Analyse von Polymorphismen der Interleukine 1, -4, -13 und des Fcγ-Rezeptors IIa bei Patienten mit aggressiver Parodontitis und einer Gruppe von parodontitisresistenten Probanden

Inauguraldissertation
zur Erlangung des Grades eines Doktors der Zahnmedizin
des Fachbereiches Medizin
der Justus-Liebig-Universität Gießen

vorgelegt von Rathe, Florian
aus Wetzlar in Hessen

Gießen 2007
Aus dem Zentrum für Zahn- Mund- und Kieferheilkunde
Poliklinik für Parodontologie
(Direktor: Prof. Dr. J. Meyle)
Universitätsklinikum Gießen-Marburg GmbH, Standort Gießen

Gutachter: Professor Dr. J. Meyle

Gutachter: Professor Dr. S. Jepsen

Tag der Disputation: 23.04.2007
Inhaltsverzeichnis

1.0 Einleitung .. 1

2.0 Wissenschaftlicher Hintergrund .. 3
 2.1 Klassifikation der Parodontitis ... 3
 2.2 Pathogenese der Parodontitis ... 6
 2.3 Der Einfluss der Zytokine IL-1, IL-4, IL13 und des Fcγ Rezeptors II a auf die Pathogenese der Parodontitis ... 11
 2.4 Einflüsse von Nukleotidpolymorphismen auf die Pathogenese der Parodontitis 18
 2.5 Der Einfluss des Alters auf die Pathogenese der Parodontitis 23
 2.6 Parodontitisresistente Individuen... 27

3.0 Ziel der Studie .. 31

4.0 Material und Methoden ... 32
 4.1 Studienprotokoll ... 32
 4.2 Klinische und radiologische Untersuchungsmethoden 32
 4.2.1 Eingangsuntersuchung .. 32
 4.2.2 Röntgenanalyse ... 33
 4.3 Studienpopulation .. 35
 4.3.1 Patientenaufklärung... 35
 4.3.2 Ausscheiden aus der Studie .. 35
 4.4 Gruppeneinteilung ... 36
 4.4.1 Ein- und Ausschlusskriterien ... 36
 4.4.1.1 Einschlusskriterien ... 36
 4.4.1.2 Ausschlusskriterien .. 37
 4.5 Laborparameter ... 38
 4.5.1 Entnahme von Blut .. 38
 4.5.2 Extraktion der DNA aus Blutzellen... 38
 4.6 PCR... 39
 4.6.1 PCR zur Bestimmung des Interleukin 1α Polymorphismus 40
 4.6.2 PCR zur Bestimmung des Interleukin 1β Polymorphismus 40
 4.6.3 PCR zur Bestimmung des Interleukin 4 Polymorphismus........................ 41
 4.6.4 PCR zur Bestimmung des Interleukin 4 Polymorphismus........................ 42
 4.6.5 PCR zur Bestimmung des Interleukin 13 Polymorphismus...................... 43
 4.6.6 PCR zur Bestimmung des Interleukin 13 Polymorphismus...................... 44
 4.6.7 PCR zur Bestimmung des FcγRIIa-Polymorphismus (A→G an Stelle 131, was zu einem Wechsel der Aminosäuren Histidin zu Arginin im Protein führt) ... 44
Einleitung

1.0 Einleitung

Michalowicz et al. (1991) gelang es, in verschiedenen Zwillingsstudien eindeutig die Beteiligung genetischer Faktoren an der Pathogenese der chronischen Parodontitis und besonders an der Vielfalt der klinischen Symptome nachzuweisen.

Einleitung

Im Rahmen der vorliegenden Untersuchung wurde der Einfluss der IL-1\(\alpha \) (G \(\rightarrow \) T an Stelle +4845), IL-1\(\beta \) (C \(\rightarrow \) T an Stelle +3954), IL-4 (C \(\rightarrow \) T an Stelle -590 in der Promotorregion), IL-4 (Wiederholungspolymorphismus von 70 Basenpaaren in Intron 2), IL-13 (G \(\rightarrow \) A an Stelle +2044 in Exon 4), IL-13 (C \(\rightarrow \) T an Stelle –1112 in der Promotorregion) und Fc\(\gamma \)RIIa (A \(\rightarrow \) G an Stelle 131) Polymorphismen auf die aggressive Parodontitis untersucht. Dafür wurden 35 Patienten mit aggressiver Parodontitis (zwischen 18 und 35 Jahren), 22 parodontitisresistente Probanden höheren Alters (älter als 55 Jahre) und 29 jüngere (zwischen 18 und 25 Jahren) parodontal gesunde Probanden mit Hilfe der Polymerasekettenreaktion auf die Polymorphismen der oben aufgeführten Zytokine und Rezeptoren untersucht. Von besonderem Interesse war dabei die Frage, wie sich die Polymorphismen auf die drei verschiedenen Untersuchungsgruppen verteilen.
2.0 Wissenschaftlicher Hintergrund

2.1 Klassifikation der Parodontitis

Tabelle 1: Gegenüberstellung der alten und neuen Klassifikation

<table>
<thead>
<tr>
<th>Klassifikation von 1989</th>
<th>Klassifikation von 1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Gingivale Erkrankungen</td>
<td>A. Gingivale Erkrankung</td>
</tr>
<tr>
<td>1. Entzündliche Formen</td>
<td>1. Plaqueinduzierte gingivale Erkrankung</td>
</tr>
<tr>
<td>2. Hyperplastische Formen</td>
<td>2. Nicht plaqueinduzierte gingivale Erkrankung</td>
</tr>
<tr>
<td>B. Adulte Parodontitis</td>
<td>B. Chronische Parodontitis</td>
</tr>
<tr>
<td>1. Lokalisiert</td>
<td>1. Lokalisiert</td>
</tr>
<tr>
<td>2. Generalisiert</td>
<td>2. Generalisiert</td>
</tr>
<tr>
<td>C. Früh beginnende Parodontitis</td>
<td>C. Aggressive Parodontitis</td>
</tr>
<tr>
<td>1. Präpubertäre Parodontitis</td>
<td>1. Lokalisiert</td>
</tr>
<tr>
<td>2. Lokalisierte juvenile Parodontitis</td>
<td>2. Generalisiert</td>
</tr>
<tr>
<td>3. Schnell fortschreitende Parodontitis</td>
<td></td>
</tr>
<tr>
<td>D. Refraktäre Parodontitis</td>
<td>D. Keine Kategorie</td>
</tr>
<tr>
<td>1. Stoffwechselerkrankungen</td>
<td></td>
</tr>
<tr>
<td>2. Funktionsstörung o. Chemotaxisdefekt von neutrophilen Granulozyten und Monozyten</td>
<td></td>
</tr>
<tr>
<td>3. Hämatologische Erkrankungen</td>
<td></td>
</tr>
<tr>
<td>4. Systemische Erkrankungen mit dermatologischem Bezug</td>
<td></td>
</tr>
<tr>
<td>5. Gingivoparodontale Manifestation viraler Erkrankungen</td>
<td></td>
</tr>
<tr>
<td>6. Gingivoparodontale Teilaspekte bei genetisch bedingten Syndromen</td>
<td></td>
</tr>
<tr>
<td>E. Gingivoparodontale Manifestationen systemischer Erkrankungen</td>
<td>E. Parodontitis als Manifestation systemischer Erkrankungen</td>
</tr>
<tr>
<td>1. In Verbindung mit hämatologischen Erkrankungen</td>
<td>1. In Verbindung mit hämatologischen Erkrankungen</td>
</tr>
<tr>
<td>2. In Verbindung mit genetischen Erkrankungen</td>
<td>2. In Verbindung mit genetischen Erkrankungen</td>
</tr>
</tbody>
</table>
Das alte Klassifikationssystem weist verschiedene Defizite auf, so zum Beispiel Überschneidungen zwischen Krankheitskategorien und das Fehlen eindeutiger Klassifikationskriterien. Darüber hinaus wurden in der alten Klassifikation Alter und Krankheitsprogression als Klassifikationskriterien herangezogen.

Außerdem wurde die Erkrankungsform der adulten Parodontitis in ihrer Bezeichnung durch den Ausdruck der chronischen Parodontitis ersetzt, da epidemiologische Daten und klinische Erfahrung zeigen, dass diese Erkrankungsform nicht nur bei Erwachsenen, sondern auch bei Kindern und Jugendlichen auftreten kann.
Die Teilnehmer des internationalen Workshops einigten sich jedoch hauptsächlich deshalb auf diesen Ausdruck, da er den Charakter dieser Erkrankungsform, die traditionell als langsam voranschreitend beschrieben wird (Brown & Löe 1993), am zutreffendsten widerspiegelt.

2.2 Pathogenese der Parodontitis

Es werden bei T-Lymphozyten Subpopulationen gefunden, die sich phänotypisch und funktionell voneinander unterscheiden. Als T-Lymphozyt jedoch besitzen sie alle eine gemeinsame Oberflächenstruktur, die als CD3 (CD = Cluster of Differentiation) bezeichnet und serologisch nachgewiesen werden kann (Ikede & Coulie 1997). Dieses und die anderen, für die jeweilige T-Zell-Subpopulation charakteristischen Oberflächenantigene (Marker), sind in folgender Tabelle zusammengefasst.
Tabelle 2: Oberflächenmarker der T-Lymphozyten

<table>
<thead>
<tr>
<th>Funktion der Zelle</th>
<th>CD3</th>
<th>CD4</th>
<th>CD8</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH-Zellen</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Cytotoxische T-Zellen/</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Suppressor T-Zellen</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Als Oberflächenmarker lassen sich zuerst CD4- und CD8-Antigene zusammen auf einer Zelle nachweisen, die unreifen T-Lymphozyten sind diesbezüglich doppelpositiv.

Schon früh, während der Phase der Antigenpräsentation und T-Zell Proliferation, differenzieren sich zwei verschiedene Formen von T-Helferzellen (TH1 und TH2 Zellen) aus TH-Vorläuferzellen. TH1 und TH2 Zellen setzen verschiedene Arten von Zytokinen frei. TH1-Zellen sezernieren IL-2, IFN-\(\gamma\) und aktivieren so die angeborene, monozytische und proinflammatorische Immunreaktion, TH2-Zellen exprimieren IL-4, IL-5, IL-6 und IL-10, was zu einer Immunantwort des adaptiven Immunsystems führt (Offenbacher et al. 1996). Welche der beiden TH-Zellgruppen stimuliert werden und was die Voraussetzung für eine TH1- oder TH2-Zellreaktion ist, konnte bisher noch nicht genau nachgewiesen werden. Einige Autoren vermuten, dass die biochemische Struktur des Antigens und dessen Konzentration dabei eine entscheidende Rolle spielen (Offenbacher et al. 1994, Berglundh & Lindhe 2002).

Es sind jedoch nicht nur die bakteriellen Antigene für die Stimulation einer der beiden CD4-T-Zellgruppen verantwortlich, sondern auch die von TH1- und TH2-Zellen freigesetzten Zytokine selbst wirken aktivierend oder hemmend auf eine der beiden Gruppen. Zum Beispiel bewirkt IFN-\(\gamma\), dass sich TH-Vorläuferzellen zu TH1-Zellen differenzie ren (Gajewski et al. 1989) und IL-4 unterstützt die Differenzierung von TH-Vorläuferzellen in TH2-Zellen (Swain 1991).

Nach Stimulation von TH1-Zellen kommt es zur Freisetzung von IFN-\(\gamma\). IFN-\(\gamma\) beeinträchtigt die Funktion der TH2-Zellen und verhindert somit die Differenzierung von B-Lymphozyten in Immunglobulin produzierende Plasmazellen (Gemmell et al. 2002).

IL-1β ist ein pluripotentes Zytokin, das während einer Entzündungsreaktion Einfluss auf andere Mediatoren hat und viele biologische Abläufe steuert. IL-1β aktiviert u.a. bei Monozyten und Fibroblasten eine verstärkte Freisetzung von PGE2 und Matrixmetalloproteasen (MMP) (Birkedal-Hansen 1993), steigert die Kollagenaseproduktion von Fibroblasten und hemmt ihre Kollagensynthese (Stashenko & Jandinski 1991). Weiter wirkt IL-1β aktivierend auf Osteoklasten und führt somit zur Knochendestruktion (Stashenko et al. 1987).

PGE2, IL-1β und TNF-α stimulieren die Freisetzung von MMP bei Makrophagen und Fibroblasten. Die MMP werden zu den metabolitischen Endprodukten einer Entzündung gezählt, die in der Lage sind, die extrazelluläre Matrix systematisch abzubauen (Birkedal-Hansen 1993). Damit schaffen sie Platz für das sich apikal ausbreitende Entzündungsinfiltrat, der mikrobielle Biofilm kann sich somit ebenfalls apikal ausbreiten. Der Schweregrad der Parodontitis steht in der Beziehung zum Ausmaß der Entzündungsreaktion, repräsentiert durch die Produktion von PGE2, IL-1β und TNF-α (Shapira et al. 1994).

Bei einer TH2-Zellaktivierung werden die Zytokine IL-4, IL-5, IL-6 und IL-10 sezerniert, welche die Differenzierung von B-Lymphozyten zu Antikörper produzieren-

2.3 Der Einfluss der Zytokine IL-1, IL-4, IL13 und des Fcγ Rezeptors II a auf die Pathogenese der Parodontitis

Es sind drei IL-1 Gene bekannt. Diese befinden sich auf dem langen Arm des Chromosoms 2 in der Region (q13-q21), welche mehr als 430 Kilobasen umfasst (Nicklin et al. 1994). Zwei dieser Gene kodieren für pro-inflammatorische Proteine (IL-1A und IL-1B welche IL-1α und IL-1β produzieren), während das dritte Gen (IL1RN) für ein ähnliches Protein kodiert, was an IL-1 Rezeptoren bindet aber als Rezeptorantagonist fungiert (IL-1ra) da es nicht zu einer Signaltransduktion kommt.

IL-1 ist ein pluripotentes Zytokin und kann von den meisten kernhaltigen Zellen sezerniert werden, hauptsächlich wird es jedoch von Makrophagen/Monozyten gebildet. IL-1 erhöht lokal die Bildung von Adhäsionsmolekülen auf Fibroblasten, endothelialen Zellen und den Zellen des Immunsystems, wie zum Beispiel Lymphozyten und Monozyten. Diese Adhäsionsmoleküle veranlassen Immunzellen sich an die Gefäßwand anzuheften und durch diese, dem chemotaktischen Reiz folgend, in das entzündete Gewebe auszutreten (Takahashi et al. 1994). Außerdem werden durch IL-1 Rezeptoren gebildet, welche die Lymphozyten und Makrophagen dazu befähigen sich direkt an das Bindegewebe zu heften und somit zu ortsansässigen Zellen des entzündlichen Infiltrates zu werden (Hayashi et al. 1994). Aktivierte Keratinozyten in der entzündeten parodontalen Tasche und antigenpräsentierende Langerhanszellen sezernieren IL-1α und IL-1β (Hillmann et

Bei Zähnen, die kieferorthopädisch bewegt werden, konnte ein gesteigerter Titer von IL-1β und PGE2 in der Sulkusflüssigkeit (GSF) nachgewiesen werden. Im Gegensatz zu den Zähnen, die nicht bewegt wurden, war der Level von IL-1β und PGE2 im GSF am ersten und zweiten Tag nach Behandlungsbeginn erhöht, was für den knochenresorptiven Effekt der beiden Mediatoren spricht (Grieve et al. 1994).

Van Leeuwen et al. (1989) lokalisierten das IL-4 Gen, bestehend aus vier Exons und drei Introns, auf dem menschlichen Chromosom 5 (5q23.3 – 31.2).

Der Einfluss des IL-4 auf die Parodontitis ist sehr vielgestaltig und in besonderem Maße entzündungshemmend. IL-4 ist ein multifunktionelles Zytokin, das sich viele biologische Eigenschaften mit IL-10 teilt. IL-4 interagiert mit verschiedenen Zellen, so z.B. mit T-Zellen, B-Zellen, Monozyten und Fibroblasten. IL-4 ist ein potenter Aktivator der B-Zellen. Durch IL-4 werden antigenspezifische B-Zellen stimuliert, was in antikörperproduzierende Plasmazellen zu differenzieren (Fujihashi et al. 1993).

LPS/LBP-Komplexe [LPS bildet mit einem Plasma Protein (Lipopolysaccharid Bindungs Protein, LBP) einen LPS/LBP-Komplex], welche an den CD14 Oberflächenrezeptor von Makrophagen binden, stimuliert deren Expression auf der Makrophagenoberfläche. Durch das Binden der LPS/LBP-Komplexe an den CD14 Rezeptoren werden die Makrophagen zur Ausschüttung von IL-1, TNFα und PGE2 angegereg (Wright et al. 1990). IL-4 ist in der Lage, die Expression des CD14-Oberflächenreceptors bei diesen Zellen in erheblichem Maße einzuschränken, wodurch die Aktivierbarkeit der Monozyten und Makrophagen durch bakterielle Lipopoly-
saccharide und die daraus resultierende Freisetzung proinflammatorischer und katabolischer Zytokine reguliert wird (Lauener et al. 1990).

Der Theorie von Shapira et al. (1992) zufolge kommt es durch eine zu niedrige Konzentration von IL-4 im Serum zu einer ungehemmten Expression von CD14 Rezeptoren auf den Makrophagenoberflächen, an die immer mehr LPS/LBP-Komplexe binden. Somit kommt es zu einer unphysiologisch starken Ausschleusung von TNFα, PGE₂ und IL-1. IL-1β, in ausreichend hoher Konzentration, stimuliert wiederum gingivale Fibroblasten zur Sekretion von TNFα und PGE₂.

TNFα, PGE₂ und IL-1 zeigen eine hohe Aktivität bei der Resorption von Alveolarknochen, wodurch es nach Shapira et al. (1992) zu parodontalen Destruktionen kommt.

Die genomische Struktur von IL-13 umfasst eine Sequenz von ca. 4.5 Kilobasen, bestehend aus vier Exons und drei Introns. IL-13 ist auf Chromosom 5q31 codiert und teilt sich eine wichtige Intron-Exon Struktur mit granulocyte macrophage colony stimulating factor (GM-CSF), IL-4 und IL-5 (McKenzie et al. 1993). Es besteht eine Sequenzhomologie zwischen den IL-13 und IL-4 Proteinen, wodurch auch ihre vielen biologischen Gemeinsamkeiten zu erklären wären (McKenzie et al. 1993a).

Wang et al. (2000) konnten keine Veränderung der mRNA Expression von IL-13 feststellen, nachdem eine Exposition epithelialer Zellen mit Campylobacter rectus stattgefunden hatte. Roberts et al. (1997) fanden ebenfalls keine Erhöhung der IL-13 mRNA Expression von Makrophagen bei Patienten mit chronischer Parodonti-

Monozyten, die durch LPS oder proinflammatorische Zytokine stimuliert wurden, werden ebenfalls durch IL-13 inhibiert, indem die IL-1Ra Synthese gesteigert wird (De Waal Malefyt et al. 1993). Weiterhin wird durch IL-13, wenn auch nur geringfügig, die Produktion der Zytokine IL-1α, IL-1β, IL-6, IL-8, IFN-y und TNF-α gehemmt. Ähnliche Ergebnisse werden von de Waal Malefyt et al. (1995) über IL-4 und IL-10 berichtet.

