Der Zusammenhang zwischen den Hormonantworten von Prolaktin, Wachstumshormon und Cortisol auf den Bromocriptin-Challenge-Test und ihre Beziehung zu potentiellen Nebenwirkungen von Bromocriptin

Inauguraldissertation
zur Erlangung des Grades des Doktors der Medizin
des Fachbereiches Humanmedizin
der Justus-Liebig-Universität Gießen

dargelegt von Christian Brüggenolte
aus Lippstadt

Gießen, 2006
Aus dem Fachbereich Psychologie und Sportwissenschaft,
Abteilung Differentielle Psychologie und Diagnostik.

ehem. Leiterin Prof. Dr. Dr. P. Netter

Gutachterin: Prof. Dr. Dr. P. Netter

Gutachter: Prof. Dr. Gallhofer

Tag der Disputation: 08.09.2006
Inhaltsverzeichnis

1. Einleitung ... 5
2. Theoretischer Teil ... 7
2.1. Der Challenge-Test ... 7
 2.1.1. Der Challenge-Test und Sucht 8
 2.1.2. Der Challenge-Test und Motorische Fähigkeiten 8
 2.1.3. Der Challenge-Test und Schizophrenie 9
 2.1.4. Der Challenge-Test und andere psychopathologische Erkrankungen 10
2.2. Dopamin, das dopaminerge System 12
 2.2.1. Dopaminerge Projektionen 14
 2.2.1.1. Projektionen des Mesencephalons 14
 2.2.1.2. Projektionen des Diencephalons 14
 2.2.1.3. Projektionen des Telencephalons 14
 2.2.2. Rezeptoren und Wirkmechanismen 15
 2.2.3. Funktionen des Dopamin im Organismus 17
 2.2.4. Bromocriptin, ein Dopaminagonist 18
 2.2.5. Interaktionen des dopaminergen Systems mit den Hormonen 20
 2.2.5.1. Dopamin und Prolaktin 20
 2.2.5.2. Dopamin und Wachstumshormon 20
 2.2.5.3. Dopamin und Cortisol 21
2.3. Prolaktin ... 23
 2.3.1. Biochemische Eigenschaften, Bildungsorte 23
 2.3.2. Mechanismus und Regulation des Prolaktinhaushaltes 23
 2.3.3. Rezeptoren und Wirkmechanismen 32
 2.3.4. Funktionen von Prolaktin im Organismus 33
2.4. Wachstumshormon ... 36
 2.4.1. Biochemische Eigenschaften, Bildungsorte 36
 2.4.2. Mechanismus und Regulation des Wachstumshormonhaushaltes 37
 2.4.3. Rezeptoren und Wirkmechanismen 40
 2.4.4. Funktionen des Wachstumshormons im Organismus 41
2.5. Cortisol ... 46
 2.5.1. Biochemische Eigenschaften, Bildungsorte 46
 2.5.2. Mechanismus und Regulation des Cortisol-Haushaltes 48
 2.5.3. Rezeptoren und Wirkungsmechanismen 49
 2.5.4. Funktionen von Cortisol 50
2.6. Interaktionen der Hormone untereinander 54
 2.6.1. Prolaktin und Wachstumshormon 54
 2.6.2. Interaktionen zwischen Cortisol und Prolaktin 54
 2.6.3. Interaktionen zwischen Cortisol und GH 56
2.7. Gegenstand der Arbeit .. 58
3. Methodik .. 59
3.1. Versuchspersonencharakteristik 59
3.2. Vortermine .. 60
3.3. Pharmakologische Substanzen 61
3.4. Versuchsplan .. 62
3.5. Erhebung der Hormonwerte .. 62
 3.5.1. Gewinnung des Serums .. 62
 3.5.2. Konzentrationsbestimmung von Cortisol 63
 3.5.3. Konzentrationsbestimmung von Prolaktin 63
 3.5.4. Konzentrationsbestimmung von GH 64
3.6. Versuchsdurchführung...64
3.7. Responsivitätsmaß...67
3.8. Mehrdimensionale körperliche Symptomenliste (MKSL) ...68
3.9. Statistische Auswertung...68
4. Ergebnisse ..71
4.1. Die Antwort der Hormone auf die Stimulation mit Bromocriptin...................................71
 4.1.1. Prolaktin (PRL) ..72
 4.1.2. Wachstumshormon (GH) ..73
 4.1.3. Cortisol ..75
4.2. Zusammenhang zwischen den 3 Hormonsystemen unter der Placebobedingung............76
4.3. Zusammenhang zwischen den 3 Hormonsystemen unter der Bromocriptinbedingung....77
4.4. Prüfung körperlicher Nebenwirkungen der dopaminergen Stimulation im Vergleich mit
 Spontansymptomen unter Placebo..78
 4.4.1. Häufigkeiten der Nebenwirkungssymptome unter der Bromocriptin-bedingung
 Vergleich zu denen unter der Placebobedingung ...79
 4.4.2. Überprüfung der Zusammenhänge zwischen den MKSL-Symptomen und den
 Hormonreaktionen ...87
5. Diskussion ..89
 5.1.1. Prolaktin unter dopaminerger Stimulation ..89
 5.1.2. GH unter dopaminerger Stimulation ..90
 5.1.3. Bromocriptin und Cortisol ..92
5.2. Korrelationen der 3 Hormonsysteme unter Placebobedingung94
5.3. Korrelationen der 3 Hormonsysteme unter der Bromocriptinbedingung95
5.4. Die subjektiven Symptome unter der Bromocriptinbedingung im Vergleich zu denen
 unter der Placebobedingung ...97
5.5. Zusammenhänge zwischen den 3 Hormonsystemen und den Nebenwirkungen100
6. Zusammenfassung ..104
Literaturverzeichnis ..110
Anhang ..136
1. Einleitung

