommenen Spanne (= 0,16 bis 0,51; vgl. u.a. QUAAS et al., 1985; BERTRAND und BENYSHEK, 1987; MEYER et al., 1993; WOODWARD et al., 1992; SWALVE, 1993; MEYER und GRASER, 1994; BENNETT und GREGORY, 1996; ERIKKSON et al., 2004a). Für das Absetzgewicht liegt der eigene Schätzwert mit 0,08 unterhalb der Literaturangaben (0,10 bis 0,36; vgl. u.a. GRASER und HAMMOND, 1985; WRIGHT et al., 1987; SWALVE, 1993; MEYER, 1993 und 1995; DODENHOFF et al., 1999). Auch der am eigenen Tiermaterial geschätzte Heritabilitätswert von 0,11 für die Tageszunahmen von der Geburt bis zum Absetzen fällt im Vergleich mit der Literatur (0,27 bis 0,46) sehr niedrig aus (vgl. TRUS und WILTON, 1988; BENNETT und GREGORY, 1996). Grund für die teilweise uneinheitlichen Aussagen zwischen Literatur- und eigenen Werten, insbesondere für die geringeren h²-Werte, ist die Tatsache der wenigen Väter, die zum einen selbstgezogen und somit teilweise verwandt waren, und zum anderen keine repräsentative Zufallsstichprobe der gesamten Population darstellen.

Der maternale Effekt für das Geburtsgewicht aus der eigenen Untersuchung liegt mit 0,19 im oberen Bereich der aus der Literatur entnommenen Spanne. Zwar ist der Literatur ein Wertebereich von 0,01 bis 0,82 zu entnehmen, wobei aber der allergrößte Teil der Werte für den maternalen Effekt unter 0,17 liegt (vgl. u.a. BURFENING et al., 1981; QUAAS et al., 1985; BERTRAND und BENYSHEK, 1987; GARRICK et al., 1989; SWALVE, 1993; MEYER, 1995; GALVAO DE ALBUQUERQUE und MEYER, 2000; ERIKSSON et al., 2004a). Die am eigenen Tiermaterial geschätzte Korrelation zwischen additiv genetischem und maternalem Effekt im Merkmal Geburtsgewicht lag mit 0,29 im oberen Bereich der Literaturwerte, die in der Hauptsache von leicht negativ (-1,05 bis -0,04) bis hin zu deutlich positiv (0,46) reichten (vgl. u.a. NELSON et al., 1994; CANTET et al., 1988; GROTHEER et al., 1997). Der weite Rahmen der Schätzwerte für die Korrelation lässt sich auf die unterschiedlichen Modellaufbauten zurückführen. Allein SWALVE (1993) schätzte an vergleichbarem Tiermaterial in Abhängigkeit vom Modell Werte von -0,36 bis 0,46 für die Korrelation zwischen additiv genetischem und maternalem Effekt im Merkmal Geburtsgewicht.
Der maternale Effekt für das Absetzgewicht stimmte mit 0,21 mit den Literaturwerten von 0,07 bis 0,25 bestens überein (vgl. u.a. QUAAS et al., 1985; MEYER et al., 1993; DODENHOFF et al., 1999). Die additiv genetische-maternale Korrelation in diesem Merkmal fiel in der Literatur von deutlich negativ mit -0,57 bis hin zu leicht positiven Werten von bis zu 0,16 geringer aus als der eigene Schätzwert mit 0,44 (vgl. u.a. WRIGHT et al., 1987; SWALVE, 1993; CANTET, 1998; DODENHOFF, 1999).

Die Schätzwerte für den maternalen Effekt im Merkmal Tageszunahmen von der Geburt bis zum Absetzen bewegen sich in einem engen Bereich zwischen 0,16 und 0,27 (vgl. TRUS und WILTON, 1988; BENNETT und GREGORY, 1996), was auch durch den eigenen Schätzwert mit 0,18 bekräftigt werden kann. Die in diesem Merkmal geschätzten Korrelationen zwischen additiv genetischem und maternalem Effekt liegen in den genannten Quellen zwischen -0,26 und -0,54 im mittleren negativen Bereich, wohingegen der eigene Schätzwert in Höhe von 0,41 im positiven Bereich liegt.