Die physiologischen Konsequenzen dieser Effekte von IL-13 sind noch unklar, es ist aber möglich, dass IL-13 ähnlich wie IL-4 die Proliferation von TH1-Zellen durch die Suppression von monozytisch produziertem IL-12 hemmt (Hsieh et al. 1993). Obwohl IL-13 und IL-4 in ähnlicher Art und Weise auf Monozyten einwirken, haben diese Effekte weder einen additiven noch einen synergistischen Charakter (Smith et al. 1993).

Sowohl IL-4 als auch IL-13 erhöhen die Proliferationsbereitschaft von B-Zellen, IL-4 ist jedoch generell potenter als IL-13 (McKenzie et al. 1993).

Abschließend kann man zusammenfassen, dass IL-13, wie IL-4, die zytotoxischen und inflammatorischen Eigenschaften von Monozyten hemmt. IL-13 erhöht die Kapazität von Makrophagen Antigene zu präsentieren, was darauf hinweist, dass IL-13 nicht alle Funktionen der Makrophagen hemmt.

Trotz ausführlichen Literaturstudiums war es mir nicht möglich einen direkten Einfluss von IL-13 auf die Parodontitis aufzuweisen. So kann man aus den dargestellten Zusammenhängen einen Einfluss erkennen, er lässt sich jedoch nicht anhand evidenzbasierender Literatur belegen.

Eine heterogene Gruppe von Rezeptoren, die an die Fc Region der Immunglobuline bindet, stellt ein wichtiges Bindeglied zwischen der humoralen und der zellulären Immunabwehr dar. Die Rezeptoren dieser Gruppe sind für alle Ig Isotypen spezifisch, werden auf einer Vielzahl von Zellen exprimiert und besitzen viele wichtige Funktionen.

Rezeptoren für IgG (FcγR), eine Subklasse der größeren Gruppe von Fc Rezeptoren, gehören zur Ig-Genfamilie (van de Winkel & Capel 1993). Sie vermitteln die Phagozytose der Bakterien, die durch spezifische IgG Antikörper opsoniert wurden. Es sind drei Hauptklassen der Fcγ Rezeptoren bekannt, die sich in Bezug auf ihre Masse, ihre zelluläre Verteilung und ihre Affinität für IgG Antikörper unterscheiden (van de Winkel & Capel 1993). Dies sind FcγRI (CD64), FcγRII (CD32)
und FcγRIII (CD16), deren Gene auf dem langen Arm des Chromosoms 1 (1q21-24) lokalisiert sind (van de Winkel & Capel 1993).

Der Fcγ-Rezeptor II ist ein Glykoprotein mit einer Masse von 40 kDa, hat eine hohe Affinität zu IgG2 und bindet nachweislich nur an Immunglobulinkomplexe (van de Winkel et al. 1989). Es konnten sechs Isoformen (FcγRIIa1, a2; FcγRIIb1, b2, b3; und FcγRIIc) identifiziert werden, die alle auf verschiedenen Genen (FcγRIIA, B und C) kodiert sind (Qiu et al. 1990).

2.4 Einflüsse von Nukleotidpolymorphismen auf die Pathogenese der Parodontitis

Die genetische Information von Menschen ist zu 99,9% identisch, da es sich um eine Spezies handelt, nur 0,1% des genetischen Materials unterscheidet uns von einander. In diesem relativ kleinen Bereich des menschlichen Genoms muss auch die Anfälligkeit oder Resistenz einiger Individuen für oder gegen bestimmte Krankheiten kodiert sein (Stephens et al. 1998).

Aldred & Bartold et al. (1998) gehen davon aus, dass hauptsächlich viele kleine polymorphie Gene mit einem kleinen aber signifikanten Einfluss auf die Pathogenese der Parodontitis zu dem gesamten Erkrankungsrisiko beitragen.

Tabelle 3: Interleukin- und Fcγ- Polymorphismen, die mit der Parodontitis in Verbindung gebracht werden konnten.

<table>
<thead>
<tr>
<th>Polymorphismus</th>
<th>Studien</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1α C(-889)-T</td>
<td>Kornman et al. 1997</td>
<td>mit chronischer Parodontitis assoziiert (bei Kaukasiern)</td>
</tr>
<tr>
<td>IL-1β C(+3953)-T</td>
<td>Kornman et al. 1997</td>
<td>mit chronischer Parodontitis assoziiert (bei Kaukasiern)</td>
</tr>
<tr>
<td>IL-2 T(-330)G</td>
<td>Scarel-Caminaga 2002</td>
<td>steht mit chronischer Parodontitis in Verbindung (bei Brasilianern)</td>
</tr>
<tr>
<td>IL-4 C(-590)-T (VNTR) Intron 2</td>
<td>Michel et al. 2001</td>
<td>steht mit aggressiver Parodontitis in Verbindung (bei Kaukasiern)</td>
</tr>
<tr>
<td>IL-6 G(-174)C</td>
<td>Trevilatto et al. 2003</td>
<td>steht mit chronischer Parodontitis in Verbindung (bei Kaukasiern)</td>
</tr>
<tr>
<td>IL-10 G(-1087)A</td>
<td>Berglundh et al. 2003</td>
<td>steht mit chronischer Parodontitis in Verbindung (bei Kaukasiern)</td>
</tr>
<tr>
<td>FcγRIIa A(-131)G</td>
<td>Wilson & Kalmar 1996</td>
<td>mit aggressiver Parodontitis assoziiert (Hypothese)</td>
</tr>
<tr>
<td>FcγRIIIa G(-559)T</td>
<td>Meisel et al. 2001</td>
<td>mit chronischer Parodontitis assoziiert (bei Kaukasiern)</td>
</tr>
</tbody>
</table>

Der Polymorphismus des IL-1B Gens an Stelle +3953 wird für eine bis zu 4fach höhere Produktion von IL-1β verantwortlich gemacht (Kornman et al. 1997). Sie berichten über einen spezifischen Genotypen des polymorphen IL-1 Genclusters, der bei Nichtrauchern mit dem Schweregrad der chronischen Parodontitis ver-
gesellschaftet ist und Patienten mit profunder Parodontitis von solchen mit milderer Formen dieser Krankheit unterscheidet. Die Assoziation zwischen dem IL-1 Polymorphismus (IL-1α C(-889)-T und IL-1β C(+3953)-T) und dem Schweregrad der chronischen Parodontitis gilt seither als anerkannt und wurde in vielen Untersuchungen bestätigt (Galbraith et al. 1999, McDevitt et al. 2000).

sunde Probanden und Patienten mit chronischer Parodontitis alleine auf Grund ihres Genotyps zu unterscheiden. Der IL-1 Polymorphismus (IL-1α C(-889)-T und IL-1β C(+3953)-T) korrelierte jedoch innerhalb der Patienten mit dem Schweregrad der Erkrankung und der Antikörperreaktion auf die subgingivale Mikroflora. Bei Parodontitis-Patienten, die Träger des kombinierten IL-1 Polymorphismus (IL-1α C(-889)-T und IL-1β C(+3953)-T) waren, konnte ein häufigeres Vorkommen der „roten“ und „orangen“ Komplexe mit ihren pathogenen Keimen gezeigt werden (Socransky et al. 2000).

Lang et al. (2000) untersuchten den Effekt des IL-1 Polymorphismus (IL-1α C(-889)-T und IL-1β C(+3953)-T) auf die Sulkussondierungsblutung (BOP) bei Parodontitis-Patienten in der Erhaltungstherapie. Sie fanden heraus, dass IL-1 Genotyp negative Patienten ein bis zu 50% niedrigeres Risiko besitzen, bei gleicher Mundhygiene, einen erhöhten BOP zu entwickeln. Es konnte somit gezeigt werden, dass der IL-1 Polymorphismus (IL-1α C(-889)-T und IL-1β C(+3953)-T) keinen essentiellen Risikofaktor zur Krankheitsentstehung darstellt, wohl aber in Bezug auf die Krankheitsprogression bei bestehender Erkrankung, im Sinne einer hyperinflammatorischen Immunreaktion.

Diese Assoziation versuchte man nun auch auf die aggressive Parodontitis zu übertragen, wobei die Studien hier keine eindeutigen Ergebnisse zeigen. So konnte in manchen Studien keine Assoziation zwischen der aggressiven Parodontitis und den IL-1 Polymorphismen (IL-1α C(-889)-T bzw. IL-1α G(+4845)-T und IL-1β C(+3953)-T) bei Kaukasiern hergestellt werden (Hodge et al. 2001, Gonzales et al. 2003). In zwei anderen Studien wiederum gelang es einen Zusammenhang zwischen der aggressiven Parodontitis und dem nicht-polymorphen Genotyp (homozygoter Zustand) des IL-1α (C(-889)-T) und des IL-1β (C(+3954)-T) herzustellen (Parkhill et al. 2000, Diehl et al. 1999).

Wie groß ist jedoch der Einfluss der IL-1 Polymorphismen (IL-1α C(-889)-T und IL-1β C(+3953)-T) auf die Behandlung?

889)-T und IL-1β C(+3953)-T) waren, besser auf die Therapie reagierten als die Träger der polymorphen Allele (IL-1α C(-889)-T und IL-1β C(+3953)-T), bei initial starkem Knochenverlust entstand eine genau umgekehrte Situation. Patienten mit polymorphen Genotypen für IL-1α und β (IL-1α C(+4845)-T und IL-1β C(+3954)-T) sollten jedoch wegen ihrer Neigung zu Rezidiven engmaschiger nachkontrolliert werden (Lang et al. 2000). Bei mukogingivalen Eingriffen zur Deckung von Rezessionen mit Bindegewebstransplantaten können keine Unterschiede zwischen Patienten mit polymorphen und nicht-polymorphen Genotypen des IL-1α und β (IL-1α C(-889)-T und IL-1β C(+3953)-T) festgestellt werden, wobei Patienten mit nicht-polymorphen Genotyp häufiger vollständige Wurzeldeckungen zeigen als Patienten mit polymorphen Genotyp (Caffesse et al. 2002).

Die IL-1 Polymorphismen (IL-1α C(-889)-T und IL-1β C(+3953)-T) haben auf die klinischen und radiologischen Einjahresergebnisse nach GTR-Therapie keinen Einfluss (Christgau et al. 2003), jedoch auf die Langzeitergebnisse. So konnte anhand von 40 Patienten vier Jahre postoperativ gezeigt werden, dass Patienten mit polymorphen Genotyp für IL-1α C(-889)-T und IL-1β C(+3954)-T im Vergleich zu Patienten mit nicht-polymorphen Genotyp 50% des innerhalb des ersten Jahres nach der Operation gewonnenen Attachments verlieren (De Sanctis et al. 2000).

Auf die Prognose von osseointegrativen Implantaten haben die IL-1 Polymorphismen (IL-1α C(-889)-T und IL-1β C(+3953)-T) bei Nichtrauchern keinen Einfluss (Rogers et al. 2002), wobei Träger des polymorphen Allels, die rauchen, ein signifikant höheres Risiko besitzen Komplikationen während der funktionellen Phase zu entwickeln (Gruica et al. 2004).

Die IL-4 Polymorphismen (C(-590)-T und VNTR in Intron 2) konnten jedoch von Michel et al. (2001) mit der aggressiven Parodontitis assoziiert werden. 27,8% der Patienten mit aggressiver Parodontitis waren positiv für den Intron- und Promotor
Polymorphismus des IL-4 Gens, keiner der gesunden Probanden und der Patienten mit chronischer Parodontitis trug diesen Marker. Außerdem war der IL-4 Level der Genotyp positiven Patienten unterhalb der Nachweisgrenze und damit signifikant verschieden im Vergleich zur Gruppe der gesunden Kontrollen, was der Hypothese nach Shapira et al. (1992) entspricht.

Der Fcγ Rezeptor IIa ist der am weitest verbreitete der drei Klassen der Fcγ-Rezeptoren (Van de Winkel & Capel 1993).

Der FcγRIIa-131H/R Polymorphismus (Histidin, H oder Arginin, R) an der Position 131 resultiert aus einem einfachen Tausch der Nukleotide G zu A (Warmerdam et al. 1990).

Ohne Ausschaltung des Komplementsystems (jedoch mit Ausschaltung der IgG2-Antikörper) war die Phagozytoserate zwar signifikant höher, jedoch ergab sich auch hier kein Unterschied zwischen den beiden Allotypen. Dies Ergebnis kam nicht überraschend, sind bei der komplementvermittelten Phagozytose doch die Komplementrezeptoren vom Typ 1 und 3 (CR1 und CR3) wichtiger als die Fcγ-Rezeptoren.

Als A. actinomycetemcomitans mit IgG2 inkubierte wurde (ohne Komplementsystem), waren die Phagozytoseraten von Allotyp H/H131 um das Dreifache höher als die des R/R131.

Leino et al. (1994) konnten zeigen, dass Neutrophile von Patienten mit aggressiver Parodontitis Fcγ-Rezeptoren in normaler Zahl (vergleichbar mit der Zahl von
gesunden Probanden) exprimieren; auf Grund des Versuchsaufbaus war es Leino et al. (1994) nicht möglich zwischen den H/H131 und R/R131 Genotypen zu unterscheiden.

Demnach wäre der R/R131 Genotyp mit einem erhöhten Risiko für entzündliche Erkrankungen vergesellschaftet und könnte zu einem vielversprechenden Marker für die aggressive Parodontitis werden.

2.5 Der Einfluss des Alters auf die Pathogenese der Parodontitis

Ein Risikoidikator für parodontale Erkrankungen ist das Altern, wobei hier eher das biologische als das chronologische Alter von Bedeutung ist.

Es bleibt die Frage, ob die parodontale Erkrankung altersbedingt oder altersabhängig ist. Mit anderen Worten: Ist die parodontale Erkrankung unweigerlich mit dem Altern verbunden, oder steigt lediglich das Risiko an einer Parodontitis zu erkranken?

Abdellatif & Burt (1987) zeigten, dass orale Hygiene stärker mit parodontalen Destruktionen in Verbindung gebracht werden konnte als das Alter, was für eine Altersabhängigkeit der Erkrankung sprechen würde.

Andererseits zeigten Papapanou et al. (1988), dass eine geringe Knochenhöhe bei individueller Betrachtung von Geschlecht, Zahl der Zähne, Kiefer, mesiale oder distale Flächen und Wurzeltyp altersbedingt ist. In einer anderen Studie von Pa-
papanou et al. (1991), in der Probanden, die keinen, bzw. minimalen Attachmentverlust aufwiesen (best group), mit den restlichen Probanden (all group) verglichen wurden, kam zu folgendem Ergebnis:

Der Attachmentverlust stieg im Alter, in beiden, der „best group“ wie auch der „all group“, wobei der Attachmentverlust der „best group“ signifikant geringer war als der der „all group“, was den gleichen Schluss wie bei Papapanou et al. (1988) zulassen würde.

Doch wie verändert sich das Immunsystem im Alter, und können durch diese Veränderungen die oben beschriebenen Tatsachen erklärt werden?

Das Immunsystem unterliegt einer ständigen Entwicklung von der Geburt an bis zum Tode (Franceschi & Cossarizza 1995), wobei das Alter keinen solch großen Einfluss auf das Immunsystem hat, wie es früher angenommen wurde (Franceschi et al. 1995).

Die größte altersbedingte Veränderung besteht also im T-Lymphozytensystem. Die Anzahl der T-Zellen im Blut ist bei älteren Menschen leicht vermindert (Ligthart

Zusammenfassend lässt sich bis hierher darstellen, dass durch die verminderte Proliferationsfähigkeit der T-Zellen sowohl die zelluläre, als auch die humorale Immunabwehr bei älteren Menschen eingeschränkt ist.

Frasca et al. (1994) berichteten über verminderte Proliferationsraten von Lymphozyten sowie supprimierte Syntheseraten von IL-2, IL-4 und löslichem IL-2R von mononuclearen Zellen des Blutes älterer Menschen. Die Zugabe von IL-2 zu kultivierten T-Zellen führt zu einer verstärkten Zellproliferation, was darauf schließen lässt, dass der verminderte IL-2 Level der proliferationslimitierende Faktor ist (Frasca et al. 1994).

Die Tatsache, dass der IL-6 Titer selbst bei gesunden älteren Personen ansteigt (Wei et al. 1992), lassen Ershler et al. (1994) auf eine unkontrollierte Expression

Abschliessend kann festgehalten werden: Mit dem altersbedingten Wandel des Immunsystems kann die Frage nach der altersabhängigen bzw. altersbedingten Parodontitis nicht geklärt werden.

2.6 Parodontitisresistente Individuen

Die Resistenz ist eine ererbte Unempfänglichkeit des Organismus (sog. natürliche Immunität) für eine Infektion mit pathogenen Mikroorganismen bzw. Schutz vor der Wirkung mikrobieller Stoffwechselprodukte (v.a. Endo- u. Exotoxinen) oder Giften. Die biologischen Grundlagen der Resistenz sind nur unvollständig bekannt. Es gibt Resistenz-Unterschiede der Arten (Bsp.: Gonokokken nur menschenpathogen), der Rassen (Bsp.: Scharlach nur bei Weishäutigen) und der Individuen (Bsp.: Konstitution, Alter, Umweltschäden). Die Resistenz nimmt durch Kälteschäden (Erkältung), Nährschäden (Unterernährung, Vitaminmangel), Stoffwechselstörung (Diabetes) sowie körperliche und seelische Überanstrengung ab. Sie kann aber auch durch natürliche und ausgeglichene Lebensweise, richtige Ernährung und Abhärtung gefördert werden (Pschyrembel 2002).
Viele Punkte der oben genannten allgemeinen Definition der Resistenz treffen auch auf die Parodontitis zu. So konnte gezeigt werden, dass es Unterschiede in Bezug auf die Parodontitis Prävalenz bei Patienten mit Diabetes mellitus (Hayden & Buckley 1989), Stress (Horning et al. 1992) sowie rassenspezifische Unterschiede (Borell et al. 2002) gibt.

Als einer der ersten beschäftigten sich Wiedemann et al. (1979) mit dieser Problematik und führten an 62 parodontal gesunden Probanden zwischen 20 und 29 Jahren eine experimentelle Gingivitis durch. 25 Probanden (Gruppe 1) erreichten den gewünschten Schweregrad der Gingivitis bereits nach einer zweiwöchigen Phase ohne Mundhygiene. 29 Probanden erreichten ihn nach drei Wochen (Gruppe 2) und 8 Probanden erreichten den gewünschten Schweregrad innerhalb der vorgegebenen Zeit nicht (Gruppe 3). Wiedemann et al. (1979) stuften Gruppe 3 als parodontitisresistent, Gruppe 2 als bedingt resistent und Gruppe 1 als parodontal insuffizient ein. Es wurden keine Angaben über eventuelle Risikofaktoren gemacht.

Von individuellen Unterschieden in Bezug auf die Krankheitsprogression konnte in Langzeitstudien berichtet werden, die sowohl an behandelten als auch unbehandelten Patienten durchgeführt wurden. In einer Langzeitstudie über 15 Jahre an Teeplantagenarbeitern auf Sri Lanka, die keinen Zugang zu zahnmedizinischen Einrichtungen und eine schlechte Mundhygiene hatten, wurde von großen Unterschieden in dem individuellen Risiko (Anfälligkeik) für eine Parodontitisprogression untersucht. Während 81% der Teeplantagenarbeiter eine moderate Progression zeigten konnte bei 11% keinerlei Krankheitsprogression festgestellt werden, was unter diesen Bedingungen mit einer Parodontitisresistenz gleichzusetzen ist. Bei
8% dieser Population konnte eine schnelle Krankheitsprogression mit starken parodontalen Destruktionen beobachtet werden (Löe et al. 1986).