Bromocriptin

\[\text{D}_1 \text{D}_2 \text{ Rezeptor-Stimulation} \rightarrow \text{Hypothalamus CRH} \uparrow \rightarrow \text{Hypophyse ACTH} \uparrow \rightarrow \text{NNR} \rightarrow \text{Cortisol} \uparrow \]

\[\text{D}_2 \text{ Rezeptor-Stimulation} \rightarrow \text{Tubero-infundibuläres System DA} \uparrow \rightarrow \text{Hypophyse PRL} \downarrow \]

\[\text{D}_2 \text{ Rezeptor-Stimulation} \rightarrow \text{Hypothalamus Somatostatin} \downarrow \rightarrow \text{Hypophyse GH} \uparrow \]

(Swerdlow, 1999)
(Klinke / Silbernagl, 2000)

Abb. 0: Mechanismen der Hormonfreisetzung unter dopaminerger Stimulation

Da Bromocriptin als eine der validierten Substanzen für die DA-Stimulation gilt, die als Dopaminagonist intensive Anwendung in vielen klinischen Gebieten findet, jedoch häufig zu teilweise massiven Nebenwirkungen führt, war als Weiteres zu prüfen, ob unter der von uns applizierten Medikamentendosis zwar eine ausreichende, hormonelle Ansprechbarkeit stattfindet, die aber nicht mit zu heftigen Nebenwirkungen einhergeht und welche Beziehungen zwischen potentiellen subjektiven Nebenwirkungen und den drei verschiedenen Reaktionssystemen existieren.
2. Theoretischer Teil

2.1. Der Challenge-Test

Im Laufe der letzten Jahrzehnte haben sich die Verfahren zur Untersuchung u.a. psychiatrischer Erkrankungen ständig und bedeutend erweitert. Anfangs beschränkte man sich auf Postmortem-Untersuchungen an Menschen oder Tierexperimente, was später, natürlich im Rahmen der ethischen Vorschriften, teilweise auch auf den lebenden Menschen erweitert wurde (Werner, 2001).

Folgende Bereiche des Einsatzes sollen die Gängigkeit und v.a. Wichtigkeit der Challenge-Testung noch mal verdeutlichen.
2.1.1. Der Challenge-Test und Sucht

Das nächstliegende Beispiel für dopaminerge Challenge-Tests ist natürlich die vorliegende Studie, anhand derer der dopaminerge Effekt bei nikotinabhängigen Probanden geprüft wurde.

Speziell bei der Entwicklung und Persistenz der Sucht scheint das dopaminerge System eine tragende Rolle zu spielen. Es gibt einige Beweise dafür, dass Dopamin u.a. beim Menschen in der Sucht involviert ist, dennoch ist diese Rolle noch nicht genug detailliert dargestellt worden (Franken et al., 2005).

Xi et al. (2005) applizierten Ratten einen synthetischen D3-Agonisten (NGB 2904 (N-(4-[4-{2,3-dichlorophenyl}-1-piperazinyl]butyl)-3-)fluorenylcarboxamide) zur Überprüfung von Dopamin bei Kokainabhängigkeit.

Da Nikotin die Dopaminausschüttung im ZNS steigert, überprüften Jarwik et al. (2000), mit Erfolg an starken Rauchern, ob Bromocriptin das Verlangen nach Zigaretten senken konnte.

2.1.2. Der Challenge-Test und Motorische Fähigkeiten

Der Morbus Parkinson lässt als vornehmliches Beispiel die wichtige Rolle des dopaminergen Systems im Rahmen der motorischen Koordination erkennen.
Neben den drei Kardinalsymptomen Akinese, Tremor und Rigor werden die weiteren motorischen Krankheitsmerkmale in Plus- und Minussymptome unterteilt. Zu den ersteren zählen u.a. die überschiessenden Intentionsbewegungen, zu den Minussymptomen die typische Mikrographie, die eingeschränkte Okulomotorik und die eingeschränkten Bewegungsparameter. Speziell im Bereich des Morbus Parkinson und den o.g. Symptomenkomplexen, allgemein auch als extrapyramidale Symptome bezeichnet, wurden etliche Provokationstests zur Exploration weiterer Behandlungsansätze unternommen.

2.1.3. Der Challenge-Test und Schizophrenie

bedeutend für neurophysiologische Mechanismen, die bei schizophrenen Erkrankungen involviert sind. Schon aus diesem Grund und natürlich zur Messung therapeutischer Effekte verschiedener dopaminerger Substanzen wurden im Rahmen schizophrener Erkrankungen viele Challenge-Tests durchgeführt.

2.1.4. Der Challenge-Test und andere psychopathologische Erkrankungen

2.2. Dopamin, das dopaminerge System

Dopamin, ein Neurotransmitter: biochem. Eigenschaften, Bildungsorte, Projektionen

Das dopaminerge System besteht neuroanatomisch aus drei Untereinheiten:

Das tuberoinfundibuläre System:
Diese Fasern finden ihren Ursprung in der Area 13 und projizieren in den periventriculären Hypothalamus, die Area praeoptica und das Septum (Hennig & Netter, 2003).
Der Ncl. infundibularis des Hypothalamus ist über dopaminerge Fasern mit Kapillaren des Pfortadersystems der Hypophyse verbunden und nimmt hier beispielsweise Einfluss auf den Prolaktinhaushalt (Falkenburger, 2002).

Das mesolimbische und mesocorticale System:
Desweiteren befinden sich dopaminerge Neurone im ventralen tegmentalen Areal, welches mesolimbische und mesocorticale Fasern entsendet. Es scheint, dass diese Bahnen eine wichtige Rolle spielen bei der Entstehung der Schizophrenie (s.u.) und bei der Suchtentwicklung (s.u.).