Grundsätzlich, und so auch im Fall der eigenen Untersuchung, können Unterschiede der eigenen Schätzwerte zur Literatur aufgrund nicht vergleichbarer Versuchsanstellungen bzgl. anderer Tierzahlen und insbesondere durch die Anzahl eingesetzter Väter erklärt werden. Aus Grundlagen der Versuchsplanung für die Schätzung genetischer Parameter leiteten RASCH et al. (1978) ab, dass für die Schätzung der Heritabilitätskoeffizienten bei günstiger Struktur des Materials ein Mindeststichprobenumfang von 2.000 Versuchseinheiten, für die Schätzung genetischer Korrelationskoeffizienten sogar von mindestens 6.000 Versuchseinheiten erforderlich ist. Dabei definierten die Autoren die Versuchseinheit im Allgemeinen als ein Tier, an dem die Selektionsmerkmale gemessen bzw. festgestellt werden.

Gleichzeitig bleibt im Zuge der Interpretation der Ergebnisse der eigenen Untersuchung zu bedenken, dass bisher nur wenig Varianzkomponentenschätzungen an deutschem Material vorgenommen wurden und zudem jeder Schätzwert als populationsspezifisch anzusehen ist.
5.3 Kreuzungsparameter

Die Schätzwerte für individuelle Heterosis fielen für Absetzgewicht und Tageszunahmen sehr niedrig aus und waren nicht signifikant \((p \geq 0,05)\), lagen aber doch innerhalb der in der Literatur angegebenen Grenzen. In der Literatur bewegen sich die Schätzwerte für individuelle Heterosis für das Geburtsgewicht zwischen 1,6 und 4,0 %, für das Absetzgewicht zwischen 2,0 und 5,5 % bzw. um 2,6 % für die Tageszunahmen bis zum Absetzen (ALENDA et al., 1980; GREINER, 2002; KRESS und NELSEN, 2002). Der eigene Schätzwert im Geburtsgewicht erwies sich mit 3,7 % als hoch signifikant \((p < 0,01)\). Die Heterosis- schätzwerte für Absetzgewicht und Tageszunahmen waren mit -0,7 bzw. 0,02 % nicht signifikant. Dies mag darauf zurückzuführen sein, dass die beiden Rassen aufgrund der Einkreuzung deutscher Zweinutzungsrassen verwandtschaftlich noch nicht weit genug voneinander entfernt liegen.

5.4 Zuchtwertschätzung – Einsatz von Rassemitteln

Merkmale, die gewöhnlich zur Überwachung der Wachstumsleistung bei Fleischrindern herangezogen werden, sind Gewichte aus Wiegungen in verschiedenen Altersstadien der Tiere einschließlich der Berechnung der Tageszunahmen zwischen zwei Wiegungen. Ideale Fixpunkte in der Gewichtserfassung wären das Geburtsgewicht, das Absetz- und Jahresgewicht sowie das Endgewicht. Abhängig von der Betriebsart (Voll- oder Nebenerwerb), der Herdengröße, dem Deckmanagement (Natursprung oder künstliche Besamung, mit oder ohne Synchronisation), den Haltungsbedingungen (Stallgebäude oder Außenhaltung, einschl. Lage der Flächen (arrondiert oder nicht arrondiert)) und der Betriebsausstattung (Viehwaage, Fangeinrichtungen, Viehtransporter u.s.w.) kommt es in der Fleischrinderhaltung zu mehr oder weniger Mensch-Tier-Kontakten und auch zu mehr oder weniger unregelmäßigen Wiegungen. Jede Wiegeaktion sollte im Idealfall mit anderen anfallenden Maßnahmen am Tier (z.B. Klauenpflege, Wurmkuren, Impfungen u.s.w.) vereinbar sein und in den gesamten Produktionszyklus hineinpassen. Bezüglich der direkten Erfassung des Geburtsgewichtes kommt erschwerend hinzu, dass die Abkalbeperioden bei

Tab. 5.2: Auswirkungen des Einsatzes eines Rassemittels für das Geburtsgewicht auf die Höhe der Tageszunahmen von der Geburt bis zum Absetzen im Sinne einer Über- bzw. Unterschätzung, Mittelwerte, Standardabweichungen, Minima und Maxima für die Rassen Dt. Angus und Dt. Fleckvieh der Zuchtjahre 1997/98 bis 2001/02

<table>
<thead>
<tr>
<th>Art des Schätzfehlers/Rasse</th>
<th>Differenz (Rudlos-VIT) (g/d)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\bar{x}</td>
<td>s</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>Unterschätzung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dt. Angus ($n = 544$)</td>
<td>-28,6</td>
<td>19,7</td>
<td>-115,9</td>
<td>-0,76</td>
</tr>
<tr>
<td>Dt. Fleckvieh ($n = 409$)</td>
<td>-32,4</td>
<td>21,4</td>
<td>-131,7</td>
<td>-2,1</td>
</tr>
<tr>
<td>Überschätzung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dt. Angus ($n = 125$)</td>
<td>13,2</td>
<td>10,9</td>
<td>3,1</td>
<td>64,2</td>
</tr>
<tr>
<td>Dt. Fleckvieh ($n = 103$)</td>
<td>18,4</td>
<td>15,6</td>
<td>0,0</td>
<td>54,7</td>
</tr>
</tbody>
</table>