Die hier aufgeführte Evidenz ist Grundlage für die Ein- und Ausschlusskriterien der vorliegenden Studie, deshalb wurden die Untersuchungen, bei denen die Gruppe der parodontitisresistenten Probanden nicht eindeutig beschrieben war, hier ausser acht gelassen.
Ziel der Studie

3.0 Ziel der Studie

Ziel der Studie war, genetische Risikofaktoren [Polymorphismen der Interleukine: IL-1\(\alpha\) (G → T an Stelle +4845), IL-1\(\beta\) (C → T an Stelle +3954), IL-4 (C → T an Stelle -590 in der Promotorregion), IL-4 (VNTR in Intron 2), IL-13 (G → A an Stelle +2044 in Exon 4), IL-13 (C → T an Stelle –1112 in der Promotorregion) und FcγRIIa (A → G an Stelle 131)] bei einer Gruppe von älteren Individuen, die keine klinischen Zeichen einer Parodontitis (kein Attachmentverlust) aufwiesen, zu untersuchen. Diese Gruppe wurde mit einer Gruppe von jungen, gesunden Individuen und einer Gruppe von Patienten mit aggressiver Parodontitis verglichen.
4.0 Material und Methoden

4.1 Studienprotokoll

4.2 Klinische und radiologische Untersuchungsmethoden

4.2.1 Eingangsuntersuchung

Um eindeutige Messergebnisse zu garantieren wurden die Befunde jedes Patienten vom gleichen Behandler erhoben.

4.2.2 Röntgenanalyse

Für Messungen des Alveolarknochenniveaus wurden nur aktuelle Röntgenbilder benutzt, entweder kompletter Mundfilmstatus oder OPMG von guter Qualität, die nicht älter als 6 Monate sein durften. Sofern neue Röntgenbilder angefertigt werden mussten, wurden diese immer von demselben OPMG Gerät aufgenommen. Bei der Gruppe von jungen, gesunden Individuen (J) wurden keine Röntgenbilder angefertigt, da hier keine medizinische Indikation bestand. Bei den anderen beiden Gruppen (AP und O) wurde die Röntgenanalyse folgendermaßen durchgeführt:

Es wurde der Abstand der interproximalen Verbindungslinie der Schmelzzementgrenzen benachbarter Zähne zur Knochenkante gemessen und als Verhältnis zur gesamten Wurzellänge in Prozent ausgedrückt (siehe nachfolgende Abbildung).
Material und Methoden

Abb. 1: OPG eines parodontitisresistenten Probanden

+: Abstand Knochenkante bis Wurzelspitze

*: Abstand Schmelzzementgrenze bis Knochenkante
4.3 Studienpopulation

Von den kooperierenden Zahnärzten und den oben genannten Abteilungen wurden insgesamt 416 Probanden für die Studie zur Verfügung gestellt, die die Einschlusskriterien nach Meinung der kooperierenden Kollegen erfüllten. Es erfolgte eine Vorauswahl anhand von Röntgenbildern nach oben beschriebener Röntgenanalyse. 86 Probanden erfüllten die Einschlusskriterien der Röntgenanalyse, 7 Probanden waren nicht bereit an der Studie teilzunehmen, weitere 5 Probanden mussten aus anamnestischen Gründen von der Studie ausgeschlossen werden. 74 Probanden wurden klinisch untersucht, wobei lediglich 22 die weiter unten beschriebenen Einschlusskriterien erfüllten.

4.3.1 Patientenaufklärung

Die Patienten, die an dieser Studie teilnahmen, wurden vor Untersuchung und Blutentnahme über den Inhalt der Studie informiert. Nach Aufklärung gaben sie eine schriftliche Einverständniserklärung ab, dass sie zur Probenentnahme zu rein wissenschaftlichen Untersuchungen bereit sind. (siehe Anhang)

4.3.2 Ausscheiden aus der Studie

Patienten, die ihre Einverständniserklärung zur Probenentnahme widerrufen, scheiden aus der Studie aus.
4.4 Gruppeneinteilung

Gruppe AP: Junge Patienten, die an einer aggressiven Parodontitis leiden
Gruppe J: Junge Probanden ohne Attachmentverlust
Gruppe O: Alte Probanden ohne Attachmentverlust

Die Patienten wurden entsprechend der Auswahlkriterien ausgewählt. Es wurde eine Eingangsuntersuchung durchgeführt, danach Blut- und Serumproben entnommen und bis zur experimentellen Untersuchung gelagert. Die Probenentnahme erfolgte nach Aufklärung und Einverständniserklärung des Patienten.

4.4.1 Ein- und Ausschlusskriterien

4.4.1.1 Einschlusskriterien
(Es kommen für alle Gruppen nur Kaukasier in Frage)

Einschlusskriterien der Gruppe AP:

Patienten beiderlei Geschlechts (≤ 35 Jahre) mit dem folgenden klinischen Befund:

- Sondierungstiefe (ST) > 5mm (ST gemessen an 6 Stellen pro Zahn)
- Attachmentverlust (ALV) >6 mm
- Lokalisierte oder generalisierte Alveolarknochenverlust ≥ 50% von der Schmelz-Zement-Grenze (im OPG an mindestens 4-7 Stellen im Bereich der Seiten- und/oder Frontzähnen)
Einschlusskriterien der Gruppe J:
Probanden beiderlei Geschlechts (≤ 30 Jahre) mit dem folgenden klinischen Befund:

- Sondierungstiefe: ≤4mm (ST, gemessen an 6 Stellen pro Zahn)
- Kein Attachmentverlust (= Attachmentlevel >3mm)
- Anzahl der Zähne: ≥ 20

Einschlusskriterien der Gruppe O:
Probanden beiderlei Geschlechts (≥ 55 Jahre) mit dem folgenden klinischen Befund:

- Sondierungstiefen ≤ 4mm (ST, gemessen an 6 Stellen pro Zahn)
- kein Attachmentverlust (= Attachmentlevel >3mm)
- Anzahl der Zähne: ≥ 20
- kein Alveolarknochenverlust, d.h. keine Knochenresorption der Crista alveolare >15% im Röntgenbild

Die Einschlusskriterien der Gruppe O erlaubten Patienten mit schlechter Mundhygiene oder Compliance, Raucher inklusive, die aber keine Zeichen einer Parodontitis aufzeigten.
In Gruppe AP gab es drei Patienten, die älter als 35 Jahre waren, sie zeigten jedoch eindeutige Symptome der aggressiven Parodontitis, der Krankheitsbeginn lag bereits vor dem 35. Lebensjahr.

4.4.1.2 Ausschlusskriterien

Aus der Studie ausgeschlossen wurden Patienten mit folgenden Allgemein- oder systemischen Erkrankungen:
Diabetes mellitus, Autoimmunerkrankungen wie rheumatische Arthritis, systemischer Lupus Erythematoses und Sjögren-Syndrom,
Patienten, die in den letzten 8 Wochen vor Probenentnahme eine Antibiose bekamen, oder die Immunsuppressiva einnahmen und Patienten erkrankt an Hepatitis oder HIV.

4.5 Laborparameter

4.5.1 Entnahme von Blut

Aus der Armvene wurde Blut in herkömmlicher Weise entnommen. Die dafür vorgesehenen Röhrchen waren mit weißem Deckel für die Serumgewinnung, mit einem roten Deckel für die EDTA-Blutgewinnung und mit violettem Deckel für die Blutsenkungsgeschwindigkeit gekennzeichnet. Die Röhrchen sollten vollständig gefüllt werden, damit das Mischungsverhältnis mit den Antikoagulatien eingehalten wurde. Die Lagerung der Proben erfolgte bei –80°C.

4.5.2 Extraktion der DNA aus Blutzellen

Die Extraktion der DNA aus den Blutzellen erfolgt mit Hilfe des Insta Gene Whole Blood Kit der Firma Bio-Rad (BioRad-Laboratories, München).

- Das bei –80°C gelagerte Blut wird aufgetaut
- In einem 1,5 ml Tube werden 50 µl Blut mit 1ml des Lysis-Puffer versetzt, der die Blutzellen lysiert und bei geschlossenem Tube unter gelegentlichem Schütteln vermischt
- Die Zellyse läuft 8 min bei Raumtemperatur ab.
- Der Reaktionsansatz wird 1 min bei 10.000 – 12.000 rpm zentrifugiert, wodurch sich auf dem Boden des Tubes ein Pellet absetzt.
- Abpipettieren des Flüssigkeitsüberstandes über dem Pellet, ohne dieses zu zerstören
- Zugabe von 500 µl des Lysis-Puffers zu dem Pellet, um die DNA von den übrigen Blutbestandteilen zu befreien
- 10 sec vortexen
- 1min bei 10.000 – 12.000 rpm zentrifugieren und so viel wie möglich von dem Überstand abpipettieren, ohne das Pellet zu zerstören.
Material und Methoden

- Wiederholung des vorangegangenen Schrittes (Waschvorgang)
- Zugabe von 200 µl der Instagene Matrix zu dem Pellet, die die DNA stabilisiert, so dass sie gelagert werden kann.
- Inkubation 8 min bei 70°C
- 10 sec vortexen
- 4 min in 95°C Wasserbad
- falls die DNA nicht sofort für die PCR verwendet wird, Lagerung bei –20°C
- sobald die DNA für die PCR eingesetzt werden soll, 10 sec vortexen, 1 min zentrifugieren bei 10.000 – 12.000 rpm
- von dem Überstand werden 5 – 10 µl DNA in der PCR verwendet
- Lagerung derextrahierten DNA bei +4°C

4.6 PCR

- Denaturierung der doppeltsträngigen DNA bei 93 – 100°C
- Anlagerung der Primer an die DNA–Einzelstränge bei 37 – 65 °C (Annealing)
- Verlängerung der Primer durch Anlagerung der Desoxynukleosidtriphosphate (dNTP), so dass es unter Mitwirkung einer hitzestabilen DNA-Polymerase zur Synthese des komplementären DNA-Stranges kommt (Extension).

Alle drei Schritte bilden einen PCR-Zyklus, der mindestens zwanzig mal wiederholt wird. Auf diese Art und Weise wird der gewünschte DNA-Abschnitt vervielfacht, so dass er nachgewiesen werden kann.
4.6.1 PCR zur Bestimmung des Interleukin-1α Polymorphismus
\((G \rightarrow T \text{ an Stelle +4845}) \)

Primer: A: 5`- ATG GTT TTA GAA ATC ATC AAG CCT AGG GCA -3`
B: 5`- AAT GAA AGG AGG GGA GGA TGA CAG AAA TGT -3`

Zu 5 µl DNA werden hinzugefügt:
- 10 µl 10x Reaktionspuffer (Qiagen)
- 2 µl dNTPs 0,2 µM (dNTP mixture dATP, dGTP, dCTP und dTTP) (Boehringer Mannheim GmbH)
- 1 µl Primer A 0,2 µM
- 1 µl Primer B 0,2 µM
- 5 µl Magnesiumchlorid 25mM (Qiagen)
- 0,5 µl Hotstart Taq DNA Polymerase 5U/µl (Qiagen)
- 75,5 µl steriles Wasser, so dass sich ein Gesamtvolumen von 100 µl PCR Ansatz ergibt

Die PCR erfolgt in einem Mastercycler® Gradient der Firma Eppendorf/ Netheler/ Hinz, Hamburg, Deutschland.

PCR-Temperaturverlauf:
- Initiale Denaturierung 95°C 15 min
- Denaturierung 94°C 1 min
- Annealing 62°C 1 min
- Elongation 72°C 1 min
- finale Elongation 72°C 10 min

Das PCR-Produkt wird bei –20°C gelagert.

4.6.2 PCR zur Bestimmung des Interleukin 1β Polymorphismus
\((C \rightarrow T \text{ an Stelle +3954}) \)

Primer: A: 5`- CTC AGG TGT CCT CGA AGA AAT CAA A -3`
B: 5`- GCT TTT TTG CTG TGA GTC CCG -3`
Zu 5 µl DNA werden hinzugefügt:
- 10 µl 10x Reaktionspuffer (Qiagen)
- 2 µl dNTPs 0,2 µM (dNTP mixture dATP, dGTP, dCTP und dTTP) (Boehringer Mannheim GmbH)
- 2 µl Primer A 0,2 µM
- 2 µl Primer B 0,2 µM
- 10 µl Magnesiumchlorid 25mM (Qiagen)
- 0,5 µl Hotstart Taq DNA Polymerase 5U/µl (Qiagen)
- 68,5 µl steriles Wasser, so dass sich ein Gesamtvolumen von 100 µl PCR Ansatz ergibt

Die PCR erfolgt in einem Mastercycler® Gradient der Firma Eppendorf/ Netheler/ Hinz, Hamburg, Deutschland.

PCR-Temperaturverlauf:
- Initiale Denaturierung 94°C 2 min
- Denaturierung 94°C 1min
- Annealing 65°C 1min
- Elongation 72°C 1 min
- finale Elongation 72°C 7 min

Das PCR-Produkt wird bei –20°C gelagert.

4.6.3 PCR zur Bestimmung des Interleukin 4 Polymorphismus
(C → T an Stelle -590) in der Promotorregion

Primer: A: 5´- ACT AGG CCT CAC CTG ATA CG -3´

B: 5´- GTT GTA ATG CAG TCC TCC TG -3´

Zu 10 µl DNA werden hinzugefügt:
- 10 µl 10x Reaktionspuffer (Qiagen)
- 2 µl dNTPs 0,2 µM (dNTP mixture dATP, dGTP, dCTP und dTTP) (Boehringer Mannheim GmbH)
- 2 µl Primer A 0,2 µM
- 2 µl Primer B 0,2 µM
Material und Methoden

- 5 µl Magnesiumchlorid 25mM (Qiagen)
- 0,5 µl Hotstart Taq DNA Polymerase 5U/µl (Qiagen)
- 68,5 µl steriles Wasser, so dass sich ein Gesamtvolumen von 100 µl PCR Ansatz ergibt

Die PCR erfolgt in einem Mastercycler® Gradient der Firma Eppendorf/ Netheler/ Hinz, Hamburg, Deutschland.

PCR-Temperaturverlauf:
- Initiale Denaturierung 95°C 15 min
- Denaturierung 95°C 1min
- Annealing 57°C 1min 40 Zyklen
- Elongation 72°C 1 min
- finale Elongation 72°C 10 min

Das PCR-Produkt wird bei –20°C gelagert.

4.6.4 PCR zur Bestimmung des Interleukin 4 Polymorphismus
(Wiederholungspolymorphismus von 70 Basenpaaren in Intron 2)

Primer: A: 5’- TAG GCT GAA AGG GGG AAA CG -3’
B: 5’- CTG TTC ACC TCA ACT GCT CC -3’

Zu 5µl DNA werden hinzugefügt:
- 10µl 10 x Reaktionspuffer (Qiagen)
- 2µl dNTPs 0,2µM (dNTP Mix dATP, dGTP, dCTP und dTTP) (Boehringer Mannheim GmbH)
- 2µl Primer A 0,2µM
- 2µl Primer B 0,2µM
- 5µl Magnesiumchlorid 25 mM (Qiagen)
- 0.5µl Hotstart Taq DNA Polymerase 5U/µl (Qiagen)
- 76µl steriles Wasser, so dass sich ein Gesamtvolumen von 100µl PCR Ansatz ergibt

Die PCR erfolgt in einem Mastercycler® Gradient der Firma Eppendorf/ Netheler/ Hinz, Hamburg, Deutschland.
Material und Methoden

PCR-Temperaturverlauf:
- Initiale Denaturierung 94°C 2 min
- Denaturierung 94°C 40 sec
- Annealing 55°C 40 sec 33 Zyklen
- Elongation 74°C 50 sec
- final Elongation 72°C 10 min

Die PCR-Produkte werden bei -20°C gelagert.

4.6.5 PCR zur Bestimmung des Interleukin 13 Polymorphismus (G → A an Stelle +2044 in Exon 4)

Primer:
- A: 5’-CTTCCGTGAGGACTGAATGAGACGGTC-3’
- B: 5’-GCAAATAATGATGCTTTCGAAGTTTCAGTGGA-3’

Die PCR wird mit einem Volumen von 15 µl, das 24 ng genomische DNA enthält, durchgeführt. Dazu werden weiterhin 10mmol/l Tris – HCL (pH 8,3), 50 mmol/l Potassiumchlorid, 1,5 mmol/l MgCl₂, 200 µmol/l von jedem dNTP, 30ng jedes Primers und 0,6 unit Taq Polymerase (Sigma Chemical, St. Louis, Mo) benötigt.

Die PCR erfolgt in einem Mastercycler® Gradient der Firma Eppendorf/ Netheler/ Hinz, Hamburg, Deutschland.

PCR-Temperaturverlauf:
- Initiale Denaturierung 95°C 15 min
- Denaturierung 95°C 1 min
- Annealing 55°C 1 min
- Elongation 72°C 1 min
- final Elongation 72°C 10 min

Die PCR-Produkte werden bei -20°C gelagert.
4.6.6 PCR zur Bestimmung des Interleukin 13 Polymorphismus
(C → T an Stelle –1112 in der Promotorregion)

Primer :
A: 5´-GGAATCCAGCATGCCTTGTGAGG -3´
B: 5´-GTCGCCTTTTCCTGCTCTTCCGC -3´

Die PCR wird mit einem Volumen von 25µl, das 40 ng genomische DNA enthält,
durchgeführt. Dazu werden weiterhin 10mmol/l Tris – HCl (pH 8,3), 50 mmol/l Ka-
liumchlorid, 1,5 mmol/l MgCl$_2$, 200 µmol/l von jedem dNTP, 50 ng jedes Primers
und 1 unit Taq Polymerase (Sigma Chemical, St. Louis, Mo) benötigt.

Die PCR erfolgt in einem Mastercycler® Gradient der Firma Eppendorf/ Netheler/
Hinz, Hamburg, Deutschland.

PCR-Temperaturverlauf:
- Initiale Denaturierung 94°C 2 min
- Denaturierung 94°C 40 sec
- Annealing 54°C 40 sec 33 Zyklen
- Elongation 74°C 50 sec
- final Elongation 72°C 10 min

Die PCR-Produkte werden bei -20°C gelagert

4.6.7 PCR zur Bestimmung des FcγRIIa-Polymorphismus (A → G an Stelle 131,
was zu einem Wechsel der Aminosäuren Histidin zu Arginin im Protein führt)

 Folgende Bestandteile werden für das Reaktionsgemisch verwendet:
- PCR-Puffer bestehend aus MgCl$_2$
- dNTPs: dATP, dGTP, dCTP, dTTP
- Taq Polymerase
- Isolierte, genomische DNA
Primer:
- H131-spezifischer Sense-Primer (5´-ATCCAGAAATTCTCCCA-3´) von der 2.extrazellulären Domäne oder 0,5 μM R131-spezifischer Sense-Primer (5´-ATCCAGAAATTCTCCCG-3´)
- Gewöhnlicher Antisense-Primer (5´-CAATTTTGCTGCTATGGGC-3´) von einem Gebiet des downstream-Introns, wo die Sequenzen für FcγRIIA, FcγRIIB und FcγRIIC abweichen.