Das mesostriatale System:

Dopamin gehört zu den Katecholaminen und stellt biochemisch gesehen sozusagen ein Zwischenprodukt von Tyrosin zu Noradrenalin und Adrenalin dar. Durch Decarboxylierung entsteht aus Dopa das Dopamin, welches weiter umgebaut werden kann zu Noradrenalin (Karlson et al., 1994). Dies erklärt auch die enge chemische und pharmakologische Verwandtschaft dieser Neurotransmitter.
Dopamin wird aus der praesynaptischen Endigung in den synaptischen Spalt abgegeben, von wo es an den postsynaptischen Rezeptor binden kann und dort eine inhibitorische oder exzitatorische Wirkung induziert. Es wird dann rasch wieder in die praesynaptische Nervenendigung aufgenommen. Hier kann es durch Monoaminoxidase B (MAO-B) und
außerhalb des Neurons durch Catechol-O-Methyltransferase (COMT) metabolisiert werden (Klinke & Silbernagl, 2003).

Auch in der Körperperipherie befinden sich wichtige Ansatzstellen für das dopaminerge System, u.a. im Bereich der Nieren und der Splanchnicusgefäße, worauf an anderer Stelle noch eingegangen wird.
2.2.1. Dopaminerge Projektionen

2.2.1.1. Projektionen des Mesencephalons

Mesostriatale Bahnen:
Die mesostriatalen Bahnen beinhalten die Fähigkeit, das komplexe Verhalten über willkürliche Steuerung der Motorik zu leiten.

Mesolimbische und Mesocorticale Bahnen:
Ebenfalls von A10 und A9 ausgehend führen die mesocorticalen Bahnen zum Frontallappen, Cortex praepiriformis, piriformis und entorrhinalis und zum anterioren cingulären Cortex.

2.2.1.2. Projektionen des Diencephalons

Vom Ncl. infundibularis (A12) aus entspringen tuberoinfundibuläre Projektionen zur Eminentia mediana. Einige Axone laufen weiter zum Lobus hypophyseos. Über dieses System wird u.a. der Prolaktinhaushalt gesteuert.

2.2.1.3. Projektionen des Telencephalons

Im äußeren Bereich des Bulbus olfactorius liegt die eine aus Interneuronen bestehende dopaminerge Zellgruppe als Gruppe eines größeren Zellverbandes (Römer, 2005).
2.2.2. Rezeptoren und Wirkmechanismen

Ursprünglich kannte man im ZNS zwei verschiedene Dopamin-Rezeptoren, denen sich durch molekularbiologische Untersuchungstechniken noch einige hinzufanden (Jose et al., 1992). Bis zum heutigen Zeitpunkt sind (mindestens) 5 verschiedene Dopamin-Receptor-Subtypen bekannt, deren DNA bereits isoliert und entschlüsselt wurde. Man nummerierte diese Subtypen von 1-5 und teilte die Subtypen 1 und 5 dem D1-Rezeptortyp zu, die Subtypen 2,3 und 4 dem D2-Rezeptortyp (Zawilska, 2003). Diese Unterteilung nahm man vor, da D1 und 5 die Adenylatcyclase stimulieren, D2, 3 und 4 diese jedoch hemmen oder nicht beeinflussen (Cuk et al., 2004). Somit kommt es entweder zur Erhöhung von cAMP (cyclisches Adenosinmonophosphat) im Cytosol oder es sinkt, was die weitere Zellfunktion bestimmt.

Desweiteren fand man für den D1- und den D5-Subtyp eine äußerst hohe Homologie ihrer transmembranösen Gensequenzen, sowie auch eine hohe Ähnlichkeit der Sequenzen unter den Subtypen 2, 3, und 4 auffällig wurde.

Ein weiterer Unterschied besteht darin, dass die D1- und D5-Rezeptor-Gene keine Introns enthalten, während die D2-4-Rezeptor-Gene sehr wohl durch Introns unterbrochen werden (Missale et al., 1998). Außerhalb des ZNS klassifizierte man zuerst die Subtypen in DA 1 und DA 2 (Jose et al., 1992), jedoch stellte sich eine hohe pharmakologische und biochemische Ähnlichkeit zwischen zentralen und peripheren Rezeptoren heraus, sodass man bald darauf verzichtete (Schäfer (2004) zitiert Andersen, 1990). Die Dopamin-Rezeptoren gehören zur Gruppe der G-Protein-gekoppelten Rezeptoren mit 7 transmembranösen Domänen, d.h. die Rezeptoren durchnspannen die Plasmamembran 7-mal mit alpha-Helices, was als heptahelicale Rezeptoren bezeichnet wird (Klinke & Silbernagl, 2003).

Zwar haben die 5 Subtypen des Dopamin-Rezeptors in Dopamin den gleichen Liganden, jedoch unterscheiden sie sich hinsichtlich der Affinität zu ihm wie folgt: D3>D5>D2>D4>D1 (Jose et al., 1992). D1- und D5-Rezeptoren sind fast ausschließlich an der postsynaptischen Membran lokalisiert, während Rezeptoren vom Typ D2 prae- und postsynaptisch vorzufinden sind (Schäfer zitiert Jose et al., 1992). Dadurch werden im Engeffekt verschiedene second-messenger-Kaskaden stimuliert bzw. inhibiert und somit der Effekt in die Zelle vermittelt.

Die D1-artigen Rezeptoren, welche an der postsynaptischen Membran lokalisiert sind, wirken exzitatorisch und vermitteln ihre Wirkung G-Protein-gesteuert, welches die Adenylatcyclase aktiviert und dadurch die Bildung von cAMP aus ATP induziert. Neben einer Aktivierungsänderung von Ionenkanälen durch cAMP-abhängige Phosphorylierung von
Proteinkinasen werden auch andere chemische Reaktionen in der Zelle bzw. intrazelluläre Reaktionen im genetischen Material ausgelöst.