Ist ein individuelles Geburtsgewicht vorhanden, welches über dem jeweiligen Rassemittel liegt, so kommt es bei der Rasse Dt. Angus im Mittel zu einer Unterschätzung der täglichen Zunahmen in Höhe von ca. -29 g/d. Die maximale Unterschätzung liegt in diesem Fall bei ca. -116 g/d. Liegt hingegen ein Geburtsgewicht vor, welches unter dem jeweiligen Rassemittel liegt, so kommt es im Mittel zu einer Überschätzung in den täglichen Zunahmen in Höhe von ca. 13 g/d. Die maximale Überschätzung liegt hier bei ca. 64 g/d.

Für die Rasse Dt. Fleckvieh gestaltet sich das Beispiel ähnlich. Liegt ein individuelles Geburtsgewicht vor, welches über dem jeweiligen Rassemittel liegt, so kommt es im Mittel zu einer Unterschätzung der täglichen Zunahmen von ca. -32 g/d. Die maximale Unterschätzung liegt bei ca. -132 g/d. Liegt ein individuelles Geburtsgewicht vor, welches unter dem jeweiligen Rassemittel liegt, so kommt es im Mittel zu einer Überschätzung der in den täglichen Zunahmen von ca. 18 g/d. Die maximale Überschätzung liegt bei ca. 55 g/d.

Aus diesem vorangestellten Beispiel lässt sich ableiten, dass die Bullen des eigenen Tiermaterials ohne Berücksichtigung der individuellen Geburtsgewichte mehr oder weniger stark in den Tageszunahmen im offiziellen Zuchtwertschätzverfahren unterschätzt wurden. Diese Schätzfehler liegen für die Rasse Dt. Angus im Durchschnitt bei ca. -21 g/d. Die Tiere der Rasse Dt. Fleckvieh wurden im Durchschnitt um einen ähnlichen Betrag (ca. 22 g/d) unterschätzt. So muss eine Empfehlung weg von den Standardmitteln ausgesprochen werden. Da aber die Verwendung ausschließlich individueller Geburtsgewichte in der Praxis aus genannten Gründen nicht umsetzbar ist, müsste individuell erfassten Lebendgewichten zu
definierten Zeitpunkten mehr Bedeutung zugemessen werden, und entsprechend weniger dem Merkmal Tageszunahmen, das auf der Annahme mittlerer Geburtsgewichte basiert.

Da die Absetzgewichte flächendeckender erfasst werden als die Geburtsgewichte könnte ein (Verbesserungs-)Vorschlag sein, anstatt der täglichen Zunahmen das Absetzgewicht zu berücksichtigen. Diese Alternative findet Bekräftigung in der genetischen Korrelation zwischen Absetzgewicht und Tageszunahmen von 0,988. Dies bedeutet, dass mit dem Wert des Merkmals (hier Absetzgewicht) genetisch bereits der Wert des anderen Merkmals (hier Tageszunahmen) mitbestimmt wird. Die auf den ersten Blick verwirrend wirkende genetische Korrelation zwischen Geburtsgewicht und Tageszunahmen von -0,164 lässt eventuell eine Art kompensatorisches Wachstum (insbesondere im Hinblick auf die Dt. Anguskälber) vermuten.
Genetische Korrelationen, wobei wie bereits angesprochen Höhe und Richtung zu beachten sind, spielen auch noch aus einer anderen Sicht für die Züchtung eine große Rolle. Viele Leistungsmerkmale lassen sich entweder erst spät in der Entwicklung des Rindes oder nur unter sehr hohem, unzumutbarem Aufwand feststellen. Hier kann der Tierzüchter sogenannte Hilfsmerkmale selektionsunterstützend heranziehen. Der Wert eines Hilfsmerkmals als Parameter bei der Frühselektion wird letztlich durch die genetische Korrelation zu den zu verbessernden Leistungsmerkmalen entschieden.