Zur internen Kontrolle werden folgende Primer verwendet:
- Humaner Wachstumshormon (HGH)-I Primer (5´-CAGTGCCTTCCCAACCATTCCCTTA-3´) und HGH-II Primer (5´-ATCCACTCACGGATTTCGTTGTTTTC-3´)

Ansetzen der Primer:

Die Primer liegen jeweils in einer Konzentrationen 0,1 nmol/μl (= 0,1 mM) vor.

Material und Methoden

Master-Mix (für 10 Ansätze):

- PCR buffer 10x mit 15 mM MgCl₂
- Primer 131H-LR (5 μM) 25 μl
- bzw. Primer 131R-HR (5 μM) 25 μl
- Primer HR/LR rev. (5 μM) 25 μl
- Primer HGH I (1,25 μM) 25 μl
- Primer HGH II (1,25 μM) 25 μl
- dnTPs (10 mM eines jeden) 5 μl
- Taq Polymerase (5U/μl) 1 μl
- aqua dest. 94 μl
- Gesamtvolumen 225 μl

Den Master-Mix aufteilen auf 10 Aliquots à 22,5 μl und je 2,5 μl DNA (mit 40 μg/ml) zugeben.

Die PCR erfolgt in einem Mastercycler® Gradient der Firma Eppendorf/ Netheler/ Hinz, Hamburg, Deutschland.

PCR-Temperaturverlauf:
- Initiale Denaturierung 95°C 5 min
- Denaturierung 95°C 30 sec
- Annealing 57°C 60 sec 11 Zyklen
- Elongation 72°C 30 sec
- Denaturierung 95°C 30 sec
- Annealing 54°C 60 sec 23 Zyklen
- Elongation 72°C 30 sec
- final Elongation 72°C 5 min

Die PCR-Produkte werden bei -20°C gelagert
4.7 Gelelektrophorese der PCR-Produkte

- 1g Agarose (Sigma-Aldrich Chemier GmbH) werden mit 50 ml 1x TAE-Puffer (BioRad) (50x TAE: 40 mM Tris, 20 mM Essigsäure, 1mM EDTA, pH 8,3) versetzt, was ein 2%iges Agarosegel ergibt
- Ethidiumbromidkonzentration im Agarosegel: 0,5µg/ml
- Ethidiumbromidkonzentration im 1xTAE-Puffer: 0,2µg/ml (0,015g Ethidiumbromid/1,5 ml, Fluka BioChemica, Neu-Ulm, Deutschland)
- Gel aufkochen
- Flüssiges Gel blasenfrei in das Elektrophoresegerät eingießen und erstarren lassen
- Erkaltetes Gel mit 1xTAE-Puffer bedecken
- Geltaschenformer aus dem Gel entfernen, dann 20µl des PCR Produktes mit 1µl des Ladepuffers (40% Ficoll, 0,05% Bromphenolblau, 0,05% Xylencyanol) versetzen und in die Geltasche füllen
- 4µl des DNA-Längenstandart VIII (Boehringer Mannheim GmbH) in die äußerste Geltasche applizieren
- Elektrophorese starten: 30 min 50 Volt
 30 min 100 Volt

Das Gel wird unter UV Licht ausgewertet und fotografiert.

IL-4 (Wiederholungspolymorphismus von 70 Basenpaaren in Intron 2):

Bei der Untersuchung des Wiederholungspolymorphismus von 70 Basenpaaren in Intron 2 des IL-4 Gens war im Agarosegel entweder eine 183 Basenpaar starke Bande sichtbar, die Allel 1 entspricht, oder eine 253 Basenpaar starke Bande, die Allel 2 entspricht. Allel 1 trägt den Polymorphismus.

FcγRIIa (A → G an Stelle 131):

Der FcγRIIa-H131-spezifischer Sense-Primer (Nucleotid A) und der FcγRIIa-R131-spezifischer Sense-Primer (Nucleotid G) ergeben eine 253 Basenpaar starke Bande, der zur internen Kontrolle benutzte HGH-1 Primer ergibt eine 439 Basenpaar starke Bande.
Erscheint bei FcyRIIa-R131 nur die Kontrollbande von 439 Basenpaaren und bei FcyRIIa-H131 sowohl die Kontrollbande als auch die Bande bei 253 Basenpaaren, so liegt ein Genotyp A/A vor. Erscheint die Bande 253 nur bei FcyRIIa-R131 so liegt ein Genotyp G/G vor, wenn bei beiden Nucleotiden die 253 Basenpaarbande erscheint, so liegt ein Genotyp A/G vor.

4.8 DNA Präzipitation

Vor dem Restriktionsverdau der IL-1α (G → T an Stelle +4845), IL-1β (C → T an Stelle +3954), IL-4 (C → T an Stelle -590 in der Promotorregion), IL-13 (G → A an Stelle +2044 in Exon 4) und IL-13 (C → T an Stelle −1112 in der Promotorregion) Polymorphismen, erfolgt eine Aufreinigung des PCR-Produktes mit Hilfe des QIAquick PCR purification kit der Firma Qiagen. Dabei wird die doppel- oder einsträngige DNA (100 bp – 10kb) von Primern, Nucleotiden, Polymerasen und Salzen befreit.

- Zu 80µl des PCR-Produktes werden 400µl des Puffers PB zugegeben, der im PCR-Produkt Primer, Nucleotide, Polymerasen und Salze bindet
- Dieses wird in eine QIAquick-Präzipitationssäule pipettiert und bei 13.000 rpm zentrifugiert
- Für den Waschvorgang werden 750µl des Puffers PE in die QIAquick-Säule appliziert und 1 min bei 13.000 rpm zentrifugiert
- Danach wird 1 min bei maximaler Geschwindigkeit (14.000 rpm) zentrifugiert
- 30µl des Elution-Puffers werden in die QIAquick-Säule appliziert und 1 min zentrifugiert, um die DNA aus der Membran der Präzipitationssäule herauszuwaschen
- Die aufgereinigte DNA wird bei −20°C bis zum Restriktionsverdau gelagert

4.9 Restriktionsverdau

Zur Untersuchung der IL-1α (G → T an Stelle +4845), IL-1β (C → T an Stelle +3954), IL-4 (C → T an Stelle -590 in der Promotorregion), IL-13 (G → A an Stelle +2044 in Exon 4) und IL-13 (C → T an Stelle −1112 in der Promotorregion) Polymorphismen findet nach der Aufreinigung des PCR-Produktes der Restriktionsver-
dau desselben statt, wobei das Restriktionsenzym das PCR-Produkt in Position des polymorphen Markers schneidet.

4.9.1 Restriktionsverdau IL-1α (G → T an Stelle +4845)

Zu 24µl der aufgereinigten DNA werden hinzugefügt:
- 4µl 10x NEBpuffer4 (BioLabs)
- 2µl Enzym Fnu4HI (BioLabs)
- 6µl steriles Wasser, so dass sich ein Gesamtvolumen von 36µl Restriktionsansatz ergibt.

Der Restriktionsverdau erfolgt 6 Stunden bei 37°C. Die Restriktionsprodukte werden bei –20°C gelagert.

4.9.2 Restriktionsverdau IL-1β (C → T an Stelle +3954)

Zu 28µl der aufgereinigten DNA werden hinzugefügt:
- 4µl 10x NEBpuffer4 (BioLabs)
- 0,4µl BSA 10mg/ml (BioLabs)
- 2µl Enzym Taq 1l (BioLabs)
- 5,6µl steriles Wasser, so dass sich ein Gesamtvolumen von 40µl Restriktionsansatz ergibt.

Der Restriktionsverdau erfolgt 6 Stunden bei 65°C. Die Restriktionsprodukte werden bei –20°C gelagert.

4.9.3 Restriktionsverdau IL-4 (C → T an Stelle -590) in der Promotorregion

Zu 20µl der aufgereinigten DNA werden hinzugefügt:
- 3µl 10x NEBpuffer4 (BioLabs)
- 0,3µl BSA 10mg/ml (BioLabs)
- 3µl Enzym BsmFl 2U/µl (BioLabs)
- 3,7µl steriles Wasser, so dass sich ein Gesamtvolumen von 30µl Restriktionsansatz ergibt.
Der Restriktionsverdau erfolgt 6 Stunden bei 37°C. Die Restriktionsprodukte werden bei –20°C gelagert.

4.9.4 Restriktionsverdau IL-13 (G → A an Stelle +2044 in Exon 4)

Zu 28µl der aufgereinigten DNA werden hinzugefügt:
- 4µl 10x NEBpuffer4 (BioLabs)
- 0,4µl BSA 10mg/ml (BioLabs)
- 1µl Enzym NLa4 2U/µl (BioLabs)
- 6,6µl steriles Wasser, so dass sich ein Gesamtvolumen von 40µl Restriktionsansatz ergibt.

Der Restriktionsverdau erfolgt 8 Stunden bei 37°C. Die Restriktionsprodukte werden bei –20°C gelagert.

4.9.5 Restriktionsverdau IL-13 (C → T an Stelle –1112 in der Promotorregion)

Zu 28µl der aufgereinigten DNA werden hinzugefügt:
- 4µl 10x NEBpuffer2 (BioLabs)
- 1µl Enzym BSTU1 2U/µl (BioLabs)
- 7µl steriles Wasser, so dass sich ein Gesamtvolumen von 40µl Restriktionsansatz ergibt.

Der Restriktionsverdau erfolgt 8 Stunden bei 37°C. Die Restriktionsprodukte werden bei –20°C gelagert.

4.10 Gelelektrophorese der Restriktionsprodukte

Die Gelelektrophorese der Restriktionsprodukte erfolgt in der MetaPhor® Agarose der Firma Biozym.

2,1 g MeToPhor® Agarose (Biozym) werden mit 70 ml 0,5x TBE-Puffer (10x TBE: 900 mM Tris, 900 mM Borsäure, 20mM EDTA, pH 7,8) versetzt, so dass man 70 ml eines 3%igen MetaPhor® Agarose Gels enthält.
Material und Methoden

Ethidiumbromidkonzentration im Puffer: 0,2µg/ml
Ethidiumbromidkonzentration im Gel: 0,5µg/ml

30µl des Restriktionsverdauansatzes werden mit einem 5x Ladepuffer (40% Ficoll, 0,05% Bromphenolblau, 0,05% Xylencyanol) versetzt und in jeweils eine Geltasche appliziert. Die äußerste Geltasche wird mit 4µl DNA-Längenstandard VIII (Boehringer, Mannheim) beschickt.

Elektrophorese: 3 min 30 V
4 Std 100 mA

Das Gelbild wird unter UV-Licht ausgewertet und fotografiert.

IL-1α (G → T an Stelle +4845):
Liegt der G-T Polymorphismus in beiden Allelen vor, so erscheint eine Bande von 153 Basenpaaren (Genotyp T/T), liegt der Polymorphismus jedoch in keinem der beiden Allele vor, so erscheint eine Bande bei 124 und eine bei 29 Basenpaaren (Genotyp G/G). Liegt ein G-Nucleotid und ein T-Nucleotid vor (Genotyp G/T), erscheinen alle drei Banden.

IL-1β (C → T an Stelle +3954):
Liegt der C-T Polymorphismus in beiden Allelen vor, so erscheint eine Bande von 182 Basenpaaren (Genotyp T/T), liegt der Polymorphismus jedoch in keinem der beiden Allele vor, so erscheint eine Bande bei 97 und eine bei 85 Basenpaaren (Genotyp C/C). Liegt ein C-Nucleotid und ein T-Nucleotid vor (Genotyp C/T), erscheinen alle drei Banden.

IL-4 (C → T an Stelle -590) in der Promotorregion:
Liegt der C-T Polymorphismus in beiden Allelen vor, so erscheint eine Bande von 252 Basenpaaren (Genotyp T/T), liegt der Polymorphismus jedoch in keinem der beiden Allele vor, so erscheint eine Bande bei 192 und eine bei 60 Basenpaaren (Genotyp C/C). Liegt ein C-Nucleotid und ein T-Nucleotid vor (Genotyp C/T), erscheinen alle drei Banden.
Material und Methoden

IL-13 (G → A an Stelle +2044 in Exon 4):

Liegt der G-A Polymorphismus in beiden Allelen vor, so erscheint eine Bande von 210 Basenpaaren (Genotyp A/A), liegt der Polymorphismus jedoch in keinem der beiden Allele vor, so erscheint eine Bande bei 178 Basenpaaren (Genotyp G/G). Liegt ein A- Nucleotid und ein G- Nucleotid vor (Genotyp A/G), erscheinen alle zwei Banden.

IL-13 (C → T an Stelle −1112 in der Promotorregion):

Liegt der C-T Polymorphismus in beiden Allelen vor, so erscheint eine Bande von 247 Basenpaaren (Genotyp T/T), liegt der Polymorphismus jedoch in keinem der beiden Allele vor, so erscheint eine Bande bei 224 Basenpaaren (Genotyp C/C). Liegt ein C- Nucleotid und ein T- Nucleotid vor (Genotyp C/T), erscheinen alle zwei Banden.

4.11 Statistische Auswertung

Ziel der Studie war, genetische Risikofaktoren [IL-1α (G → T an Stelle +4845), IL-1β (C → T an Stelle +3954), IL-4 (C → T an Stelle -590 in der Promotorregion), IL-4 (VNTR in Intron 2), IL-13 (G → A an Stelle +2044 in Exon 4), IL-13 (C → T an Stelle −1112 in der Promotorregion) und FcγRIIa (A → G an Stelle 131)] bei einer Gruppe von älteren Individuen, die keine klinischen Zeichen einer Parodontitis (kein Attachmentverlust) aufweisen, zu untersuchen. Diese Gruppe sollte mit einer Gruppe von jungen, gesunden Individuen und einer Gruppe von Patienten, die an einer aggressiven Parodontitis leiden, verglichen werden. Die Verteilung und die Häufigkeit der Polymorphismen bei den einzelnen Untersuchungsgruppen lassen für die untersuchte Population Rückschlüsse zu, ob diese Polymorphismen mit einer Anfälligkeit gegenüber der Parodontitis oder mit einer Resistenz gegen diese Erkrankung assoziiert werden können.

Die Analyse der Daten erfolgte als explorative Datenanalyse. Mit Hilfe einer Kontingenztafelanalyse wurde zunächst einzeln für jeden genetischen Faktor Häufigkeiten berechnet, die das unterschiedliche Auftreten innerhalb der Gruppen aufzeigen sollten. Anschließend wurde das Profil als solches be-

Zur Beschreibung der klinischen Situation von Patienten und Probanden wurden die ST, die SB und der AL von der Schmelz-Zement-Grenze, gemessen jeweils an 6 Stellen pro Zahn, sowie PI und PBI, gemessen jeweils an 4 Stellen pro Zahn, untersucht.

Da die Ergebnisse nicht der Normalverteilung folgen, wurden diese durch den Medianwert als Lageparameter, das erste und dritte Quartil als Streuungsmaße und Minimum und Maximum der Einzelwerte beschrieben.

5.0 Ergebnisse

Alle erhobenen klinischen Werte und die Ergebnisse der Polypmorphismen werden zwischen der Gruppe AP (Individuen mit aggressiver Parodontitis), der Gruppe J (junge, parodontal gesunde Individuen) und der Gruppe O (alte, parodontal gesunde Individuen) verglichen.

Im zweiten Teil des Kapitels werden die Fotos der Gelelektrophoresen vorgestellt.
5.1 Grafische Darstellung der klinischen Parameter

5.1.1 Alter der Gruppen

Wie in den Einschlusskriterien beschrieben, ist nun sichtbar, dass die Teilnehmer der Gruppe O mindestens 55 Jahre, die der Gruppe AP nicht älter als 44 Jahre und die der Gruppe J nicht älter als 28 Jahre alt waren.

5.1.2 Anzahl der Zähne in den Gruppen

Abb. 3: Anzahl der Zähne in den verschiedenen Gruppen

Tabelle 5: Auswertung der Bezahnung der einzelnen Gruppen

<table>
<thead>
<tr>
<th>Gruppen</th>
<th>Minimum</th>
<th>1. Quartil</th>
<th>Median</th>
<th>3. Quartil</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>20,0</td>
<td>27,0</td>
<td>28,0</td>
<td>31,0</td>
<td>32,0</td>
</tr>
<tr>
<td>J</td>
<td>26,0</td>
<td>28,0</td>
<td>28,0</td>
<td>28,5</td>
<td>32,0</td>
</tr>
<tr>
<td>O</td>
<td>22,0</td>
<td>26,0</td>
<td>28,0</td>
<td>30,0</td>
<td>32,0</td>
</tr>
</tbody>
</table>

AP: Patienten mit aggressiver Parodontitis, J: Junge, parodontal gesunde Probanden, O: Alte parodontal gesunde Probanden

Die Werte dieser Tabelle liegen alle sehr dicht zusammen, wobei der Minimumwert von Gruppe O die Einschlusskriterien in Bezug auf die Restbezahnung widerspiegelt.
5.1.3 Plaqueindizes der Gruppen

Tabelle 6: Auswertung der Plaqueindizes der einzelnen Gruppen in Prozent

<table>
<thead>
<tr>
<th>Gruppen</th>
<th>Minimum</th>
<th>1. Quartil</th>
<th>Median</th>
<th>3. Quartil</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>6,5</td>
<td>21,5</td>
<td>50,0</td>
<td>73,0</td>
<td>100,0</td>
</tr>
<tr>
<td>J</td>
<td>15,0</td>
<td>26,0</td>
<td>40,0</td>
<td>47,3</td>
<td>69,5</td>
</tr>
<tr>
<td>O</td>
<td>21,0</td>
<td>35,0</td>
<td>47,0</td>
<td>54,0</td>
<td>73,0</td>
</tr>
</tbody>
</table>

AP: Patienten mit aggressiver Parodontitis, J: Junge, parodontal gesunde Probanden, O: Alte parodontal gesunde Probanden

Die Plaqueindizes der Gruppe J liegen mit einem Medianwert von 40,0 % und einem Maximalwert von 69,5 % deutlich unter denen der anderen beiden Gruppen. Während die Werte des 1. Quartils und des Minimums der Gruppe AP deutlich unter denen der Gruppe O befinden, liegt Gruppe O im Medianwert mit 47% um 3 Prozentpunkte unter Gruppe AP. Im 3. Quartil und im Maximum wiederum liegt Gruppe O sehr deutlich unter der Gruppe AP.
5.1.4 Papillenblutungsindizes der Gruppen

5.1.5 Sondierungsblutung in den Gruppen

Abb. 6: Sondierungsblutungsindizes der verschiedenen Gruppen

Tabelle 8: Auswertung der Sondierungsblutungsindizes der einzelnen Gruppen in Prozent

<table>
<thead>
<tr>
<th>Gruppen</th>
<th>Minimum</th>
<th>1. Quartil</th>
<th>Median</th>
<th>3. Quartil</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>8,3</td>
<td>20,5</td>
<td>53,0</td>
<td>69,7</td>
<td>100,0</td>
</tr>
<tr>
<td>J</td>
<td>0,0</td>
<td>1,7</td>
<td>5,2</td>
<td>9,8</td>
<td>24,5</td>
</tr>
<tr>
<td>O</td>
<td>9,6</td>
<td>14,7</td>
<td>20,0</td>
<td>26,8</td>
<td>41,2</td>
</tr>
</tbody>
</table>

AP: Patienten mit aggressiver Parodontitis, J: Junge, parodontal gesunde Probanden, O: Alte parodontal gesunde Probanden