D2-artige Rezeptoren, die sowohl prae- als auch postsynaptisch gelegen sind, wirken an der postsynaptischen Membran inhibitorisch durch Inhibition der cAMP-Bildung und second-messenger-gesteuert über Öffnung der Kalium-Kanäle, was zur Hyperpolarisation führt. Die präsynaptischen Rezeptoren findet man ausschließlich im nigrostriären und mesolimbischen System. Man nennt sie auch Autorezeptoren. Durch Bindung von Dopamin an diese Rezeptoren kommt es durch Hemmung der Tyrosinhydroxylase zu einer negativen Rückkopplung im dopaminergen System (Römer, 2005).

Über D2-artige Rezeptortypen werden u.a. der emetische Reflex ausgelöst und kognitive Verarbeitungsprozesse können beschleunigt werden (Schuck et al., 2002). Desweiteren wird über Aktivierung dieser Rezeptoren, und zwar im Frontalhirn, die bekannte antikonvulsive Wirkung vermittelt (während der D1-Rezeptor eher eine prokonvulsive Wirkung vermittelt) (Behr, 1996).

Ein bekannter D2-vermittelter Effekt ist der Einfluss von Dopamin auf das Prolaktin-System. Hier kommt es zur Inhibierung der Adenylylcyclase, des Insitol-Phosphat-Metabolismus und zur Modifizierung von mindestens 5 verschiedenen Ionenkanälen (Freeman et al., 2000).

Neben zentralen Wirkungen scheinen die D1-artigen Rezeptorsubtypen in der Peripherie v.a. die renale Vasodilatation und die Effekte auf das Splanchnicusgebiet zu regulieren (Küttler, 1996).

D3- und D4- Receptor-Subtypen finden sich v.a. in Hirnbereichen, die verantwortlich sind für kognitive Vorgänge. Sie haben desweiteren eine erhöhte Affinität zu bestimmten Neuroleptica, so dass sie als Ansatzstellen für die medikamentöse Therapie psychiatrischer Erkrankungen dienen (Jaber et al., 1996).

Je nach Dosierung des Dopamins (≤3µg/kgKG/min; 3-10µg/kg KG/min; ≥ 10µg/kg KG/min) resultiert im Nieren- und Splanchnicusgebiet über Dopaminrezeptoren eine Vasodilatation mit

2.2.3. Funktionen des Dopamin im Organismus

Dopamin fungiert als Neurotransmitter, das heißt es vermittelt Informationen an den Synapsen von einer Nervenzelle zur anderen.
Es fungiert im Gehirn als Modulator einer Reihe von Funktionen, u.a. im Rahmen von Emotionen, kognitiven Vorgängen, Aufnahme von Essen, Temperaturregulation, Bewegungskoordination, positiver Verstärkung und endokriner Regulation.
In der Körperperipherie ist Dopamin beteiligt an Regulationen des Katecholaminhaushaltes, kardiovaskulärer Funktion, Hormonsekretion, Darm-Peristaltik, vasomotorischer Aktivität und renaler Funktionen (Missale et al. 1998).

Gedächtnisleistungen, Merkfähigkeit, Lernen und bestimmte Verhaltensweisen unterliegen ebenfalls der Steuerung des dopaminergen Systems (Missale et al., 1998).

Rigor, Tremor und Akinesie in Erscheinung tritt, fehlt durch Untergang der dopaminergen Neurone der Substantia nigra das Dopamin, was letztendlich ebenfalls den Einfluss des Dopamins auf die Motorik beweist.

2.2.4. Bromocriptin, ein Dopaminagonist

Bei Bromocriptin handelt es sich um ein Mutterkornderivat. Die Bioverfügbarkeit liegt bei etwa 30 % und es wird in der Leber metabolisiert. Es wirkt im ZNS durch direkte Stimulation der Dopaminrezeptoren der laktotropen Zellen der Adenohypophyse, darüber hinaus zusätzlich im Hypothalamus (Winkelmann et al., 1991). Periphere Wirkungen zeigen sich v.a. am kardiovaskulären Apparat, was sich teilweise als Nebenwirkungen (Angina pectoris, Herzrasen, orthostatische Dysregulation) bei Bromocriptintherapie niederschlägt.
Bromocriptin ist ein selektiver Agonist der D2-Rezeptor-Familie. Es hat offensichtlich neuroprotektive Effekte (u.a. durch antioxidative und mitochondrienstabilisierende Wirkung), was durch in vitro- und in vivo-Experimente nachgewiesen wurde (Kitamura et al., 2003) und sich daher äußerst günstig im Rahmen der medikamentösen Parkinson-Therapie auswirkt.
Als zentraler D2-Agonist schwächt es Synthese und Sekretion von Prolaktin (Boisvert et al., 1992).

Deswegen wird das Medikament gerne in der Gynäkologie bei Galaktorrhoe zum primären und sekundären Abstillen, bei Mastitis und prolaktinbedingter Infertilität eingesetzt (Küttler, 1996). Es hat sich bewährt zur Therapie des Galaktorrhoe-Amenorrhoe-Syndroms (GAS), da es über die Senkung der Prolaktin-Konzentration im Serum zur Wiederherstellung der periodischen Sekretion von Follikel-Stimulierendem-Hormon (FSH), Luteinisierendem Hormon (LH), Östradiol und Progesteron führt (de Bernal & de Villamizar, 1982).

Weitere Nebenwirkungen unter dopaminerger Therapie sind Kopfschmerz, Dyspepsie, Obstipation, kälteempfindliche Vasospasmen (selten), bei Parkinsonpatienten teilweise psychiatrische Reaktionen wie Halluzinationen, Depressionen und geschwollene, hypersensible und gerötete Extremitäten.