5.5 Vorschläge zur Optimierung der Zuchtwertschätzung

Aufgrund der am eigenen Tiermaterial geschätzten Heritabilitäten ist für die Merkmale Geburtsgewicht, Absetzgewicht und Tageszunahmen ($h^2_{GebGew} = 0,22; \ h^2_{AbsGew} = 0,08; \ h^2_{ZunGebAbs} = 0,11$) eine Zuchtwertschätzung durchführbar. Hierzu können die im Rahmen der eigenen Untersuchung angewendeten Mehrmerkmalsmodelle empfohlen werden. Eine derartige Zuchtwertschätzung empfiehlt sich so nur für Rinder in Reinzucht. Für die auf
Diskussion

6 Zusammenfassung

Im Rassevergleich ergab sich unter der Maßgabe des durchgeführten Natursprungs innerhalb der Zuchtjahre 1997/98 bis 2001/02 ein hoch signifikanter Unterschied (p < 0,01; Chi²-Test) zugunsten der Rasse Dt. Angus mit einer Abkalberate von 97,7 % vs. 94,9 % bei der Rasse Dt. Fleckvieh. Der Chi²-Test zwischen den in Reinzucht angepaarten Kühen gegenüber den in Kreuzung angepaarten Kühen der Zuchtjahre 2002/03 und 2003/04 erwies sich als nicht signifikant. Im Chi²-Test auf signifikante Rasseunterschiede hinsichtlich des Kalberverlaufs über alle sieben Zuchtjahre hinweg betrachtet, und in Abhängigkeit von der Art der Anpaarung, ergab sich ein höchst signifikanter Unterschied (p < 0,001) zugunsten der Kreuzungsanpaarung von Dt. Fleckviehbullen mit Dt. Anguskühen, die zu 98,0 % ohne Hilfe abkalbten. Einige Verluste, sowohl im Rahmen von Totgeburten als auch in den ersten Tagen post partum, blieben ungeklärt.

Im Vergleich der Reinzuchten ergaben sich hinsichtlich der drei Produktionsmerkmale höchst signifikante Unterschiede zugunsten der Rasse Dt. Fleckvieh (p < 0,001). Prozentual waren die Tiere der Rasse Dt. Fleckvieh denen der Rasse Dt. Angus um 15,3 % im Geburts-, um
15,1 % im Absetzgewicht und um 16,6 % in den Tageszunahmen bis zum Absetzen überlegen.

Die im Rahmen der Varianzkomponentenschätzung für beide Rassen gemeinsam geschätzten Heritabilitäten für die ausgesuchten Produktionsmerkmale Geburtsgewicht, Absetzgewicht und Tageszunahmen von der Geburt bis zum Absetzen fielen niedrig aus ($h^2_{GebGew} = 0,22$, $h^2_{AbsGew} = 0,08$, $h^2_{ZunGebAbs} = 0,11$), was auf die geringe und für die gesamte Population nicht repräsentative Anzahl eingesetzter Väter zurückgeführt wurde. Die Schätzwerte für den maternalen Effekt in Höhe von 0,19 für das Geburtsgewicht, 0,21 für das Absetzgewicht und 0,18 für die Tageszunahmen lagen eng beieinander. Die geschätzten Korrelationen zwischen additiv genetischem und maternalem Effekt für die drei Produktionsmerkmale waren allesamt im deutlich positiven Bereich (0,29; 0,44; 0,41).

Zusammenfassung

Optimierung der Infrastruktur im Sinne einer flächendeckenden Datenerfassung und -weiterleitung voraussetzt.

Trotz unbedeutender Praxisrelevanz der erstellten Einfachkreuzungen gaben die eingesetzten Rassen einige Hinweise zum Ausmaß individueller Heterosis und zur Auswirkung von Stellungseffekten. Die Schätzwerte für individuelle Heterosis fielen für Absetzgewicht und Tageszunahmen sehr niedrig aus und waren nicht signifikant ($p \geq 0,05$). Der eigene Schätzwert im Geburtsgewicht erwies sich mit 3,7 % als hoch signifikant ($p < 0,01$). Die Rasse Dt. Fleckvieh auf der Mutterseite zeigte im Geburtsgewicht eine 4,5 %ige Überlegenheit gegenüber der reziproken Kreuzung, die aber nicht signifikant war ($p \geq 0,05$). Die für Absetzgewicht und Tageszunahmen geschätzten Stellungseffekte bestätigen ebenfalls mit höchst signifikanten Unterschieden ($p < 0,001$) von 8,4 % im Absetzgewicht bzw. von 8,6 % in der Tageszunahmen die Überlegenheit der Rasse Dt. Fleckvieh auf der Mutterseite. Ob mit dem Einsatz spezieller Fleischrinderbullen wie Limousin oder Charolais in Verbindung mit der Einfachkreuzung aus Dt. Angusbullen mit Dt. Fleckviehkühen auf der Mutterseite, die mit kleinem bis mittlerem Rahmen und ausreichender Milchleistung den Anforderungen nach GOLZE (1997) entspricht, das Produktionsniveau der Herde weiter erhöht werden könnte, bliebe zu überprüfen.
7 Summary