5.1.6 Sondierungstiefen in den Gruppen

Abb. 7: Sondierungstiefen der verschiedenen Gruppen

Tabelle 9: Auswertung der Sondierungstiefen der einzelnen Gruppen in Millimetern

<table>
<thead>
<tr>
<th>Gruppen</th>
<th>Minimum</th>
<th>1. Quartil</th>
<th>Median</th>
<th>3. Quartil</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>1,514</td>
<td>2,780</td>
<td>3,420</td>
<td>4,160</td>
<td>6,753</td>
</tr>
<tr>
<td>J</td>
<td>1,420</td>
<td>1,660</td>
<td>1,760</td>
<td>1,950</td>
<td>2,420</td>
</tr>
<tr>
<td>O</td>
<td>1,880</td>
<td>1,990</td>
<td>2,040</td>
<td>2,120</td>
<td>2,790</td>
</tr>
</tbody>
</table>

AP: Patienten mit aggressiver Parodontitis, J: Junge, parodontal gesunde Probanden, O: Alte parodontal gesunde Probanden

Die Werte von Gruppe J und O liegen in allen Bereichen nicht mehr als 0,4 mm auseinander. Gruppe AP liegt mit einem Median von 3,4 mm und einem Maximum von 6,8 mm sehr deutlich über den Werten von Gruppe J und O mit 1,8 und 2,0 mm bzw. 2,4 und 2,8 mm.
5.1.7 Attachmentlevel in den Gruppen

Abb. 8: Attachmentlevel der verschiedenen Gruppen

Tabelle 10: Auswertung des Attachmentlevels der einzelnen Gruppen in Millimetern

<table>
<thead>
<tr>
<th>Gruppen</th>
<th>Minimum</th>
<th>1. Quartil</th>
<th>Median</th>
<th>3. Quartil</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>1,701</td>
<td>2,828</td>
<td>3,420</td>
<td>4,813</td>
<td>8,580</td>
</tr>
<tr>
<td>J</td>
<td>1,420</td>
<td>1,660</td>
<td>1,760</td>
<td>1,950</td>
<td>2,420</td>
</tr>
<tr>
<td>O</td>
<td>1,880</td>
<td>1,990</td>
<td>2,045</td>
<td>2,150</td>
<td>2,840</td>
</tr>
</tbody>
</table>

AP: Patienten mit aggressiver Parodontitis, J: Junge, parodontal gesunde Probanden, O: Ältere parodontal gesunde Probanden

Wie schon bei den Sondierungstiefen liegen die Werte der Gruppen J und O sehr nah beieinander. Gruppe AP liegt mit einem Median von 3,4 mm und einem Maximum von 8,6 mm deutlich über den Werten der anderen Gruppen.
Ergebnisse

Abb. 9: Häufigkeit von Rauchern und Nichtrauchern der einzelnen Gruppen in Prozent

AP: Patienten mit aggressiver Parodontitis, J: Junge, parodontal gesunde Probanden, O: Alte parodontal gesunde Probanden

n = 35
n = 29
n = 22
AP: Patienten mit aggressiver Parodontitis, J: Junge, parodontal gesunde Probanden, O: Alte parodontal gesunde Probanden

Abb. 10: Verteilung der Geschlechter in den einzelnen Gruppen in Prozent

In diesem Diagramm ist zu beobachten, dass in den Gruppen J (79,3%) und O (59,1%) die männlichen Individuen im Vergleich zur Gruppe AP (20%) sehr stark vertreten sind. Bei der Gruppe AP sind die weiblichen Individuen mit 80% sehr häufig vertreten.
5.1.8 Klinische Daten der einzelnen Gruppen

<table>
<thead>
<tr>
<th></th>
<th>Gruppe AP</th>
<th>Gruppe J</th>
<th>Gruppe O</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MW ± SA</td>
<td>MW ± SA</td>
<td>MW ± SA</td>
</tr>
<tr>
<td>Kronen</td>
<td>5,55 ± 12,16</td>
<td>1,5 ± 1</td>
<td>4,5 ± 3,13</td>
</tr>
<tr>
<td>Füllungen</td>
<td>6,19 ± 3,75</td>
<td>5,48 ± 3,8</td>
<td>7,64 ± 4,88</td>
</tr>
<tr>
<td>Brücken</td>
<td>1,38 ± 0,74</td>
<td>1 ± 0</td>
<td>1,57 ± 0,94</td>
</tr>
</tbody>
</table>

AP: Patienten mit aggressiver Parodontitis, J: Junge, parodontal gesunde Probanden, O: Ältere parodontal gesunde Probanden

Tabelle 11: Mittelwerte (MW) und Standardabweichung (SA)

Die Mittelwerte für die Ergebnisse der klinischen Befunde (Kronen, Füllungen und Brücken) zeigen niedrigere Werte bei Gruppe J als bei den anderen Gruppen. Dabei liegen die Werte der Gruppe AP (mit Ausnahme der Kronen) nur knapp unter denen der Gruppe O.
5.2 Fotodokumentation

Analyse des +4845 (G→T) IL-1α Polymorphismus. Bande 1: Molekulargewichtmarker, Bande 4, 6, 8 und 9 zeigen den nichtpolymorphen Genotyp G/G, Bande 5 zeigt den polymorphen Genotyp T/T, Bande 2, 3, 7 und 10 zeigen den Genotyp G/T. Unter diesen elektrophoresischen Bedingungen war die Bande für 29 bp nicht sichtbar.

Analyse des +3954 (C→T) IL-1β Polymorphismus. Bande 1: Molekulargewichtmarker, Bande 2, 3, 6, 7, 9 und 10 zeigen den nichtpolymorphen Genotyp C/C, Bande 4, 5 und 8 zeigen den Genotyp C/T.
Ergebnisse

Analyse des 70 bp Wiederholungspolymorphismus des IL-4 Gens in Intron 2. Bande 1: Molekulargewichtmarker, Bande 2, 8 und 9 weisen 2 mal das nichtpolymorphische Allel 2 auf. Bande 3 und 5 weisen 2 mal das polymorphische Allel 1 auf, Bande 4, 6 und 7 zeigen je ein polymorphisches und ein nichtpolymorphisches Allel.

Ergebnisse

Analyse des FcγRIIa Genotyps. FcγRIIa-R131 (Nukleotid G) entspricht jeweils Reihe a, FcγRIIa-H131 (Nukleotid A) entspricht jeweils Reihe b. Bande 1: Molekulargewichtmarker; Reihen 2 und 5 zeigen den Genotyp G/G, d.h. FcγRIIa R/R131; Reihen 3 und 4 weisen den Genotyp G/A, d.h. den FcγRIIa H/R131 auf.
5.3 Grafische Darstellung der Genotyp- und Allelverteilungen

Genotypen: Interleukin-1 α (G - T +4845)

![Chart showing genotyp distribution](chart.png)

AP: Patienten mit aggressiver Parodontitis, J: Junge, parodontal gesunde Probanden, O: Alte parodontal gesunde Probanden

Abb. 11: Verteilung der Genotypen des IL-1α Gens der einzelnen Gruppen in Prozent

T ist das polymorphische Allel an Position +4845.

Es ist deutlich zu erkennen, dass sich Gruppe J mit 65,5% für Genotyp G/G, 27,6% für Genotyp G/T und 6,9% für Genotyp T/T klar von den anderen beiden Gruppen abhebt.
Ergebnisse

Genotypen: Interleukin-1 B (C - T +3954)

Abb. 12: Verteilung der Genotypen des IL-1β Gens der einzelnen Gruppen in Prozent

T ist das polymorphe Allel an Position +3954.
Hier zeigt sich eine sehr ausgeglichene Verteilung der Genotypen, die Häufigkeiten der einzelnen Gruppen liegen nie weiter als 8,4 Prozentpunkte auseinander.
Ergebnisse

Tabelle 12: Vergleich der IL-1 α und IL-1 β Genotypen in den verschiedenen Gruppen

<table>
<thead>
<tr>
<th>Genotypen von IL-1</th>
<th>Gruppe AP (n = 35)</th>
<th>Gruppe J (n = 29)</th>
<th>Gruppe O (n = 22)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+{4845 \ G \rightarrow T})</td>
<td>(G/G)</td>
<td>17 (48,6 %)</td>
<td>19 (65,5 %)</td>
</tr>
<tr>
<td></td>
<td>(G/T)</td>
<td>17 (48,6 %)</td>
<td>8 (27,6 %)</td>
</tr>
<tr>
<td></td>
<td>(T/T)</td>
<td>1 (2,9 %)</td>
<td>2 (6,9 %)</td>
</tr>
<tr>
<td>(+{3953 \ C \rightarrow T})</td>
<td>(C/C)</td>
<td>20 (57,1 %)</td>
<td>17 (58,6 %)</td>
</tr>
<tr>
<td></td>
<td>(C/T)</td>
<td>11 (31,4 %)</td>
<td>8 (27,6 %)</td>
</tr>
<tr>
<td></td>
<td>(T/T)</td>
<td>4 (11,4 %)</td>
<td>4 (13,0 %)</td>
</tr>
</tbody>
</table>

AP: Patienten mit aggressiver Parodontitis, J: Junge, parodontal gesunde Probanden, O: Ältere parodontal gesunde Probanden
Ergebnisse

Genotypen: Interleukin-4 Intron2 WP

Abb. 13: Verteilung der Genotypen des IL-4 Intron 2 (VNTR) der einzelnen Gruppen in Prozent

Allel1 ist das polymorphische Allel mit einem Wiederholungspolymorphismus von 70 Basenpaaren.

Hier ist klar zu erkennen, dass bei den gesunden Individuen der Gruppen J und O die polymorphischen Allele nur in sehr begrenzter Zahl (Gruppe J mit 3,5%) bzw. gar nicht auftreten (Gruppe O mit 0%). Außerdem ist sehr auffällig, dass bei Gruppe O der Genotyp 2/2 mit 86,4% stark gehäuft auftritt.
Genotypen: Interleukin-4 Promotor (C - T -590)

Abb. 14: Verteilung der Genotypen des IL-4 (C→T an Stelle -590 in der Promotorregion) der einzelnen Gruppen in Prozent

T ist das polymorphische Allel an Position –590.

Ergebnisse

| Genotypen von IL-4 | Gruppe AP
| n = 35 | Gruppe J
| N = 29 | Gruppe O
| n = 22 |
|---|---|---|
| **Intron 2** | | | |
| 2/2 | 11 (31,4 %) | 13 (44,8 %) | 19 (86,4 %) |
| 2/1 | 19 (54,3 %) | 15 (51,7 %) | 3 (13,6 %) |
| 1/1 | 5 (14,3 %) | 1 (3,5 %) | 0 |
| **-590 C → T** | | | |
| C/C | 8 (22,5 %) | 10 (34,5 %) | 17 (77,3 %) |
| C/T | 18 (51,4 %) | 12 (41,4 %) | 5 (22,7 %) |
| T/T | 9 (25,7 %) | 7 (24,1 %) | 0 |

AP: Patienten mit aggressiver Parodontitis, J: Junge, parodontal gesunde Probanden,
O: Alte parodontal gesunde Probanden

Tabelle 13: Vergleich der Genotypen des IL-4 Gens in den verschiedenen Gruppen
Ergebnisse

Genotypen: Interleukin-13 Exon 4 (G → A +2044)

![Bar Chart: Genotypen Distribution]

AP: Patienten mit aggressiver Parodontitis, J: Junge, parodontal gesunde Probanden, O: Alte parodontal gesunde Probanden

Abb. 15: Verteilung der Genotypen des IL-13 (G → A an Stelle +2044 in Exon 4) der einzelnen Gruppen in Prozent

A ist das polymorphische Allel an Position +2044.

Hier ist die Tendenz zu beobachten, dass bei den Gruppen der gesunden Individuen der Genotyp G/G, im Vergleich zu der Gruppe der kranken Individuen (Gruppe AP), sehr häufig auftritt. Gleichzeitig ist zu sehen, dass bei den gesunden (Gruppe J und O) das polymorphische Allel (A/A) im Gegensatz zu Gruppe AP weniger häufig auftritt.
Ergebnisse

Genotypen: Interleukin-13 Promotor
(C - T -1112)

Abb. 16: Verteilung der Genotypen des IL-13 (C → T an Stelle -1112 in der Promotorregion) der einzelnen Gruppen in Prozent

T ist das polymorphische Allel an Position –1112.

Es zeigt sich, dass die Häufigkeit für Genotyp T/T bei der Gruppe AP mit 31,4% und Gruppe O mit 22,7% höher liegt als bei Gruppe J mit 6,9%. Des weiteren ist zu beobachten, dass der Genotyp C/C bei Gruppe AP (5,7%) und Gruppe O (0%) im Vergleich zur Gruppe J (17,2%) weniger häufig vorkommt.

AP: Patienten mit aggressiver Parodontitis, J: Junge, parodontal gesunde Probanden, O: Alte parodontal gesunde Probanden

n = 35
n = 29
n = 22
Ergebnisse

| Genotypen von IL-13 | Gruppe AP
|------|------|------|------|
| | n = 35 | Gruppe J
| | | n = 29 | Gruppe O
| | | n = 22 |

+2044 G → A			
G/G	9 (25,7 %)	15 (51,7 %)	13 (59,1 %)
G/A	21 (60,0 %)	11 (37,9 %)	7 (31,8 %)
A/A	5 (14,3 %)	3 (10,3 %)	2 (9,1 %)

-1112 C → T			
C/C	2 (5,7 %)	5 (17,2 %)	0
C/T	22 (62,9 %)	22 (75,9 %)	17 (77,3 %)
T/T	11 (31,4 %)	2 (6,9 %)	5 (22,7 %)

- AP: Patienten mit aggressiver Parodontitis
- J: Junge, parodontal gesunde Probanden
- O: Alte parodontal gesunde Probanden

Tabelle 14: Vergleich der Genotypen des IL-13 Gens in den verschiedenen Gruppen
Ergebnisse

Abb. 17: Verteilung der Genotypen des FcyRIIa Gens der einzelnen Gruppen in Prozent

Hier ist die Tendenz zu beobachten, dass der FcyRIIa-H/H131 Genotyp bei den Gruppen der gesunden Individuen mit 24,1% für Gruppe J und 31,8% für Gruppe O häufiger vorkommt als bei Gruppe AP mit 8,6%. Bei der Gruppe der Individuen mit aggressiver Parodontitis hingegen zeigt sich, dass der FcyRIIa-R/R131 Genotyp mit 31,4% deutlich öfter vorkommt als bei Gruppe J (17,2%) und Gruppe O (18,2%).

<table>
<thead>
<tr>
<th>Genotypen von FcyRIIa</th>
<th>Gruppe AP n = 35</th>
<th>Gruppe J n = 29</th>
<th>Gruppe O n = 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>R/R131</td>
<td>3 (8,6 %)</td>
<td>7 (24,1 %)</td>
<td>7 (31,8 %)</td>
</tr>
<tr>
<td>R/H131</td>
<td>21 (60,0 %)</td>
<td>17 (58,6 %)</td>
<td>11 (50,0 %)</td>
</tr>
<tr>
<td>H/H131</td>
<td>11 (31,4 %)</td>
<td>5 (17,3 %)</td>
<td>4 (18,2 %)</td>
</tr>
</tbody>
</table>

Tabelle 15: Vergleich der Genotypen des FcyRIIa Gens in den verschiedenen Gruppen
5.4 Genotyp - Profile

Im Folgenden werden die Genotyp-Profile der einzelnen Patienten und Probanden dargestellt. Der Aufbau des Profils wird anhand eines Beispiels beschrieben.

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Million</td>
<td>Hunderttausend</td>
<td>Zehntausender</td>
<td>Tausender</td>
<td>Hunderter</td>
<td>Zehner</td>
<td>Einer</td>
<td></td>
</tr>
</tbody>
</table>

Einer: Fcγ-RezeptorIIa
Zehner: IL-13 (C→T an der Stelle -1112 in der Promotorregion)
Hunderter: IL-13 (G→A an Stelle +2044 in Exon 4)
Tausender: IL-1β (C→T an Stelle +3954)
Zehntausender: IL-1α (G→T an Stelle +4845)
Hunderttausender: IL-4 (VNTR von 70 BP in Intron 2)
Million: IL-4 (C→T an Stelle -590 in der Promotorregion)

Wobei hier die Ziffern 1 – 3 an der jeweiligen Stelle (Einer, Zehner, Hunderter usw.) den Genotyp des Interleukins oder Rezeptors angeben.

1: nichtpolymorphisches Allel/nichtpolymorphisches Allel
2: nichtpolymorphisches Allel/polymorphisches Allel
3: polymorphisches Allel/polymorphisches Allel

Je größer die Zahl, bzw. je mehr Dreien in einem Profil vorkommen, desto mehr polymorphische Allele trägt dieser Patient oder Proband. Hier ist auffällig, dass in der Gruppe O in einem Profil höchstens 2 mal die Ziffer 3 vorkommt.

Abbildung 18 zeigt die Profile der Gruppe AP
Abbildung 19 zeigt die Profile der Gruppe J
Abbildung 20 zeigt die Profile der Gruppe O

An der y-Achse ist die Häufigkeit der einzelnen Profile abgetragen, mit der sie innerhalb der jeweiligen Gruppe vorgekommen sind.
Ergebnisse

Abbildung 21 zeigt die Häufigkeit der einzelnen Profile aller Gruppen. Auffällig ist die große Heterogenität der Profile, lediglich das Profil 2211222 kam herausragend oft vor.
Ergebnisse

Profile der Patienten mit aggressiver Parodontitis

Abbildung 18
Ergebnisse

Profile der jungen, parodontal gesunden Probanden

Abbildung 19
Ergebnisse

Profile der parodontitisresistenten Probanden

Abbildung 20
Häufigkeit der Kombinationen aller 3 Gruppen
6.0 Diskussion

In der vorliegenden Untersuchung wurden genetische Risikofaktoren [Polymorphismen der Interleukine: IL-1α (G → T an Stelle +4845), IL-1β (C → T an Stelle +3954), IL-4 (C → T an Stelle -590 in der Promotorregion), IL-4 (VNTR in Intron 2), IL-13 (G → A an Stelle +2044 in Exon 4), IL-13 (C → T an Stelle -1112 in der Promotorregion) und Fcγ Rezeptors Ila (A → G an Stelle 131)] in einer Gruppe von älteren Individuen (älter als 55 Jahre), die keine klinischen Zeichen einer Parodontitis (kein Attachmentverlust) aufwiesen, untersucht. Diese Gruppe wurde mit einer Gruppe von jungen, gesunden Individuen (jünger als 30 Jahre) und einer Gruppe von Patienten mit aggressiver Parodontitis (nicht älter als 35 Jahre) verglichen.

Die klinischen Parameter zeigen, dass sich die Gruppe der parodontitisresistenten Probanden und die Patienten mit aggressiver Parodontitis in Bezug auf die Versorgung mit Kronen, Füllungen und Brücken nicht unterscheiden, d.h. Reizfaktoren wie Kronen- und Füllungsränder traten bei diesen beiden Gruppen ähnlich häufig auf.

Die übrigen klinischen Parameter spiegeln die Einschlusskriterien wider, was eine Diskussion unnötig macht.