Nach Cicinelli et al. (1996) wird die höchste Plasmakonzentration von Bromocriptin etwa 1,4 h nach Applikation erreicht, wobei etwa 120 min nach Einnahme eine messbare Wirkung auf den Prolaktinspiegel bei einer Einnahmedosis von 1,25 - 5 mg erreicht ist. Das Wirkmaximum liegt bei ca. 8 Stunden nach Applikation.
2.2.5. Interaktionen des dopaminergen Systems mit den Hormonen

2.2.5.1. Dopamin und Prolaktin

Trotzdem gibt es auch Hinweise darauf, dass Dopamin, speziell in geringeren Konzentrationen, ebenso eine gesteigerte Prolaktin-Sekretion hervorrufen kann. Prolaktin selbst hemmt seine Ausschüttung über eine kurze negative feedback-Schleife, die in einer gesteigerten Dopamin-Synthese mündet (Freeman et al., 2000).

2.2.5.2. Dopamin und GH

Bluet-Pajot et al. (1990) wiesen durch Experimente an Ratten nach, dass die Erhöhung basaler GH-Spiegel offenbar u.a. vermittelt wird über D1-, nicht jedoch über D2-Rezeptoren.
Nach Vance et al. (1987) senkt Dopamin die hypothalamische Somatostatinausschüttung; dieser Effekt erlaubt eine höhere stimulatorische Wirkung von GHRH auf den GH-Spiegel.
Jedoch ist neben der steigernden Wirkung auch ein senkender Effekt von Dopamin auf den GH-Spiegel bekannt, wobei offenbar beide über Dopamin-Rezeptoren vermittelt werden können (Camanni et al., 1975).

Die Akromegalie (s.o.) ist eine durch gesteigerte Synthese bzw. Sekretion von GH und IGF-1 bedingte Krankheit häufig auf dem Boden tumoröser Erkrankungen der Adenohypophyse. Die erste effektive medikamentöse Behandlung der Akromegalie erreichte man durch Bromocriptin, also einen Dopaminagonisten. Später wurde Cabergolin verwendet wegen seiner höheren D2-Rezeptor-Spezifität, seiner längeren HWZ und für die Patienten bessere Tolerierbarkeit (Arosio et al. 2004).

Wie vorher bereits erwähnt, scheint die dopaminerge Wirkung auf das GH abhängig zu sein vom basalen Serumspiegel vom Wachstumshormon (Bansal et al., 1981). Da dieser bei Akromegalie-Patienten im Vergleich zu gesunden Individuen erhöht ist, haben dopaminerge Substanzen unterschiedliche Effekte auf den GH-Spiegel; dieser scheint zu steigen bei normalen, während er sinkt bei gesteigerten Basalspiegeln.

2.2.5.3. Dopamin und Cortisol

Goiny et al. (1986) injizierten Hunden Apomorphin (ebenfalls ein Dopaminagonist) und Bromocriptin, also Dopaminagonisten, und stellten im aus peripheren Venen genommenen Blut fest, dass Cortisol rapide und langdauernd anstieg. Einige zentral wirkenden Dopamin-Antagonisten (Haloperidol, Chlorpromazin) wirkten ebenfalls steigernd auf den Cortisolspiegel. Hieraus zog man den Schluß, dass das dopaminerge System abhängig von zentraler und peripherer Stimulation, gegensätzliche Wirkungen auf den Glucocorticoidhaushalt haben muß.

Murburg et al. (1986) gaben gesunden, jungen Männern die zentral antidopaminerge Substanz Haloperidol und erzielten einen deutlichen Anstieg des Plasma-Cortisols im Vergleich zu Placebo-Durchgängen, was umgekehrt auf einen supprimierenden Effekt von dopaminergen Substanzen auf den Glucocorticoidspeiegel im Blut schließen lassen könnte. Einen selektiven Effekt von Glucocorticoiden auf die Dopaminaktivität durch Dexamethason-Applikation an Menschen wurde bereits 1985 von Wolkowitz et al. beschrieben.

Zwar sind die Aussagen zu den Interaktionen zwischen dem dopaminergen System und Cortisol divergierend, trotzdem scheint die Meinung zu einem stimulierenden Effekt von Dopamin auf den Cortisolspiegel zu überwiegen.
2.3. Prolaktin

2.3.1. Biochemische Eigenschaften, Bildungsorte

2.3.2. Mechanismus und Regulation des Prolaktinhaushaltes

Der Prolaktinspiegel unterliegt im Allgemeinen einem zirkadianen Rhythmus. Beim Menschen findet man während der Schlafphase die höchsten Konzentrationen an Prolaktin im Plasmaspiegel, während sie am niedrigsten sind in der Aufwachphase. In einer konstanten Umgebung haben jüngste Experimente gezeigt, dass dieser Sekretionsrhythmus unabhängig

Bei der Frau ist der durchschnittliche Plasmaspiegel deutlich abhängig vom jeweiligen physiologischen Status des Reproduktionssystems. Vor der Pubertät ist das Prolaktin vergleichsweise erniedrigt, während es während der Ovulation und der Corpus-luteum-Phase eine leichte Erhöhung erfährt. Ab Ende der Schwangerschaft bis mehrere Wochen nach der Geburt, d.h. in der Laktationsphase, findet man die höchsten Prolaktinspiegel. Diese bleiben auf einem hohen Niveau, bis nicht mehr gestillt wird. Bleibt die Brustfütterung ganz aus, fällt auch der Prolaktinspiegel innerhalb von ein bis zwei Wochen wieder ab (Schmidt-Gollwitzer & Saxena, 1975).

Ein Absinken des Prolaktinspiegels findet man bei Frauen ab der Menopause und auch bei Männern ab einem höheren Alter (60-73 Jahre) (Schmidt-Gollwitzer & Saxena, 1975).