Within the framework of this study the reproduction and meat production data of pure-bred and cross-bred animals in a suckler cow herd consisting of two beef cattle breeds (150 German Angus cows and 150 German Simmental cows) were gathered and evaluated over a period of seven breeding years (1997/98 up to and including 2003/04).

The aim of this study was to use the pure breed data over the first five breeding years for the two breeds German Angus and German Simmental as a basis for calculating genetic-statistical parameters for the breeding value assessment. A further aim was to assess the suitability of the breeds German Angus and German Simmental for cross breeding, as such assessments are not so far available for all beef cattle breeds.

The 1,537 pure-bred calves (797 German Angus, 737 German Simmental) and both reciprocal crossing (137 calves from German Angus bulls with German Simmental cows and 204 calves from German Simmental bulls with German Angus cows) derivated from 10 German Angus bulls and 10 German Simmental bulls.

Under conditions of natural semination for the breeding years 1997/98 up to 2001/02, a comparison of the breeds resulted in a highly significant difference (p < 0.01; Chi²-test) in favour of the breed German Angus, with a calving rate of 97.7 % compared to 94.9 % in the case of German Simmental. The Chi²-test between the cows paired in a pure breeding regime compared to those paired in a cross breeding regime for the breeding years 2002/03 and 2003/04 proved to be non-significant. The Chi²-test for significant differences in breed with regard to the calving process, considering all seven breeding years and depending on the type of breeding (pure breeding or cross breeding), resulted in a highly significant difference (p < 0.001) in favour of cross breeding German Simmental bulls with German Angus cows, of which 98.0 % calved without requiring assistance. Several losses, due both to stillbirths and to deaths within the first few days post partum, remain unexplained.

The comparison of pure-bred animals with regard to the three production characteristics produced highly significant differences in favour of the breed German Simmental (p < 0.001). Calculated in percent, animals of the breed German Simmental were superior to the breed
German Angus by 15.3 % in weight at birth, by 15.1 % in weight at weaning and by 16.6 % in daily weight increase until weaning.

The heritabilities, assessed jointly within the framework of the variance component estimation for both breeds regarding the selected production characteristics of weight at birth, weight at weaning and daily weight increase until weaning, proved to be low ($h^2_{\text{birthweight}} = 0.22$, $h^2_{\text{weaningweight}} = 0.08$, $h^2_{\text{incr.birth-weaning}} = 0.11$), which was considered to be a reflection of the small number of used bulls, which is not representative of the entire population. The estimated values for the maternal effect, which were 0.19 for the weight at birth, 0.21 for the weight at weaning and 0.18 for the daily weight increase until weaning, were close together. The estimated correlations between additive genetic and maternal effects for the three production characteristics were all within a distinctly positive range (0.29, 0.44, 0.41).

A comparison between the application of individual birth weights and mean values for each breed revealed that by applying the conventional breeding value estimation method the bulls of the experimental farm Rudlos were underestimated by an average of approx. -21.5 g/d in the characteristic of daily weight increase from birth until weaning. In the long term it will not be feasible to describe the complex of meat characteristics with only the three hitherto applied breeding value factors. Instead, additional breeding values will be needed, i.e. weight at weaning, weight at one year, weight at birth, muscle scores, as well as daily weight increase, meat yield and meat grade for slaughter cattle marketed within the framework of Baby Beef Production and thus with substantially lower slaughtering weights. Furthermore, because of the increasing use of two-breed crossing on the mother's side and the use of crossbred cows in order to exploit maternal heterosis, the breeding values for selective crossbreeding have to be taken into consideration. Against this background, the large number of different production processes in beef cattle breeding and suckler cow rearing are a problem that should not be underestimated. Making bull performance data available independently of specific herds, so that the linkage between father and herd is provided via the artificial insemination data, is proposed as a further contribution to improving the accuracy of the estimation process. This demands an optimisation of the infrastructure and the universal usage of data acquisition and forwarding, as well as good communication.