Es konnte gezeigt werden, dass die IL-1 Polymorphismen (IL-1α C(-889)-T und IL-1β C(+3953)-T) keinen essentiellen Risikofaktor zur Krankheitsentstehung darstellt, wohl aber in Bezug auf die Krankheitsprogression bei bestehender Erkran-
kung im Sinne einer hyperinflammatorischen Immunreaktion. So konnten Kornman et al. (1997) einen gemeinsam vorkommenden Polymorphismus des IL-1α C(-889)-T und IL-1β C(+3953)-T mit dem Schweregrad der chronischen Parodontitis bei Nichtrauchern assoziiert.

Hodge et al. (2001) untersuchten die von Kornman et al. (1997) beschriebenen IL-1α und IL-1β Polymorphismen bei Patienten mit generalisierter aggressiver Parodontitis, die nicht miteinander verwandt waren. Sie fanden keine Unterschiede zwischen Patienten und gesunden Kontrollen.

In einer Literaturübersicht einer Konsensuskonferenz kamen Loos et al. (2005) zu dem Schluss, dass Polymorphismen des IL-1 Gens mit der chronischen Parodontitis assoziert sein könnten, wenngleich die Aussagekraft der Studien schwach ist und andere Risikofaktoren der Parodontitis nicht berücksichtigt wurden.

In der vorliegenden Studie wurden der IL-1A +4845 Polymorphismus, der mit dem –889 Locus in Linkage Disequilibrium steht, sowie der IL-1B +3954 Polymorphismus untersucht. Betrachtet man die Verteilung der Häufigkeiten der IL-1A +4845 und IL-1B +3954 Polymorphismen zwischen den einzelnen Gruppen, so lässt sich kein eindeutiges Verteilungsmuster feststellen, was die Ergebnisse von Gonzales et al. (2003) und Hodge et al. (2001) bestätigt.

Vergleicht man in der vorliegenden Studie die Häufigkeiten der polymorphen Allele von IL-4 (C(-590)-T und VNTR in Intron2) zwischen der Gruppe der Patienten mit aggressiver Parodontitis und der Gruppe der jungen, gesunden Probanden, so kann man feststellen, dass hier ein eindeutiger Trend nur in Bezug auf den IL-4 VNTR Intron2 Polymorphismus zu erkennen ist. Die Patienten mit aggressiver Pa-
rodontitis weisen mit 14,3% eindeutig häufiger den IL-4 (VNTR Intron2) Polymorphismus auf als die jungen, gesunden Probanden mit 3,5%.

Vergleicht man nun aber die Gruppe der Patienten mit aggressiver Parodontitis mit der Gruppe der Parodontitisresistenten, so lässt sich feststellen, dass weder der IL-4 VNTR Intron2 noch der C(-590)-T Promotorpolymorphismus in der Gruppe der parodontitisresistenten Probanden vorhanden sind.

Stellt man jetzt auch noch die Häufigkeit des kombinierten polymorphen Genotyps (homozygoter Zustand der polymorphen Allele beider Polymorphismen, C(-590)-T und VNTR Intron2), wie von Michel et al. (2001) beschrieben, gegenüber, so wird ein eindeutiger Trend zwischen den verschiedenen Gruppen sichtbar (Gruppe der Patienten mit aggressiver Parodontitis: 14,3%, n=5; Gruppe der jungen, gesunden Probanden: 3,4%, n=1; Gruppe der parodontitisresistenten Probanden: 0%, n=0).

Die Unterschiede sind bei den kombinierten nicht-polymorphen Genotypen (homozygoter Zustand der nicht-polymorphen Allele beider Polymorphismen, C(-590)-T und VNTR Intron2) zwischen der Gruppe der Patienten mit aggressiver Parodontitis mit 22,9% und der Gruppe der jungen, gesunden Probanden mit 27,9% nicht mehr ganz so eindeutig, was auf eine höhere Spezifität als Sensitivität schließen lässt. Das Vorliegen des kombinierten nicht-polymorphen C(-590)-T und VNTR Intron2 Genotyps könnte für diese Studienpopulation mit einer Resistenz (Gruppe der parodontitisresistenten Probanden: 77,3%) gegenüber der aggressiven Parodontitis assoziiert sein; das Vorliegen des kombiniert polymorphen C(-590)-T und VNTR Intron2 Genotyps könnte entsprechend für ein höheres Risiko an einer aggressiven Parodontitis zu erkranken (Gruppe der Patienten mit aggressiver Parodontitis: 14,3%) interpretiert werden.

Yamazaki et al. (1997) untersuchten die mRNA Level von Interferon-γ, IL-4, IL-10, IL-12 und IL-13 in der Gingiva und in Monozyten bei Patienten mit chronischer Pa-
rodontitis. Sie fanden höhere IL-13 mRNA Level in den Monozyten als im gingivalen Gewebe, wenngleich die Ergebnisse nicht eindeutig waren. In einer weiteren Studie konnten im chronisch entzündeten parodontalen Gewebe hauptsächlich Th2 Zytokine, d.h. IL-6, IL-10 und IL-13 gefunden werden (Yamamoto et al. 1997). Huang et al. (2003), die die Th1/Th2 Zytokin- und die Androgenrezeptorexpression in medikamenteninduzierter Gingivahyperplasie untersuchten, zeigten, dass Androgenrezeptoren, Interferon-γ, IL-2, IL-4, IL-10 und IL-13 in Kernen von Entzündungszellen des gingivalen Gewebes vermehrt exprimiert werden.

Gonzales et al. (2003) fanden Hinweise, dass der IL-13 C(-1112)-T Polymorphismus der Promotorregion mit der aggressiven Parodontitis bei Kaukasiern assoziiert sein könnte.

Die vorliegende Studie lässt für den IL-13 G(+2044)-A Polymorphismus in Exon 4 leichte Tendenzen erkennen, so liegt der polymorphe Genotyp (A/A) mit 14,3% für die Gruppe der Patienten mit aggressiver Parodontitis eindeutig häufiger vor als bei den gesunden Probanden mit 10,3% (Gruppe der jungen, gesunden Probanden), bzw. 9,1% (Gruppe der parodontitisresistenten Probanden).

Bei dem nicht-polymorphen Genotyp (G/G) ist mit 25,7% für die Gruppe der Patienten mit aggressiver Parodontitis, 51,7% für die Gruppe der jungen, gesunden Probanden und 59,1% für die Gruppe der parodontitisresistenten Probanden ein genau gegenläufiger Trend zu beobachten. Auch hier könnte sich für diese Studienpopulation auf Grund der Genotypverteilung schließen lassen, dass der nicht-polymorphe Genotyp (homozygoter Zustand) mit einer Resistenz, der polymorphe Genotyp (homozygoter Zustand) jedoch mit einem erhöhten Erkrankungsrisiko vergesellschaftet ist.

Bei dem IL-13 C(-1112)-T Polymorphismus tritt eine Besonderheit auf: Der polymorphe Genotyp kommt mit 31,4% für die Gruppe der Patienten mit aggressiver Parodontitis und 22,7% für die parodontitisresistente Gruppe deutlich häufiger vor als bei der Gruppe der jungen, gesunden Probanden mit 6,9%. Der nicht-polymorphe Genotyp tritt bei den Kranken (Gruppe der Patienten mit aggressiver Parodontitis: 5,7%) weniger häufig auf als bei den jungen, gesunden Probanden (17,2%); bei den parodontitisresistenten Probanden hingegen kommt dieser Genotyp gar nicht vor.

Der Polymorphismus des Fcγ-Rezeptor IIa A(+131)-G konnte bei Japanern und Afro-Amerikanern weder mit der Parodontitis noch mit deren Schweregrad assozi-

Diskussion

Es wurde bisher in keiner anderen Studie ein Profil der Genotypen für jeden einzelnen Probanden erstellt, was die Diskussion der Ergebnisse dieses Teils der vorliegenden Studie erschwert.

Diese Daten zeigen, dass die Gruppe der Patienten mit aggressiver Parodontitis im Durchschnitt eindeutig mehr polymorphe als nicht-polymorphe Allele im Vergleich zu den beiden Gruppen mit gesunden Probanden besitzt. Der Unterschied im Genotypprofil zwischen krank und gesund wird im Vergleich zwischen Patien-

Wenn man sich nun die Kombinationen der Genotypprofile vor Augen führt, wird man eine große Heterogenität der Profile feststellen. So gibt es bei 86 Patienten und Probanden 67 verschiedene Profile, auffällig ist hier das häufige Vorkommen des Profils: 2211222 (siehe Seite 77).

Die Anzahl der hier untersuchten Interleukine und Rezeptoren ist, verglichen mit der Vielfalt im Körper vorkommender Interleukine, Rezeptoren und Mediatoren, die ebenfalls einen Einfluss auf die Pathogenese der Parodontitis haben könnten, sehr gering. Da es sich hier nicht um einzelne, unabhängige Faktoren, sondern um sich gegenseitig beeinflussende Substanzen handelt, wird, bei der großen Heterogenität die Komplexität der genetischen Beeinflussung der Parodontitis erst deutlich.

Es gibt zwei übliche Methoden von Assoziationsanalysen für genetische Studien, die population-based und die family-based Methode (Hodge et al. 1993). Die population-based Methode, nach der die vorliegende Studie durchgeführt wurde, bedient sich eines case-control designs, bei welchem die Häufigkeit bestimmter Markerallele zwischen kranken Individuen (cases) und gesunden Probanden (controls) verglichen wird.

Wenn eine Assoziation gefunden wurde, sind mehrere Interpretationen möglich. Als erstes könnte das assoziierte Allel der einzige krankheitsverursachende Grund sein, zum zweiten könnte das assoziierte Allel in linkage disequilibrium mit dem tatsächlich krankheitsverursachenden Locus stehen, zum dritten könnte die Asso-
Diskussion

ziation von der Populationsauswahl abhängen und zum vierten könnte die Assoziation ein statistischer Artefakt sein (Hart & Kinane 2003).
Bei der vorliegenden Studie wurde aus diesen Gründen eine rein explorative Analyse durchgeführt. Alle Ergebnisse und Schlussfolgerungen haben allein für die getestete Population Aussagekraft. Um die Schlussfolgerungen auf größere Populationen zu übertragen sind weitere Untersuchungen mit größeren Kollektiven notwendig.
Zusammenfassung

7.0 Zusammenfassung

Ergebnisse von Zwillingsstudien und klinische Untersuchungen, die sich mit der familiären Häufung der aggressiven Parodontitis beschäftigten, zusammen mit den genetisch bedingten Syndromen und Krankheiten, in denen die Parodontitis ein Hauptkrankheitsmerkmal darstellt, zeigen, dass genetische Faktoren eine wichtige Rolle in der Pathogenese der Parodontitis spielen. So haben Untersuchungen gezeigt, dass die Stärke der Zytokinexpression durch genetische Polymorphismen reguliert wird, und dass diese Variation einen Einfluss auf das Fortschreiten der Erkrankung hat.

Ziel der vorliegenden Studie war, genetische Risikofaktoren [Polymorphismen der Interleukine: IL-1α (G → T an Stelle +4845), IL-1β (C → T an Stelle +3954), IL-4 (C → T an Stelle -590 in der Promotorregion), IL-4 (VNTR in Intron 2), IL-13 (G → A an Stelle +2044 in Exon 4), IL-13 (C → T an Stelle -1112 in der Promotorregion) und Fcγ Rezeptors IIa (A → G an Stelle 131)] bei einer Gruppe von älteren Individuen, die keine klinischen Zeichen einer Parodontitis (keinen Attachmentverlust, n=22) aufwiesen, zu untersuchen. Diese Gruppe wurde mit einer Gruppe von jungen, gesunden Individuen (n=29) und einer Gruppe von Patienten (n=35), die an einer aggressiven Parodontitis litten, verglichen.

Betrachtet man die Verteilung der Häufigkeiten der IL-1A +4845 und IL-1B +3954 Polymorphismen zwischen den einzelnen Gruppen, so lässt sich kein eindeutiges Verteilungsmuster feststellen, was die Ergebnisse von Gonzales et al. (2003) und Hodge et al. (2001) bestätigt.

Vergleicht man den kombinierten Polymorphismus (homozygoter Zustand der polymorphen Allele beider Polymorphismen, C(-590)T und VNTR Intron2) des IL-4, so wird ein eindeutiger Trend zwischen den verschiedenen Gruppen sichtbar (Gruppe der Patienten mit aggressiver Parodontitis: 14,3%, n=5; Gruppe der jungen, gesunden Probanden: 3,4%, n=1; Gruppe der parodontitisresistenten Probanden: 0%, n=0). Die Unterschiede sind bei dem kombinierten nicht-polymorphen Genotyp (homozygoter Zustand der nicht-polymorphen Allele beider Poly-
morphismen, C(-590)-T und VNTR Intron2) zwischen der Gruppe der Patienten mit aggressiver Parodontitis mit 22,9% und der Gruppe der jungen, gesunden Probanden mit 27,9% nicht mehr ganz so eindeutig, was auf eine höhere Spezifität als Sensitivität schließen lässt. Das Vorliegen des kombinierten nichtpolymorphen Genotyps könnte in dieser Population mit einer Resistenz (Gruppe der parodontitisresistenten Probanden: 77,3%); das Vorliegen des kombinierten polymorphen Genotyps (homozygoter Zustand der polymorphen Allele beider Polymorphismen) könnte mit einer Anfälligkeit (Gruppe der Patienten mit aggressiver Parodontitis: 14,3%) gegenüber der aggressiven Parodontitis interpretiert werden. Für den IL-13 Exonpolymorphismus sind klare Tendenzen erkennbar, so liegt der nicht-polymorphe Genotyp (homozygoter Zustand der nicht-polymorphen Allele) bei den gesunden Probanden mit 51,7% (Gruppe der jungen, gesunden Probanden) bzw. 59,1% (Gruppe der parodontitisresistenten Probanden) eindeutig häufiger vor als bei den Patienten mit 25,7% (Patienten mit aggressiver Parodontitis). Bei dem polymorphen Genotyp (homozygoter Zustand der polymorphen Allele) ist für die Gruppe der Patienten mit aggressiver Parodontitis mit 14,3%, für die Gruppe der jungen, gesunden Probanden mit 10,3% und für die parodontitisresistenten Gruppe mit 9,1% ein genau gegenläufiger Trend zu beobachten. Auch hier könnte bei dieser Studienpopulation auf Grund der Genotypverteilungen darauf geschlossen werden, dass der nicht-polymorphe Genotyp mit einer Resistenz, der polymorphe Genotyp mit einem erhöhten Krankheitsrisiko verbunden ist.

Die Ergebnisse lassen bei der Population dieser Arbeit darauf schließen, dass der Genotyp H/H131 des Fcy-Rezeptor IIa mit der aggressiven Parodontitis vergesellschaftet ist, da er mit 31,4% sehr häufig in der Gruppe der Patienten mit aggressiver Parodontitis vorkommt, wohingegen der Genotyp R/R131 mit 8,6% äußerst selten in dieser Gruppe auftritt.

Die Daten der Genotypprofile zeigen, dass die Gruppe der Patienten mit aggressiver Parodontitis im Durchschnitt mehr polymorphe als nicht-polymorphe Allele im Vergleich zu den beiden Gruppen mit gesunden Probanden besitzt. Der Unterschied im Genotypprofil zwischen krank und gesund wird im Vergleich zwischen Patienten mit aggressiver Parodontitis und den parodontitisresistenten Probanden am deutlichsten.
Periodontitis is an infectious disease caused by a complex interplay between oral bacteria and the immune system. Cytokines are key factors regulating the inflammatory process of periodontitis.

Results of twin, clinical and familial aggregation studies of aggressive periodontitis, as well as genetic syndroms in which periodontitis is the main disease characteristic, have demonstrated that genetic factors play a fundamental role in the etiology of aggressive periodontitis. Research has shown that genetic polymorphisms can be crucial for the amount of cytokine expression which in turn can be a prerequisite for periodontal breakdown.

The aim of the present study was to determine genetic risk factors [Polymorphisms of the following genes: IL-1α (G → T at position +4845), IL-1β (C → T at position +3954), IL-4 (C → T at position -590 in the promoter region), IL-4 (VNTR in intron 2), IL-13 (G → A at position +2044 in exon 4), IL-13 (C → T at position -1112 in the promoter region) and Fcγ receptor IIa (A → G at position 131)] in a group of healthy older subjects (≥ 55 y), without any signs of periodontal disease (no attachment loss). This group was compared with a group of young, healthy subjects and a group of young subjects suffering from aggressive periodontitis (≤ 35 y).

With regard to the distribution of the IL-1α G(+4845)-T and IL-1β C(+3954)-T polymorphisms in the groups, the results of the present investigation corroborate the findings of Gonzales et al. (2003) and Hodge et al. (2001) who failed to show an association between these IL-1 polymorphisms and aggressive periodontitis.

Regarding the two IL-4 polymorphisms analysed (C(-590)-T and the VNTR in intron 2), the distribution of the mutant alleles of both polymorphisms was different between the groups (aggressive periodontitis group: 14.3%, n=5; group of young, healthy subjects: 3.4%, n=1; group of periodontitis resistant subjects: 0%, n=0). The distribution of the wild type alleles of both IL-4 polymorphisms in the group of aggressive periodontitis patients (22.9%) and the group of young, healthy subjects (27.9%) was similar, suggesting a higher specificity than sensitivity.
Within the limits of the present study, it might be suggested that the combination of the wild type alleles of the IL-4 C(-590)-T and the IL-4 VNTR in intron 2 polymorphisms may be associated with a resistance to periodontal destruction (periodontitis resistant group: 77.3%), whereas the combination of the mutant alleles in both IL-4 polymorphisms may be associated with susceptibility to aggressive periodontitis (aggressive periodontitis group: 14.3%).

With regard to the frequencies of the IL-13 G(+2044)-A polymorphism between groups, there was a tendency of a different distribution. The genotype containing the wild type allele occurred in the groups of healthy subjects (51.7% in young, healthy subjects and 59.1% in periodontitis resistant subjects) far more frequent than in patients with aggressive periodontitis (25.7%). Contrary frequencies could be detected for the genotype with the mutant allele (aggressive periodontitis patients 14.3%, young, healthy subjects 10.3% and periodontitis resistant subjects 9.1%). These results lead to the suggestion that the IL-13 wild type allele may be associated with resistance, and that the mutant allele may be associated with susceptibility to aggressive periodontitis.

The results of the present study further indicate that the H/H 131 genotype of the Fcγ-RIIa is in association with aggressive periodontitis. This genotype occurred considerable frequent (31.4%) in aggressive periodontitis patients, whereas the R/R131 genotype occurred relatively rare (8.6%) in this group.

Finally, the data of the genotype profiles showed that the aggressive periodontitis patients on average harboured more often the mutant than the wild type alleles, in comparison with the healthy control groups. This difference in genotype profile is more obvious if the group of healthy subjects resistant to periodontitis is compared with the group of patients suffering from aggressive periodontitis.
9.0 Literaturverzeichnis

Bredius RG, de Vries CE, Troelstra A: Phagocytosis of Staphylococcus aureus and Haemophilus influenza type b opsonized with polyclonal human

Chopra RK, Holbrook NJ, Powers DC, McCoy MT, Adler WH, Nagel JE: IL-2, IL-2 receptor and IFN-y synthesis and mRNA expression in phorbol myristate acetate and calcium ionophore A23187-stimulated T-cell from elderly humans. *Clin Immunol Immunopathol.* (1989); 53: 297-308.