Die allgemein anerkannte Meinung ist, dass die laktotropen Zellen einer ständigen spontanen Prolaktinsekretion unterliegen. Diese Ansichten stützen sich u.a. auf Experimente, in denen es nach chirurgischer Unterbindung der Adenohypophyse und des medial basalen Hypothalamus zu einem allmählichen Anstieg des Serumprolaktins kam, welches ein Plateau erreichte innerhalb etwa einer Woche nach dem Eingriff. Es zeigte sich zudem, dass auch nach Verpflanzung der Adenohypophyse an einen Ort ohne vaskuläre oder neuronale Verbindung zum Hypothalamus (hier unter der Nierenkapsel oder kulturell in vivo) eine hohe spontane Sekretionsrate auftrat (Freeman et al., 2000).

Interessant ist, dass Chang et al. (1997) und einige andere gezeigt haben, dass Dopamin über ein und denselben D2-Rezeptor nicht nur inhibitorisch, sondern auch aktivierend auf die Prolaktinsekretion wirken kann. Sie führten diese Tatsache darauf zurück, dass der D2-Rezeptor verbunden ist auf der einen Seite mit einem Gi-Protein (=inhibitorisch), auf der anderen Seite mit einem Gs-Protein (=stimulatorisch). Je nach dem, wie hoch die Konzentration des zugeführten Dopamins in ihrem Experiment war, wurde ein inhibitorischer (hohe Konzentration) oder stimulatorischer (sehr niedrige Konzentration) Effekt erzielt.

Racagni et al. (1979, zitiert von Freeman et al., 2000) haben gezeigt, dass Gamma-Amino - Buttersäure (GABA) in direkter Weise die Freisetzung von Prolaktin inhibiert. Endogenes GABA spielt wahrscheinlich eine durchaus bemerkenswerte Rolle in der Steuerung der tubuloinfundibulären Zellen, damit in der Regulation der Dopaminausschüttung und so auch im Prolaktinhaushalt (Lee & Pan, 2001). Nach Lux-Lantos et al. (1992), die u.a. die GABAerge Prolaktininhibition als zentrale neuroendokrine Reaktion untersucht haben,

Effekt ist die Stabilisierung der mRNA, dessen Halbwertszeit eine deutliche Steigerung erfährt.

Ein anderer Effekt des AT II ist die Beisteuerung zur Regulation des Prolaktinhaushaltes, sowohl indirekt über den Hypothalamus als auch direkt am Hypophysenvorderlappen. AT II

Im Endeffekt resultiert aus der Aktivierung des second-messenger-Systems bzw. des Anstiegs von intrazellulärem Kalzium eine Erhöhung der Prolaktinsekretion der Adenohypophyse, während AT II über den Hypothalamus, jedenfalls bei erhöhtem Prolaktinspiegel (z.B. unter Streß), konzentrationsabhängig eine Supprimierung der Hormonausschüttung bewirkt (Freeman et al., 2000).

Desweiteren erhöhen Östrogene auch die Überlebensrate der laktotropen Zellen und sind wahrscheinlich beteiligt an der Entstehung von Prolaktinomen (Spady et al., 1999). Weitere Effekte sind die Stimulierung der Prolaktin-Gen-Transkription, die Vergrößerung der Anzahl an prolaktinenthaltenden sekretorischen Granula und die Induktion der Transdifferention von somatolaktotropen in laktotrope Zellen durch Östrogene (Donald et al., 1997).

Freeman et al. (2000) nehmen bei den Effekten auf die Prolaktinsekretion für Serotonin eher eine Rolle als Neurotransmitter denn als Neurohormon an, da die Prolaktinausschüttung durch Serotonin nicht in vitro stimuliert.

Dieser Prolaktineffekt konnte bei Stern´s Versuchen allerdings nicht reproduziert werden.

Nach Freeman et al. (2000) haben auch olfaktorische Stimuli Einflüsse auf den Prolaktinhaushalt, was durch einige Versuche probiert wurde, darzustellen. Mattheij &

Stressreiche Situationen gehen fast ständig einher mit einer hormonellen Adaption; insbesondere Prolaktin (und auch das Wachstumshormon) reagieren auf Stress mit einer gesteigerten Sekretion, wobei das Ausmaß dieser Steigerung eng gekoppelt ist an die Stärke des jeweiligen Stimulus. Eine Erhöhung der Spiegel von Prolaktin wie auch von GH allein
durch psychologische Stressoren scheint jedoch eher selten der Fall zu sein (Delitala et al., 1987), vielmehr wird der Eindruck erweckt, dass es eine Kombination verschiedener psychologischer und physischer Stressoren bedarf.

2.3.3. Rezeptoren und Wirkmechanismen

2.3.4. Funktionen von Prolaktin im Organismus

Wie oben bereits erwähnt, gelten aber auch viele weitere Organsysteme zu den Zielorganen des Prolaktins, wobei offensichtlich viele biologische Wirkungen in diesen Organen noch unbekannt oder nicht ausreichend erforscht sind (Schmidt & Thews, 1997).

Dieser Mechanismus ist aber nur bei häufig anlegenden Müttern als einigermaßen zuverlässig zu betrachten, während er bei nicht voll stillenden Müttern nicht als ausreichender Konzeptionsschutz zu betrachten ist (Schmidt & Thews, 1997).

In physiologischen Konzentrationen, d.h. außerhalb von Schwangerschaften, ist Prolaktin wichtig für die vollständige Ausreifung der Follikel. Es unterstützt auch die Entwicklung der Oozyten und ist essentiell für die physiologischen Effekte des Corpus luteum, so dass die Progesteronproduktion stimuliert werden kann. Es stabilisiert die hohe Zahl von LH (luteinisierendes Hormon) - und Östradiolrezeptoren. Die Prolaktinrezeptoren sind hier in der Wand der Granulosazellen lokalisiert. Ist der Hormonspiegel hoch, wird die Ausreifung der Follikel gestört. Dies passiert wahrscheinlich einerseits durch die Verhinderung der

Weiterhin ist Prolaktin bei Männern essentiell für die Entwicklung und Größe der Prostatadrüse und anderer Gewebe und reguliert direkt die Sekretion des Prostatasekrets. Es könnte zudem eine erhebliche Rolle spielen bei der Pathogenese von Prostataneopleasien (Costello & Franklin, 1994).