In spite of the insignificant relevancy to practice of the undertaken two-breed crossing, the breeds used did provide some information on the extent of individual heterosis and the
consequences of position effects. The estimated values for individual heterosis were very low with regard to weight at weaning and daily weight increases, and proved non-significant ($p \geq 0.05$). The own estimated value of 3.7 % for the weight at birth proved to be highly significant ($p < 0.01$). The breed German Simmental on the mother's side showed a 4.5 % superiority in weight at birth compared to the reciprocal crossing, but this proved non-significant ($p \geq 0.05$). The estimated position effects for weight at weaning and daily weight increases also confirm the superiority of German Simmental on the mother's side with highly significant differences ($p < 0.001$) of 8.4 % in weight at weaning and 8.6 % in daily weight increases. It still remains to be tested whether herd production levels can be increased by the use of specifically beef-oriented bulls, such as Limousine or Charolais, in combination with the two-breed crossing of German Angus bulls with German Simmental cows on the mother's side, which fulfils the requirements posed by GOLZE (1997) with small to medium-sized frame and adequate milk production.
8 Quellenangaben

8.1 Verwendete Literatur

MIESENBERGER, J., SÖLKNER, J., ESSL, A., 1998: Economic weights for fertility and reproduction traits relative to other traits and effects of including functional traits into a total merit index. Interbull Bulletin 18, 78 – 84.

TIERZUCHTGESETZ (TierZG) i. d. Fassung der Bekanntgabe vom 22.01.1998, BGBl., 1, S. 145.

8.2 Internetquellen

Tab. 9.1: Hersteller und Zusammensetzung des verabreichten Mineraldutters

| Bezeichnung | Vogelsberg Min R 20/4
| | Mineralfutter für Rinder |
| Hersteller | Raiffeisen Vogelsberg GmbH, 36341 Lauterbach |
| Gehalt an Inhaltsstoffen | 20,00 % Calcium
| | 4,00 % Phosphor
| | 10,00 % Natrium
| | 5,00 % Magnesium |
| Zusatzstoffe je kg Mischfutter| 1.000.000 IE Vitamin A (IE = Internationale Einheiten)
| | 125.000 IE Vitamin D3
| | 1.000 mg Vitamin E
| | 1.350 mg Kupfer/Kupfer(II)sulfat Pentahydrat
| | 8.000 mg Zink/Zinksulfat Monohydrat
| | 4.000 mg Mangan/Mangan(II)sulfat Monohydrat
| | 50 mg Kobalt Kobalt(II)sulfat Monohydrat
| | 125 mg Jod/Calciumjodat wasserfrei
| | 60 mg Selen/Natriumseelenit |
| Zusammensetzung | 43,47 % Calciumcarbonat
| | 25,44 % Natriumchlorid
| | 10,00 % Dicalciumphosphat (mineralisch)
| | 8,90 % Magnesiumoxyd
| | 8,80 % Monocalciumphosphat |
| Fütterungshinweis | Dieses Mineraldutter darf wegen des gegenüber Alleinfuttermitteln höheren Gehaltes an Vitamin D3 und Spurenelementen nur an Rinder bis zu 0,8 % der Tagesration verfüttert werden. |
| Fütterungsempfehlung | Ca : P-Verhältnis 5,0:1
| | Täglich 100 bis 250 g bei Mischrationen Gras-/Maisilage |
| Bemerkung | Dieses Futtermittel erfüllt alle Qualitätssicherungsanforderungen. |
Tab. 9.2: Hersteller und Zusammensetzung der verwendeten Minerallecksteine