Clark JA & Peterson TC: Cytokine production and aging: overproduction of IL-8 in elderly males in response to lipopolysaccharide. *Mech Ageing Dev* (1994); 77: 127-139.

Ligthart GJ, Schuit HRE, Hijmans W: Natural killer cell function is not diminished in the healthy aged and is proportional to the number of NK cells in the peripheral blood. Immunol (1989); 68: 396-402.

Michalowicz BS: Genetic and inheritance consideration in periodontal disease. *Curr Opin Periodontiol* (1993); 11-17.

Nafziger J, Bessege JP, Guillosson JJ, Da Mais C, Lesourd B: Decreased capacity of IL-1 production by monocytes of infected elderly patients. *Aging Immunol Infect Dis* (1993); **4**: 25-34.

Papapanou PN, Lindhe J, Sterrett JD, Eneroth L: Considerations on the contribution of ageing to loss of periodontal tissue support. *J Clin Periodontol* (1991); **18**: 611-615.

Rouzer CA, Scott WA, Kempe J, Cohn ZA: Prostaglandin synthesis by macrophages requires a specific receptor-ligand interaction. *Proc Natl Acad Sci USA* (1980); **77**: 4279.

Shapira L, Soskolne WA, Sela MN: The secretion of PGE2, IL-1 beta, IL-6 and TNF alpha by adherent mononuclear cells from early onset periodontitis patients. *J Periodontol* (1994); 65: 139-146.

Stashenko P & Obernesser MS: Levels of interleukin 1 beta in tissue from sites of active periodontal disease. *J Clin Periodontol* (1991); 18: 548-554.

Tonetti MS: Early-Onset Periodontitis. *Ann Periodont* (1999); 4: 39-52.

Van de Winkel JGJ, van Ommen R, Huizinga TW, Capel PJA, Koene RAP, Tax WJM: Proteolysis induces increased binding affinity of the monocyte type II FcR for human IgG. J Immunol (1989); 143: 571.

Van Dyke TE & Sheilesh D: Risk factors for periodontitis. J int Acad Periodontol (2005); 7(1) : 3-7.

Young JDE, Ko SS, Cohn ZA: The increase in intracellular free calcium associated with Iggamma2b/gamma1 Fc receptor-ligand interactions: role in phagocytosis. *Proc Natl Acad Sci USA* (1984); 81: 5430.

10.0 Anhang

Im Folgenden sind sowohl die klinischen Parameter und auch die Genotypen tabellarisch erfasst und nach den Gruppen aufgegliedert.

Gruppe AP: Patienten mit aggressiver Parodontitis
Gruppe J: Junge, gesunde Probanden
Gruppe O: Parodontitisresistente Probanden

Das Geschlecht der Patienten wurde mit 1, gleichbedeutend mit männlich, und 2, gleichbedeutend mit weiblich, definiert.

Neben der Anzahl der Zähne (Zähne) wurden in den Tabellen der Plaqueindex (PLI), der Papillenblutungsindex (PBI) und die Sondierungsblutung (BOP) dargestellt.

Weiterhin erfasst wurden der Mittelwert der Sondierungstiefen (MWST) und der Mittelwert des Attachmentlevels (MWAL).

Tabellarische Darstellung der klinischen Parameter der Patienten (Gruppe AP)

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>ID</th>
<th>Geschlecht</th>
<th>Alter</th>
<th>Zähne</th>
<th>PLI</th>
<th>PBI</th>
<th>BOP</th>
<th>MWST</th>
<th>MWAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>1</td>
<td>2</td>
<td>20</td>
<td>31</td>
<td>0,800</td>
<td>0,310</td>
<td>0,290</td>
<td>4,33</td>
<td>4,81</td>
</tr>
<tr>
<td>AP</td>
<td>6</td>
<td>2</td>
<td>34</td>
<td>27</td>
<td>0,650</td>
<td>0,410</td>
<td>0,710</td>
<td>3,98</td>
<td>3,98</td>
</tr>
<tr>
<td>AP</td>
<td>9</td>
<td>1</td>
<td>35</td>
<td>28</td>
<td>0,661</td>
<td>0,357</td>
<td>0,980</td>
<td>5,66</td>
<td>5,79</td>
</tr>
<tr>
<td>AP</td>
<td>10</td>
<td>2</td>
<td>35</td>
<td>28</td>
<td>1,000</td>
<td>0,250</td>
<td>0,678</td>
<td>3,30</td>
<td>3,30</td>
</tr>
<tr>
<td>AP</td>
<td>12</td>
<td>2</td>
<td>22</td>
<td>28</td>
<td>0,125</td>
<td>0,050</td>
<td>0,610</td>
<td>3,84</td>
<td>3,92</td>
</tr>
<tr>
<td>AP</td>
<td>13</td>
<td>2</td>
<td>32</td>
<td>26</td>
<td>0,730</td>
<td>0,115</td>
<td>0,350</td>
<td>2,58</td>
<td>2,66</td>
</tr>
<tr>
<td>AP</td>
<td>14</td>
<td>1</td>
<td>25</td>
<td>31</td>
<td>0,140</td>
<td>0,420</td>
<td>0,160</td>
<td>2,83</td>
<td>2,99</td>
</tr>
<tr>
<td>AP</td>
<td>15</td>
<td>1</td>
<td>34</td>
<td>31</td>
<td>0,500</td>
<td>0,107</td>
<td>0,590</td>
<td>3,23</td>
<td>3,32</td>
</tr>
<tr>
<td>AP</td>
<td>18</td>
<td>2</td>
<td>23</td>
<td>31</td>
<td>1,000</td>
<td>0,377</td>
<td>0,099</td>
<td>2,83</td>
<td>2,83</td>
</tr>
<tr>
<td>AP</td>
<td>23</td>
<td>2</td>
<td>22</td>
<td>32</td>
<td>0,085</td>
<td>0,000</td>
<td>0,196</td>
<td>2,58</td>
<td>2,59</td>
</tr>
<tr>
<td>AP</td>
<td>37</td>
<td>2</td>
<td>25</td>
<td>28</td>
<td>0,490</td>
<td>0,154</td>
<td>0,205</td>
<td>2,63</td>
<td>2,63</td>
</tr>
<tr>
<td>AP</td>
<td>39</td>
<td>2</td>
<td>33</td>
<td>28</td>
<td>0,230</td>
<td>0,170</td>
<td>0,200</td>
<td>2,70</td>
<td>2,84</td>
</tr>
<tr>
<td>AP</td>
<td>44</td>
<td>2</td>
<td>25</td>
<td>28</td>
<td>0,590</td>
<td>1,000</td>
<td>0,976</td>
<td>4,98</td>
<td>4,98</td>
</tr>
<tr>
<td>AP</td>
<td>45</td>
<td>2</td>
<td>18</td>
<td>28</td>
<td>0,610</td>
<td>0,000</td>
<td>0,083</td>
<td>2,21</td>
<td>2,21</td>
</tr>
<tr>
<td>AP</td>
<td>47</td>
<td>1</td>
<td>34</td>
<td>26</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>6,75</td>
<td>8,49</td>
</tr>
<tr>
<td>AP</td>
<td>48</td>
<td>1</td>
<td>20</td>
<td>28</td>
<td>0,215</td>
<td>0,330</td>
<td>0,327</td>
<td>1,51</td>
<td>1,70</td>
</tr>
<tr>
<td>AP</td>
<td>49</td>
<td>2</td>
<td>24</td>
<td>25</td>
<td>0,750</td>
<td>0,040</td>
<td>0,327</td>
<td>2,78</td>
<td>2,79</td>
</tr>
<tr>
<td>AP</td>
<td>53</td>
<td>2</td>
<td>27</td>
<td>28</td>
<td>0,630</td>
<td>0,210</td>
<td>0,830</td>
<td>4,23</td>
<td>4,48</td>
</tr>
<tr>
<td>AP</td>
<td>54</td>
<td>2</td>
<td>38</td>
<td>20</td>
<td>1,000</td>
<td>0,560</td>
<td>0,537</td>
<td>4,97</td>
<td>4,97</td>
</tr>
<tr>
<td>AP</td>
<td>56</td>
<td>2</td>
<td>21</td>
<td>28</td>
<td>1,000</td>
<td>0,500</td>
<td>0,589</td>
<td>3,29</td>
<td>3,29</td>
</tr>
<tr>
<td>AP</td>
<td>58</td>
<td>2</td>
<td>29</td>
<td>30</td>
<td>0,120</td>
<td>0,040</td>
<td>0,840</td>
<td>3,42</td>
<td>3,42</td>
</tr>
<tr>
<td>AP</td>
<td>64</td>
<td>1</td>
<td>34</td>
<td>27</td>
<td>0,560</td>
<td>0,480</td>
<td>0,679</td>
<td>3,83</td>
<td>3,83</td>
</tr>
<tr>
<td>AP</td>
<td>72</td>
<td>2</td>
<td>44</td>
<td>20</td>
<td>0,230</td>
<td>0,192</td>
<td>0,516</td>
<td>4,05</td>
<td>4,87</td>
</tr>
<tr>
<td>AP</td>
<td>73</td>
<td>2</td>
<td>32</td>
<td>30</td>
<td>0,625</td>
<td>0,150</td>
<td>0,205</td>
<td>3,13</td>
<td>3,13</td>
</tr>
<tr>
<td>AP</td>
<td>74</td>
<td>2</td>
<td>36</td>
<td>23</td>
<td>0,065</td>
<td>0,090</td>
<td>0,144</td>
<td>5,04</td>
<td>5,05</td>
</tr>
<tr>
<td>AP</td>
<td>75</td>
<td>2</td>
<td>25</td>
<td>31</td>
<td>0,210</td>
<td>0,520</td>
<td>0,752</td>
<td>3,23</td>
<td>3,23</td>
</tr>
<tr>
<td>AP</td>
<td>78</td>
<td>2</td>
<td>28</td>
<td>28</td>
<td>0,183</td>
<td>0,070</td>
<td>0,101</td>
<td>4,16</td>
<td>4,16</td>
</tr>
<tr>
<td>AP</td>
<td>79</td>
<td>2</td>
<td>34</td>
<td>27</td>
<td>0,205</td>
<td>0,080</td>
<td>0,314</td>
<td>2,76</td>
<td>2,92</td>
</tr>
<tr>
<td>AP</td>
<td>80</td>
<td>2</td>
<td>31</td>
<td>28</td>
<td>0,319</td>
<td>0,560</td>
<td>0,530</td>
<td>4,04</td>
<td>4,17</td>
</tr>
<tr>
<td>AP</td>
<td>81</td>
<td>1</td>
<td>31</td>
<td>32</td>
<td>0,219</td>
<td>0,000</td>
<td>0,530</td>
<td>2,78</td>
<td>2,78</td>
</tr>
<tr>
<td>AP</td>
<td>82</td>
<td>2</td>
<td>37</td>
<td>28</td>
<td>0,545</td>
<td>0,478</td>
<td>0,540</td>
<td>4,07</td>
<td>5,73</td>
</tr>
<tr>
<td>AP</td>
<td>83</td>
<td>2</td>
<td>27</td>
<td>31</td>
<td>0,260</td>
<td>0,040</td>
<td>0,290</td>
<td>3,83</td>
<td>3,87</td>
</tr>
<tr>
<td>AP</td>
<td>84</td>
<td>2</td>
<td>33</td>
<td>28</td>
<td>1,000</td>
<td>0,660</td>
<td>0,910</td>
<td>6,52</td>
<td>8,58</td>
</tr>
<tr>
<td>AP</td>
<td>86</td>
<td>2</td>
<td>34</td>
<td>27</td>
<td>0,360</td>
<td>0,050</td>
<td>0,271</td>
<td>3,61</td>
<td>3,62</td>
</tr>
<tr>
<td>AP</td>
<td>95</td>
<td>2</td>
<td>20</td>
<td>32</td>
<td>0,453</td>
<td>0,000</td>
<td>0,697</td>
<td>2,69</td>
<td>2,73</td>
</tr>
</tbody>
</table>
Tabellarische Darstellung der Genotypen der Patienten (Gruppe AP)

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>ID</th>
<th>IL-1 α</th>
<th>IL-1 β</th>
<th>IL-4Promotor</th>
<th>IL-4Intron</th>
<th>IL-13Exon</th>
<th>IL-13Promotor</th>
<th>Fcγ-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>AP</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>AP</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>AP</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>AP</td>
<td>12</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>AP</td>
<td>13</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>AP</td>
<td>14</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>AP</td>
<td>15</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>AP</td>
<td>18</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>AP</td>
<td>23</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>AP</td>
<td>37</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>AP</td>
<td>39</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>AP</td>
<td>44</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>AP</td>
<td>45</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>AP</td>
<td>47</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>AP</td>
<td>48</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>AP</td>
<td>49</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>AP</td>
<td>53</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>AP</td>
<td>54</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>AP</td>
<td>56</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>AP</td>
<td>58</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>AP</td>
<td>64</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>AP</td>
<td>72</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>AP</td>
<td>73</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>AP</td>
<td>74</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>AP</td>
<td>75</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>AP</td>
<td>78</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>AP</td>
<td>79</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>AP</td>
<td>80</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>AP</td>
<td>81</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>AP</td>
<td>82</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>AP</td>
<td>83</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>AP</td>
<td>84</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>AP</td>
<td>86</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>AP</td>
<td>95</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Tabellarische Darstellung der klinischen Parameter der jungen, gesunden Probanden (Gruppe J)

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>ID</th>
<th>Geschlecht</th>
<th>Alter</th>
<th>Zähne</th>
<th>PLI</th>
<th>PBI</th>
<th>BOP</th>
<th>MWST</th>
<th>MWAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>2</td>
<td>1</td>
<td>26</td>
<td>32</td>
<td>0,169</td>
<td>0,050</td>
<td>0,020</td>
<td>1,69</td>
<td>1,69</td>
</tr>
<tr>
<td>J</td>
<td>3</td>
<td>1</td>
<td>28</td>
<td>28</td>
<td>0,430</td>
<td>0,120</td>
<td>0,038</td>
<td>1,65</td>
<td>1,65</td>
</tr>
<tr>
<td>J</td>
<td>4</td>
<td>1</td>
<td>26</td>
<td>28</td>
<td>0,260</td>
<td>0,000</td>
<td>0,010</td>
<td>1,57</td>
<td>1,57</td>
</tr>
<tr>
<td>J</td>
<td>5</td>
<td>1</td>
<td>24</td>
<td>32</td>
<td>0,400</td>
<td>0,050</td>
<td>0,060</td>
<td>1,53</td>
<td>1,53</td>
</tr>
<tr>
<td>J</td>
<td>6</td>
<td>1</td>
<td>22</td>
<td>28</td>
<td>0,687</td>
<td>0,050</td>
<td>0,119</td>
<td>1,70</td>
<td>1,70</td>
</tr>
<tr>
<td>J</td>
<td>7</td>
<td>1</td>
<td>23</td>
<td>32</td>
<td>0,460</td>
<td>0,000</td>
<td>0,010</td>
<td>1,96</td>
<td>1,96</td>
</tr>
<tr>
<td>J</td>
<td>8</td>
<td>2</td>
<td>18</td>
<td>28</td>
<td>0,250</td>
<td>0,393</td>
<td>0,060</td>
<td>1,49</td>
<td>1,49</td>
</tr>
<tr>
<td>J</td>
<td>9</td>
<td>2</td>
<td>22</td>
<td>26</td>
<td>0,491</td>
<td>0,000</td>
<td>0,031</td>
<td>1,42</td>
<td>1,42</td>
</tr>
<tr>
<td>J</td>
<td>12</td>
<td>1</td>
<td>24</td>
<td>28</td>
<td>0,285</td>
<td>0,070</td>
<td>0,000</td>
<td>1,85</td>
<td>1,85</td>
</tr>
<tr>
<td>J</td>
<td>13</td>
<td>1</td>
<td>26</td>
<td>28</td>
<td>0,535</td>
<td>0,070</td>
<td>0,155</td>
<td>1,76</td>
<td>1,76</td>
</tr>
<tr>
<td>J</td>
<td>14</td>
<td>2</td>
<td>22</td>
<td>28</td>
<td>0,251</td>
<td>0,360</td>
<td>0,060</td>
<td>1,45</td>
<td>1,59</td>
</tr>
<tr>
<td>J</td>
<td>15</td>
<td>1</td>
<td>25</td>
<td>28</td>
<td>0,370</td>
<td>0,080</td>
<td>0,000</td>
<td>1,94</td>
<td>1,94</td>
</tr>
<tr>
<td>J</td>
<td>16</td>
<td>1</td>
<td>25</td>
<td>28</td>
<td>0,473</td>
<td>0,050</td>
<td>0,042</td>
<td>1,67</td>
<td>1,67</td>
</tr>
<tr>
<td>J</td>
<td>17</td>
<td>1</td>
<td>28</td>
<td>32</td>
<td>0,470</td>
<td>0,150</td>
<td>0,161</td>
<td>2,06</td>
<td>2,06</td>
</tr>
<tr>
<td>J</td>
<td>19</td>
<td>1</td>
<td>27</td>
<td>32</td>
<td>0,695</td>
<td>0,000</td>
<td>0,162</td>
<td>1,94</td>
<td>1,94</td>
</tr>
<tr>
<td>J</td>
<td>21</td>
<td>1</td>
<td>24</td>
<td>29</td>
<td>0,310</td>
<td>0,000</td>
<td>0,052</td>
<td>1,74</td>
<td>1,74</td>
</tr>
<tr>
<td>J</td>
<td>22</td>
<td>2</td>
<td>26</td>
<td>28</td>
<td>0,170</td>
<td>0,070</td>
<td>0,059</td>
<td>1,97</td>
<td>2,00</td>
</tr>
<tr>
<td>J</td>
<td>24</td>
<td>1</td>
<td>24</td>
<td>28</td>
<td>0,640</td>
<td>0,020</td>
<td>0,060</td>
<td>1,51</td>
<td>1,51</td>
</tr>
<tr>
<td>J</td>
<td>26</td>
<td>2</td>
<td>25</td>
<td>28</td>
<td>0,470</td>
<td>0,000</td>
<td>0,030</td>
<td>1,82</td>
<td>1,82</td>
</tr>
<tr>
<td>J</td>
<td>29</td>
<td>1</td>
<td>25</td>
<td>31</td>
<td>0,350</td>
<td>0,000</td>
<td>0,000</td>
<td>1,66</td>
<td>1,66</td>
</tr>
<tr>
<td>J</td>
<td>30</td>
<td>1</td>
<td>24</td>
<td>28</td>
<td>0,470</td>
<td>0,040</td>
<td>0,200</td>
<td>2,17</td>
<td>2,17</td>
</tr>
<tr>
<td>J</td>
<td>31</td>
<td>1</td>
<td>22</td>
<td>28</td>
<td>0,240</td>
<td>0,035</td>
<td>0,042</td>
<td>1,79</td>
<td>1,79</td>
</tr>
<tr>
<td>J</td>
<td>35</td>
<td>2</td>
<td>22</td>
<td>26</td>
<td>0,644</td>
<td>0,042</td>
<td>0,179</td>
<td>2,12</td>
<td>2,12</td>
</tr>
<tr>
<td>J</td>
<td>36</td>
<td>1</td>
<td>24</td>
<td>28</td>
<td>0,290</td>
<td>0,070</td>
<td>0,077</td>
<td>1,71</td>
<td>1,91</td>
</tr>
<tr>
<td>J</td>
<td>37</td>
<td>1</td>
<td>25</td>
<td>28</td>
<td>0,286</td>
<td>0,035</td>
<td>0,000</td>
<td>1,95</td>
<td>1,95</td>
</tr>
<tr>
<td>J</td>
<td>38</td>
<td>1</td>
<td>24</td>
<td>28</td>
<td>0,460</td>
<td>0,245</td>
<td>0,245</td>
<td>2,42</td>
<td>2,42</td>
</tr>
<tr>
<td>J</td>
<td>39</td>
<td>1</td>
<td>25</td>
<td>28</td>
<td>0,150</td>
<td>0,000</td>
<td>0,059</td>
<td>1,76</td>
<td>1,76</td>
</tr>
<tr>
<td>J</td>
<td>40</td>
<td>1</td>
<td>23</td>
<td>28</td>
<td>0,475</td>
<td>0,080</td>
<td>0,041</td>
<td>2,20</td>
<td>2,22</td>
</tr>
<tr>
<td>J</td>
<td>41</td>
<td>1</td>
<td>23</td>
<td>28</td>
<td>0,160</td>
<td>0,070</td>
<td>0,052</td>
<td>1,76</td>
<td>1,76</td>
</tr>
</tbody>
</table>
Tabellarische Darstellung der Genotypen der jungen, gesunden Probanden (Gruppe J)