Untersuchungen zeigen, dass das Hormon als Modulator von immunologischen Prozessen fungiert. Fest steht, dass auch Lymphozyten und ihre Subtypen (s.o.) Prolaktin freisetzen. Viele immunkompetente Zellen besitzen Prolaktin-Rezeptoren und z.B. bei Organ-
2.4. Wachstumshormon
=Somatotropin, Growth Hormone (GH), Somatotropes Hormon (STH)

2.4.1. Biochemische Eigenschaften, Bildungsorte

Ca. 50% des zirkulierenden GH bildet mit einem Bindungsprotein ein „Hormon-Reservoir“. Allgemein kann man sagen, dass die Ausschüttung von GH am höchsten ist während der Pubertät und mit zunehmendem Alter abnimmt. Dies unterstreicht die Wichtigkeit des Hormons für das Wachstum des menschlichen Körpers, soll aber auch nicht darüber hinwegtäuschen, dass es auch im Erwachsenenalter wichtig für physiologische Abläufe des Organismus ist (s.u.).
2.4.2. Mechanismus und Regulation des Hormonhaushaltes von GH

Es bestehen episodenhafte Phasen, in denen die Hypophyse ohne erkennbare Ursache die GH-Ausschüttung steigert (Schmidt & Thews, 1997).

Nun ist zu erwähnen, dass die GH-Regulation durch eine Vielzahl von Faktoren im Organismus des Menschen (und anderer Lebewesen) beeinflusst wird. In erster Linie sind die hypothalamischen Peptide Somatoliberin (GHRH) und Somatostatin (STH-inhibierendes Hormon, SIH) zu nennen, jedoch sind noch weitere Substanzen aufzuzählen, die hierbei eine Rolle spielen.

Es ist weiterhin bekannt, dass Dopamin-Agonisten zu einem Anstieg des GH-Spiegels führen (Miell et al., 1990). Nach Leebaw et al. (1978) können Dopamin-Agonisten beim gesunden Menschen sowohl einen inhibitorischen als auch einen stimulierenden Effekt auf die Regulation der GH-Ausschüttung ausüben.

Letztendlich scheint es sich so zu verhalten, dass Dopamin-Agonisten zu einer Steigerung der basalen GH-Sekretion führen, wobei andererseits eine unnormal hohe GH-Ausschüttung, z.B. durch eine Hypoglykaemie provoziert, durch Dopamin-Agonisten deutlich gehemmt wird (Bansal et al., 1981).

Wie oben bereits angesprochen, sind die bekanntesten und vielleicht wichtigsten Faktoren im Rahmen der Regulation des GH-Spiegels zum einen das GHRH und auf der Gegenseite das Somatostatin, welche daher nochmals näher beschrieben werden sollen:

Der GHRH-Rezeptor ist ein G-Protein-gekoppelter Rezeptor, der benötigt wird zum einen für eine normale Synthese und Freisetzung von GH, zum anderen für regelrechtes Wachstum und Proliferation der somatotropen Zellen der Adenohypophyse. Entsprechend dazu führt ein Fehlen des Rezeptors zu retardiertem Wachstum, einem Mangel an GH, als auch zu einer Hypoplasie der Adenohypophyse (Gaylinn, 2002).

Das Somatostatin besteht aus 14 zyklisch angeordneten Aminosäuren und wird als Prae-Somatostatin produziert in ZNS, Magen, Pankreas und Darm. Es hat auf auto- und parakrinem Wege v.a. inhibitorische Wirkung auf seine Zielorgane (Krantic et al., 2004).

2.4.3. Rezeptoren und Wirkmechanismen

Die Effekte des GH selbst werden vermittelt durch Interaktion mit einem spezifischen Rezeptor der Zelloberfläche, dem GH-Rezeptor (GHR). Der Rezeptor gehört zur Familie der Cytokin-Rezeptoren, dessen intrazelluläre Kaskade sowohl JAK (Janus kinase) und STAT (Signal Transducers and Activators of Transcription) beinhalten, als auch MAPK (mitogen activated protein kinase), Phosphatidylinositol-3-kinase oder die Phospholipase C/Proteinkinase C aktivieren (Yoshizato et al., 2004). Auf diesem Wege wird auch die Transkription der IGF-1-Gene in der Leber aktiviert, was in vivo-Experimente demonstrieren. Nicht nur in der Leber, sondern in etlichen anderen Organen befinden sich GH-Rezeptoren, durch die z.B. die Bildung von Somatomedinen angeregt wird, welche wiederum auf parakrinem/autokrinem Wege ihre Wirkung entfalten können (Goodyer et al., 2001). Der GHR zählt, wie oben erwähnt, zu den Cytokin-Rezeptoren, welche wiederum transmembranöse Rezeptoren darstellen. Der komplette menschliche GHR ist ein Protein bestehend aus 620 Aminosäuren mit einer einzelnen transmembranösen Region. Das GH-binding-proteine (GHBP) entspricht der extrazellulären Domäne des GHR (Postel-Vinay & Finidori 1995).

Da ein Großteil der Wirkungen des Wachstumshormons durch die Somatomedine vermittelt wird, seien ihre Rezeptoren an dieser Stelle ebenfalls kurz erwähnt: insgesamt existieren mit dem IGF-1-R und IGF-2-R zwei IGF-Rezeptoren, wobei zusätzlich mindestens 6 sogenannte IGF-binding-proteines bekannt sind. Die IGF wirken auf auto- und parakrinem Wege (s.o.),
sind daneben auch in extra- und interstitiellen Flüssigkeiten zu finden, wo sie u.a. an sog. IGF-binding-proteins (IGFBP) gebunden sind. Von diesen Proteinen sind bisher 8 Formen bekannt; sie können u.a. die HWZ der IGF erhöhen und Einfluss auf die Zellproliferation nehmen (Kostecka & Blahovec, 1999).