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Leckstein plus (10 kg)</th>
<th>Mineralleckstein (10 kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ergänzungsfuttermittel für Rinder, Pferde, Schafe, Ziegen und Wild</td>
<td></td>
</tr>
<tr>
<td>Hersteller</td>
<td>Josera Tierernährung 63924 Kleinheubach</td>
<td>Deutsche Raiffeisen-Warenzentrale 60323 Frankfurt am Main</td>
</tr>
<tr>
<td>Inhaltstoffe</td>
<td>38,0 % Natrium</td>
<td>37,0 % Natrium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,2 % Magnesium</td>
</tr>
<tr>
<td>Zusammensetzung</td>
<td>98,0 % Natriumchlorid 2,0 % Zusatzstoffvormischung</td>
<td>Natriumchlorid, Spurenelementvormischung</td>
</tr>
<tr>
<td>Gehalte an Zusatzstoffen je kg</td>
<td>6.000 mg Zink als Zinkoxid</td>
<td>830 mg Mangan</td>
</tr>
<tr>
<td></td>
<td>4.000 mg Mangan als Mangan-(II)-oxid</td>
<td>810 mg Zink</td>
</tr>
<tr>
<td></td>
<td>100 mg Jod als Kaliumjodid</td>
<td>100 mg Jod</td>
</tr>
<tr>
<td></td>
<td>20 mg Kobalt als basisches Kobalt-(II)-carbonat, Monohydrat</td>
<td>18 mg Kobalt</td>
</tr>
<tr>
<td></td>
<td>20 mg Selen als Natriumselenit</td>
<td>10 mg Selen</td>
</tr>
<tr>
<td>Fütterungsempfehlung</td>
<td>Dieses Ergänzungsfuttermittel darf wegen der gegenüber Alleinfuttermitteln höheren Gehalte an Spurengehalten nur an Rinder, Pferde, Schafe, Ziegen und Wild bis zu 1 v. H. der Tagesration verfüttert werden.</td>
<td>Gegenüber Alleinfuttermitteln darf dieses Ergänzungsfuttermittel wegen der höheren Gehalte an Spurenelementen an die Tiere bis zu 1,0 % der Tagesration verfüttert werden.</td>
</tr>
<tr>
<td>Bemerkung</td>
<td>Gemäß der Verordnung (EWG) Nr. 2092/91 im ökologischen Landbau verwendbar (DE-006-Öko-Kontrollstelle).</td>
<td>-</td>
</tr>
</tbody>
</table>
Tab. 9.3: Einsatzdauer und Anzahl Nachkommen der eingesetzten Dt. Angusbullen in den Zuchtjahren 1997/98 bis 2003/04

<table>
<thead>
<tr>
<th>Name</th>
<th>Lebensohrmarke</th>
<th>Einsatzdauer</th>
<th>Anzahl Nachkommen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1997/98 bis 2001/02</td>
<td>2002/03 und 2003/04</td>
</tr>
<tr>
<td>Carl</td>
<td>DE 06 651 31912</td>
<td>2001/02 bis 2003/04</td>
<td>27</td>
</tr>
<tr>
<td>Claudius</td>
<td>DE 72 000 74531</td>
<td>1997/98 bis 2001/02</td>
<td>128</td>
</tr>
<tr>
<td>Curd</td>
<td>DE 06 651 34003</td>
<td>2003/04</td>
<td></td>
</tr>
<tr>
<td>Heino</td>
<td>DE 03 403 86055</td>
<td>1997/98 bis 1999/00</td>
<td>90</td>
</tr>
<tr>
<td>Hiro</td>
<td>DE 06 651 23113</td>
<td>2000/01 bis 2001/02</td>
<td>52</td>
</tr>
<tr>
<td>Pamtera</td>
<td>DE 03 401 18479</td>
<td>1997/98 bis 2003/04</td>
<td>152</td>
</tr>
<tr>
<td>Pan</td>
<td>DE 09 104 61038</td>
<td>2001/02 bis 2003/04</td>
<td>36</td>
</tr>
<tr>
<td>Papst</td>
<td>DE 09 317 69729</td>
<td>2001/02 bis 2002/03</td>
<td>15</td>
</tr>
<tr>
<td>Pauker</td>
<td>DE 06 650 94128</td>
<td>1997/98 bis 2001/02</td>
<td>125</td>
</tr>
<tr>
<td>Vollkorn</td>
<td>DE 06 651 18486</td>
<td>1997/98 bis 2000/01</td>
<td>120</td>
</tr>
</tbody>
</table>

Σ 745
Σ 189

Tab. 9.4: Einsatzdauer und Anzahl Nachkommen der eingesetzten Dt. Fleckviehbullen in den Zuchtjahren 1997/98 bis 2003/04

<table>
<thead>
<tr>
<th>Name</th>
<th>Lebensohrmarke</th>
<th>Einsatzdauer</th>
<th>Anzahl Nachkommen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1997/98 bis 2001/02</td>
<td>2002/03 und 2003/04</td>
</tr>
<tr>
<td>Habsburg</td>
<td>DE 06 651 24735</td>
<td>2000/01 bis 2003/04</td>
<td>40</td>
</tr>
<tr>
<td>Herkan</td>
<td>DE 15 002 44225</td>
<td>1997/98 bis 1999/00</td>
<td>77</td>
</tr>
<tr>
<td>Honannes</td>
<td>DE 09 802 32295</td>
<td>1997/98 bis 2002/03</td>
<td>132</td>
</tr>
<tr>
<td>Mambo</td>
<td>DE 09 323 18461</td>
<td>2000/01 bis 2003/04</td>
<td>48</td>
</tr>
<tr>
<td>Matze</td>
<td>DE 15 002 58855</td>
<td>1997/98 bis 2001/02</td>
<td>102</td>
</tr>
<tr>
<td>Max</td>
<td>DE 06 651 47511</td>
<td>2003/04</td>
<td></td>
</tr>
<tr>
<td>Paros</td>
<td>DE 05 768 39147</td>
<td>1997/98 bis 2002/03</td>
<td>108</td>
</tr>
<tr>
<td>Piro</td>
<td>DE 06 616 87502</td>
<td>2003/04</td>
<td></td>
</tr>
<tr>
<td>Poker</td>
<td>DE 09 303 36668</td>
<td>1999/00 bis 2003/04</td>
<td>73</td>
</tr>
<tr>
<td>Theo</td>
<td>DE 77 000 60280</td>
<td>1997/98 bis 1998/99</td>
<td>49</td>
</tr>
</tbody>
</table>