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>ID</th>
<th>IL-1 α</th>
<th>IL-1 β</th>
<th>IL-4Promotor</th>
<th>IL-4Intron</th>
<th>IL-13Exon</th>
<th>IL-13Promotor</th>
<th>Fcy-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>J</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>J</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>J</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>J</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>J</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>J</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>J</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>J</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>J</td>
<td>14</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>J</td>
<td>15</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>J</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>J</td>
<td>17</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>J</td>
<td>19</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>21</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>J</td>
<td>22</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>J</td>
<td>24</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>J</td>
<td>26</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>J</td>
<td>29</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>J</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>J</td>
<td>31</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>J</td>
<td>35</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>J</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>J</td>
<td>37</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>J</td>
<td>38</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>J</td>
<td>39</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>J</td>
<td>40</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>J</td>
<td>41</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Tabellarische Darstellung der klinischen Parameter der parodontitisresistenten Probanden (Gruppe O)

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>ID</th>
<th>Geschlecht</th>
<th>Alter</th>
<th>Zähne</th>
<th>PLI</th>
<th>PBI</th>
<th>BOP</th>
<th>MWST</th>
<th>MWAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>85</td>
<td>1</td>
<td>63</td>
<td>27</td>
<td>0,360</td>
<td>0,280</td>
<td>0,317</td>
<td>2,04</td>
<td>2,24</td>
</tr>
<tr>
<td>O</td>
<td>127</td>
<td>1</td>
<td>68</td>
<td>28</td>
<td>0,340</td>
<td>0,120</td>
<td>0,220</td>
<td>2,12</td>
<td>2,18</td>
</tr>
<tr>
<td>O</td>
<td>136</td>
<td>1</td>
<td>56</td>
<td>27</td>
<td>0,390</td>
<td>0,070</td>
<td>0,132</td>
<td>2,02</td>
<td>2,02</td>
</tr>
<tr>
<td>O</td>
<td>137</td>
<td>2</td>
<td>68</td>
<td>26</td>
<td>0,290</td>
<td>0,070</td>
<td>0,100</td>
<td>2,06</td>
<td>2,06</td>
</tr>
<tr>
<td>O</td>
<td>138</td>
<td>1</td>
<td>65</td>
<td>22</td>
<td>0,450</td>
<td>0,230</td>
<td>0,253</td>
<td>2,05</td>
<td>2,05</td>
</tr>
<tr>
<td>O</td>
<td>139</td>
<td>2</td>
<td>57</td>
<td>32</td>
<td>0,280</td>
<td>0,100</td>
<td>0,222</td>
<td>1,88</td>
<td>1,88</td>
</tr>
<tr>
<td>O</td>
<td>140</td>
<td>2</td>
<td>58</td>
<td>24</td>
<td>0,420</td>
<td>0,180</td>
<td>0,210</td>
<td>2,04</td>
<td>2,04</td>
</tr>
<tr>
<td>O</td>
<td>141</td>
<td>1</td>
<td>62</td>
<td>26</td>
<td>0,310</td>
<td>0,110</td>
<td>0,190</td>
<td>1,92</td>
<td>1,92</td>
</tr>
<tr>
<td>O</td>
<td>142</td>
<td>1</td>
<td>55</td>
<td>31</td>
<td>0,570</td>
<td>0,390</td>
<td>0,412</td>
<td>2,06</td>
<td>2,06</td>
</tr>
<tr>
<td>O</td>
<td>143</td>
<td>2</td>
<td>69</td>
<td>28</td>
<td>0,600</td>
<td>0,250</td>
<td>0,300</td>
<td>1,97</td>
<td>1,97</td>
</tr>
<tr>
<td>O</td>
<td>144</td>
<td>1</td>
<td>63</td>
<td>31</td>
<td>0,540</td>
<td>0,140</td>
<td>0,170</td>
<td>2,04</td>
<td>2,15</td>
</tr>
<tr>
<td>O</td>
<td>145</td>
<td>2</td>
<td>60</td>
<td>28</td>
<td>0,550</td>
<td>0,210</td>
<td>0,270</td>
<td>1,99</td>
<td>1,99</td>
</tr>
<tr>
<td>O</td>
<td>146</td>
<td>2</td>
<td>58</td>
<td>28</td>
<td>0,400</td>
<td>0,140</td>
<td>0,232</td>
<td>2,02</td>
<td>2,02</td>
</tr>
<tr>
<td>O</td>
<td>147</td>
<td>1</td>
<td>59</td>
<td>30</td>
<td>0,350</td>
<td>0,100</td>
<td>0,096</td>
<td>1,99</td>
<td>1,99</td>
</tr>
<tr>
<td>O</td>
<td>148</td>
<td>1</td>
<td>61</td>
<td>29</td>
<td>0,510</td>
<td>0,180</td>
<td>0,191</td>
<td>2,26</td>
<td>2,26</td>
</tr>
<tr>
<td>O</td>
<td>149</td>
<td>2</td>
<td>58</td>
<td>28</td>
<td>0,210</td>
<td>0,070</td>
<td>0,106</td>
<td>1,88</td>
<td>1,88</td>
</tr>
<tr>
<td>O</td>
<td>150</td>
<td>1</td>
<td>61</td>
<td>31</td>
<td>0,510</td>
<td>0,180</td>
<td>0,180</td>
<td>2,11</td>
<td>2,11</td>
</tr>
<tr>
<td>O</td>
<td>153</td>
<td>1</td>
<td>77</td>
<td>26</td>
<td>0,490</td>
<td>0,140</td>
<td>0,177</td>
<td>2,00</td>
<td>2,00</td>
</tr>
<tr>
<td>O</td>
<td>154</td>
<td>1</td>
<td>61</td>
<td>29</td>
<td>0,540</td>
<td>0,100</td>
<td>0,147</td>
<td>2,20</td>
<td>2,20</td>
</tr>
<tr>
<td>O</td>
<td>155</td>
<td>2</td>
<td>68</td>
<td>23</td>
<td>0,540</td>
<td>0,320</td>
<td>0,304</td>
<td>2,20</td>
<td>2,20</td>
</tr>
<tr>
<td>O</td>
<td>156</td>
<td>2</td>
<td>67</td>
<td>24</td>
<td>0,490</td>
<td>0,110</td>
<td>0,147</td>
<td>2,14</td>
<td>2,14</td>
</tr>
<tr>
<td>O</td>
<td>157</td>
<td>1</td>
<td>67</td>
<td>30</td>
<td>0,730</td>
<td>0,220</td>
<td>0,267</td>
<td>2,79</td>
<td>2,84</td>
</tr>
</tbody>
</table>
Tabellarische Darstellung der Genotypen der parodontitisresistenten Probanden (Gruppe O)

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>ID</th>
<th>IL-1 α</th>
<th>IL-1 β</th>
<th>IL-4Promotor</th>
<th>IL-4Intron</th>
<th>IL-13Exon</th>
<th>IL-13Promotor</th>
<th>Fcγ-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>85</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>O</td>
<td>127</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>O</td>
<td>136</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>O</td>
<td>137</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>O</td>
<td>138</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>O</td>
<td>140</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>O</td>
<td>141</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>O</td>
<td>142</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>O</td>
<td>143</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>O</td>
<td>144</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>O</td>
<td>145</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>O</td>
<td>146</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>O</td>
<td>147</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>O</td>
<td>148</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>O</td>
<td>149</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>O</td>
<td>150</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>O</td>
<td>153</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>O</td>
<td>154</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>O</td>
<td>155</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>O</td>
<td>156</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>O</td>
<td>157</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Sehr geehrte/r Patient/in:

Bitte bestätigen Sie Ihr Einverständnis und den Empfang dieser Information mit Ihrer Unterschrift auf dem beiliegenden Blatt.

Vielen Dank!

Prof. J. Meyle
Dr. J. Gonzales
F. Rathe
Information für die verschiedenen Abteilungen des Hauses:

Liebe Kolleginnen und Kollegen,

Mit freundlichen Grüßen

Prof. J. Meyle
Dr. J. Gonzales
F. Rathe
Information für kooperierende Praxen:

Liebe Kolleginnen und Kollegen,

es ist vielleicht schon einigen bekannt, dass in der Abteilung für Parodontologie seit einiger Zeit genetische Faktoren bei Parodontitis untersucht werden. Besonders Zytokine, wie Interleukin 1 (IL-1) und Interleukin 4 (IL-4), die bei entzündlichen Prozessen unseres Immunsystems eine Rolle spielen, wurden im Zusammenhang mit Polymorphismen in unserer Abteilung untersucht. Einige Ergebnisse haben gezeigt, dass spezielle Polymorphismen des IL-1 und IL-4 Gens eine klinische Assoziation mit der frühbeginnenden- oder der Erwachsenen-Parodontitis herzustellen ist.

Weitere klinische Studien haben gezeigt, dass dieser genetische Polymorphismus bei diesen Patienten dazu führt, dass sie langfristig mehr Zähne verlieren. In dem Fall einer frühbeginnenden Parodontitis (aggressive Form) manifestiert sich die Erkrankung auch trotz sorgfältiger Mundhygiene.

Ziel der von der Abteilung für Parodontologie zur Zeit durchgeführte Studie ist es, die Assoziation des IL-4 und IL-1 Polymorphismus bei einer Gruppe von älteren Patienten, die keine klinischen Zeichen der chronischen Parodontitis, d.h. keinen Attachmentverlust aufweisen, zu untersuchen. Diese Gruppe wird mit einer Gruppe von Patienten jeden Alters verglichen, die unter einer chronischen Parodontitis leiden.

Aus diesem Grunde möchten wir Sie bitten, uns über Patienten, die unten aufgeführte Kriterien erfüllen, in Kenntnis zu setzen.

Ihr Ansprechpartner – Dr. J. Gonzales – wird Ihnen unter der Tel.Nr. 0641/99-46192 für Auskünfte zur Verfügung stehen.

Der molekularbiologische Test ist für Patienten, die an der Studie teilnehmen, kostenlos; er würde normalerweise für DGP-Mitglieder 185,-DM und für Nichtmitglieder des DGP 195,-DM kosten.

Für Ihre Unterstützung danken wir Ihnen.

Mit freundlichen Grüßen

Prof. J. Meyle Dr. J. Gonzales F. Rathe
Name, Vorname: __

Geb.-Datum: __

Sehr geehrte Patientin, sehr geehrter Patient!

Ihre Angaben werden absolut vertraulich behandelt (ärztliche Schweigepflicht!).

Sollten Sie Schwierigkeiten mit der Beantwortung einzelner Fragen haben, helfen wir Ihnen gerne.

Vielen Dank für Ihre Mitarbeit!

Angaben über den allgemeinen Gesundheitszustand

Ο Sind Sie zurzeit in ärztlicher Behandlung? Wenn ja, weshalb?

Ο Nehmen Sie zurzeit irgendwelche Medikamente? Wenn ja, welche und seit wann? _________________

Ο Leiden Sie an Allergien (z.B. Heuschnupfen, Hautausschlag nach Medikamenteneinnahme, etc.)? Allergiepaß?

Ο Wurden im letzten Jahr Röntgenbilder angefertigt? Wenn ja, welcher Art und durch wen? Röntgenpaß?

Leiden Sie an einer der folgenden Erkrankungen? Falls ja, bitte markieren!

Ο hoher Blutdruck Ο niedriger Blutdruck
Ο Herzleiden? Herzpass Ο rheumat. Arthritis
Ο Leukämien (andere Blutsystemerkrankungen) Ο Syst. Lupus Erytematodes
Ο Zuckerkrankheit Ο Sjögren-Syndrom
Ο Schilddrüsenenerkrankheit Ο HIV / AIDS
Ο Osteoporose Ο Hepatitis
O Leiden Sie an irgendwelchen Erkrankungen, die das Immunsystem betreffen? Wenn ja welche?

O Nehmen Sie zur Zeit Hormonpräparate?

O Rauchen Sie?
Wenn ja, wieviel Zigaretten täglich?______________________________________
Seit wann? O 5 Jahre O 5-10 Jahre O 10-15 Jahre O länger

Fragen zur Zahngesundheit! Bitte kurz angeben!
O Leiden Sie an Zahnfleischbluten?
Wenn ja, seit wann?___

O Haben Sie eine Lockerung Ihrer Zähne festgestellt?
Wenn ja, seit wann?___

O Haben Sie Ihre Zähne überwiegend durch Lockerung statt durch Karies verloren?

O Seit welchem Lebensjahr leiden Sie an Parodontitis?_____________________

O Sind weitere Fälle mit gleicher Schwere der Erkrankung innerhalb der Familie bekannt?

O Knirschen oder pressen Sie mit den Zähnen?

O Wurde bei Ihnen schon einmal eine Zahnfleischbehandlung durchgeführt? Wenn ja, durch wen? Gibt es davon Dokumente (z.B. Röntgenbilder)?

O Gehen Sie regelmäßig zum Zahnarzt? Wie oft pro Jahr?

O Wie oft reinigen Sie Ihre Zähne pro Tag?
O 1x tägl. O 2x tägl. O 3x tägl. O nach jeder Mahlzeit
 Welche Hilfsmittel verwenden Sie zur Zahnreinigung?
Bitte ankreuzen!

<table>
<thead>
<tr>
<th>Hilfsmittel</th>
<th>Immer</th>
<th>gelegentlich</th>
<th>nie</th>
</tr>
</thead>
<tbody>
<tr>
<td>O Zahnbürste</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>O Elektrische Zahnbürste</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>O Munddusche</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>O Zahncreme</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>O Zahnseide</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>O Interdentalbürste</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>O Zahnhölzchen</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>O Mundwasser / Spülung</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>O Sonstiges:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PARODONTALSTATUS

Name:
Vorname:
Geb.dat.:

<table>
<thead>
<tr>
<th>18</th>
<th>17</th>
<th>16</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagn.</td>
<td>Diagn.</td>
<td></td>
</tr>
<tr>
<td>Progn.</td>
<td>Progn.</td>
<td></td>
</tr>
<tr>
<td>akut</td>
<td>akut</td>
<td></td>
</tr>
<tr>
<td>Belag</td>
<td>Belag</td>
<td></td>
</tr>
<tr>
<td>Gingiva</td>
<td>Gingiva</td>
<td></td>
</tr>
<tr>
<td>Lock.</td>
<td>Lock.</td>
<td></td>
</tr>
</tbody>
</table>

Vipr.

V

<table>
<thead>
<tr>
<th>15</th>
<th>13</th>
<th>11</th>
<th>9</th>
<th>7</th>
<th>5</th>
<th>3</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

OK

OK

P

<table>
<thead>
<tr>
<th>15</th>
<th>13</th>
<th>11</th>
<th>9</th>
<th>7</th>
<th>5</th>
<th>3</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

I

I

UK

UK

V

<table>
<thead>
<tr>
<th>15</th>
<th>13</th>
<th>11</th>
<th>9</th>
<th>7</th>
<th>5</th>
<th>3</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Weitere Befunde:

Zentrum für Zahn-, Mund- und Kiefermedizin, Universität Giessen, Abteilung für Parodontologie (Prof. Dr. J. Mayke)
<table>
<thead>
<tr>
<th>Bemerkungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
</tr>
<tr>
<td>FK</td>
</tr>
<tr>
<td>SB</td>
</tr>
<tr>
<td>ST</td>
</tr>
<tr>
<td>AL</td>
</tr>
<tr>
<td>GR</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>
HYGIENEKONTROLLE

Plaqueindex

<table>
<thead>
<tr>
<th>Sitzung</th>
<th>Datum</th>
<th>OK (%)</th>
<th>UK (%)</th>
<th>Ges. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Munichygienographik

Papillenblutungsindex

<table>
<thead>
<tr>
<th>Nr</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>KS</th>
<th>GS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UK</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UK</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UK</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UK</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UK</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UK</td>
<td></td>
</tr>
</tbody>
</table>
Erklärung

Gießen, den 02.05.2007

(Florian Rathe)
Lebenslauf

Persönliche Daten:
Name: Florian Rathe
Geburtsdatum: 09. Mai 1977
Geburtsort: Wetzlar
Eltern: Barbara Rathe geb. Rhein
Dr. Christian Rathe
Geschwister: Clemens Rathe

Schulbildung:
1987 – 1993 Gesamtschule Schwingbach in Hüttenberg
1993 – 1996 Theodor Heuss Schule in Wetzlar
Abschluss: Allgemeine Hochschulreife

Dienstzeit:
07/1996-09/1997 Wehrdienst 6./PZGRBTL 342
Heeresinfantrieschule Hammelburg

Studium:
10/1997 Beginn des Studiums der Zahnmedizin
Justus Liebig Universität Gießen
07/1998 Vorphysikum
04/2000 Physikum
12/2002 Examen

Berufserfahrung:
05-10/2003 Semmelweis Universität Budapest/Ungarn,
sowie in der privatzahnärztlichen Praxis
Dr. Peter Windisch
12/2003-07/2005 Vorbereitungsassistent in der Abteilung für
Zahnerhaltungskunde und Parodontologie der
Albert-Ludwig Universität Freiburg
seit 1.09.2005 Postgraduiertenstudium in der Abteilung für
Parodontologie der St. Radboud Universität
Nijmegen, Niederlande
Danksagung

Herrn Prof. Dr. J. Meyle möchte ich für die Überlassung des Themas danken. Weiterhin danke ich Herrn Dr. Gonzales für die Betreuung meiner Arbeit, sowie den Mitarbeitern der Poliklinik für Parodontologie für ihre Hilfe.

Danken möchte ich auch für die freundliche Unterstützung durch Frau Mann und Herrn Dr. Boedecker vom Institut für Medizinische Informatik bei der statistischen Auswertung.

Besonderer Dank gilt Herrn Thomas Weber und meinem Bruder Clemens Rathe, die mir bei vielen Computerfragen eine große Hilfe waren.

Ebenfalls danke ich allen Probanden und Patienten, die sich für diese Studie zur Verfügung gestellt haben, sowie den kooperierenden Praxen für die freundliche Unterstützung.

Zuletzt noch einmal herzlichen Dank an meine Eltern, die mich immer und in jeder Hinsicht unterstützt haben.