Σ 629
Σ 312
Danksagung

Die vorliegende Arbeit entstand im Rahmen der durch die Deutsche Forschungsgemeinschaft geförderten Untersuchungen des Sonderforschungsbereichs 299 – Landnutzungskonzepte für periphere Regionen, Teilprojekt C 1.2: Nutzung funktionaler Merkmale in der Rinder- und Schafzucht für extensive Haltungsverfahren unter ökologischen und ökonomischen Gesichtspunkten.

Ein ganz persönliches und herzliches Dankeschön für die Unterstützung in allen wissenschaftlichen und nicht wissenschaftlichen Fragen und Problemen gebührt Herrn apl. Prof. Dr. Horst Brandt. „Danke lieber Horst!“

Herrn Prof. Dr. Dr. Matthias Gauly danke ich recht herzlich für die Übernahme des Zweitgutachters und für seine stets gewährte unkomplizierte Unterstützung in den letzten Korrekturen der Arbeit. „Danke Matthias!“

Herrn Prof. Dr. Georg Erhardt danke ich für die Bereitstellung des Themas und die lehrreiche Zeit am Institut.

Herr Andreas Kaletsch war mir von Beginn an eine geduldige Unterstützung in EDV-Fragen, insbesondere im Zusammenhang mit dem Aufbau der Datenbank für die Mutterkuhherde Rudlos.
Bei allen Kolleginnen und Kollegen auf der Lehr- und Forschungsstation am Oberen Hardthof und am Institut in der Ludwigstraße möchte ich mich für das angenehme Miteinander in Forschung und Lehre ganz herzlich bedanken!

Das Korrekturlesen des Manuskripts übernahm mein Bruder, Herr Dr. Marc Müllenhoff. Das Summary überprüfte Herr Christopher Husband. Auch diese beiden Herren waren mir eine wertvolle Hilfe.
Lebenslauf

Persönliche Daten

Name: Anja Müllenhoff
Anschrift: Hauptstraße 7
D-59269 Beckum (Westf.)
Telefon: 00 49 (0) 25 25 / 78 79 45
Geburtsdatum: 11.01.1976
Geburtsort: Korbach
Familienstand: ledig

Ausbildung

Grundschule: 1982 – 1986; Westwallschule Korbach
Universität WS 1998/1999 – SS 2002; Diplomstudiengang der Agrarwissenschaften, Fachrichtung Tierproduktion an der Justus-Liebig-Universität, Gießen
12/2002 – 09/2006 Promotionsstudentin am Institut für Tierzucht und Haustiergenetik der Justus-Liebig-Universität, Gießen, AG Prof. Dr. Georg Erhardt,
01.03.2003 bis 30.06.2003 beschäftigt als wissenschaftliche Hilfskraft; 01.07.2003 bis 30.09.2006 beschäftigt als wissenschaftliche Mitarbeiterin

Berufliche Tätigkeiten

seit 02/2007: Angestellt als Assistentin des Inhabers bei der Firma Agrarboden Land- und Forstgütervermittlung in Beckum (Westf.)

Beckum, 28. Januar 2008

[Unterschrift]

Pia Müllerhoff
SCHÄTZUNG GENETISCH-STATISTISCHER PARAMETER BEI FLEISCHRINDERN DER RASSEN DEUTSCHE ANGUS UND DEUTSCHES FLECKVIEH SOWIE DEREN EINFACHKREUZUNGEN

ANJA MÜLLENHOFF

INAUGURALDISSERTATION
zur Erlangung der Doktorgrades (Dr. agr.)
am Fachbereich Agrarwissenschaften,
Ökotrophologie und Umweltmanagement
der Justus-Liebig-Universität, Gießen