Wie der GHR gehört auch der IGF-1-Rezeptor (und der Insulinrezeptor) zu den Tyrosinkinase-Rezeptoren. Der IGF-1-Rezeptor besteht aus zwei extrazellulären alpha- und zwei transmembranösen beta-Untereinheiten, was für Rezeptortypen der Tyrosinkinase eher untypisch ist, da diese hauptsächlich aus einkettigen Polypeptiden aufgebaut sind (De Meyts et al., 2004).

IGF-1 mediiert die wichtigsten wachstumsfördernden Wirkungen des GH und bindet mit geringerer Affinität an Insulinrezeptoren, wie auch Insulin an IGF-1-Rezeptoren bindet. IGF-2 hat seinen eigenen Rezeptor, an den Insulin nicht bindet. Über diesen Rezeptor wird der zielgerichtete Transport lysosomaler Enzyme reguliert (Schmidt & Thews, 1997).

2.4.4. Funktionen des Hormons im Organismus

Zudem hat das Wachstumshormon Einflüsse auf den Cholecalciferolhaushalt, indem es die intestinale Mineralresorption steigert (Tryfonidou et al., 2003).

IGF I vermittelt die wichtigsten wachstumsfördernden Wirkungen des GH durch eine gesteigerte Proteinsynthese in sämtlichen Körperzellen, woraufhin dann die Zellteilung stimuliert wird (Schmidt & Thews, 1997).

Der Effekt des Wachstumshormons auf den Kohlenhydratstoffwechsel stellt sich als scheinbar konträr/bimodal dar (Schmidt & Thews, 1997):

Hinzu kommen noch etliche andere Einflüsse des Wachstumshormons bzw. der
2.5. Cortisol

2.5.1. Biochemische Eigenschaften, Bildungsorte

Cortisol gehört zur Gruppe der Steroidhormone. Im Säugetierorganismus werden aus Cholesterin 6 verschiedene Steroidhormone gebildet, nämlich Progesteron, Cortisol, Aldosteron, Testosteron, Óestradiol und Calcitriol. Diese Steroidhormone bilden jeweils eine Familie von Steroiden ähnlicher Struktur und bestimmter biologischer Wirkung (Karlson et al., 1994).

Modifikationen am Cholesterinmolekül werden vornehmlich durch Oxidasen und Veränderungen an den Seitenketten vorgenommen (Kreutzig, 1997).

Aus Cholesterin entsteht als erstes, und zwar Cytochrom (Cyt)-P-450-abhängig, das Pregnenolon, welches wiederum durch Dehydrierung zu Progesteron umgewandelt werden kann. Sowohl aus Pregnenolon direkt, aber auch aus Progesteron, können dann die Glucocorticoide synthetisiert werden, und somit auch das Cortisol. Beim Menschen macht Cortisol ca. 95% der Glucocorticoide aus, 5% stellt das Corticosteron.

Die meisten Enzyme der Steroidbiosynthese gehören zu den Cyt-P-450-Mischoxygenasen und katalysieren die Hydroxylierungen am Cholesterin bzw. seinen Abkömmlingen. Das sogenannte Schrittmacherenzym, welches die limitierende Reaktion von Cholesterin zu Pregnenolon katalysiert, ist das Cyt-P-450-scc (scc für side-chain-cleavage) (Klinke & Silbernagl, 1996). Hierbei handelt es sich um eine Desmolase, durch die die Seitenkette von C20 abgespalten wird. Laut Karlson et al. (1994) sind aber auch die Schritte zur
Cholesterinaufnahme aus dem Plasma oder die Freisetzung aus den Speichern schon in der Lage, sich limitierend auf die Biosynthese der Corticosteroide auszuwirken. Die für die Steroidsynthese benötigten Enzymsysteme sind hauptsächlich lokalisiert im endoplasmatischen Retikulum und in den Membranen der Mitochondrien, die wohl untereinander über spezifische Transportmechanismen verbunden sind, um Zwischenprodukte der Produktionsvorgänge auszutauschen.

Zusätzlich wird aktives Cortisol auch in der Peripherie inaktiviert durch bestimmte Enzyme (s.u.).
2.5.2. Mechanismus und Regulation des Cortisol-Haushaltes

Die Ausschüttung von Cortisol unterliegt einem zirkadianen Rhythmus. Sie passiert nicht gleichmäßig, sondern vielmehr episodenhaft, wobei Frequenz und Amplitude der Sekretion in den frühen Morgenstunden ihren Höchstwert erreichen. Dadurch sind die Plasmawerte des Cortisols frühmorgendlich am höchsten, während sie über den Tag zunehmend geringer werden und gegen den späten Abend ein Minimum erreichen (Schmidt & Thews, 1997). Mit ziemlicher Regelmäßigkeit findet man noch einen zweiten Anstieg um die Mittagszeit, der evtl. (zumindest teilweise) verbunden ist mit der Mittagsmahlzeit (Klinke, Silbernagel, 2003), wobei dieser Anstieg aber auch unabhängig vom Essen auftritt.

Einige exogene Faktoren führen zur Beeinflussung der Cortisol-Sekretion:
Starke körperliche Betätigungen führen ebenfalls zu einer Steigerung der Sekretion des Cortisols, was z.B. bei sportlichen Leistungen nachgewiesen werden konnte (Vaananen et al., 2004, Buyukyazim et al., 2003).

Eine Senkung der Cortisol-Sekretion wird v.a. induziert durch einen negativen Rückkopplungsmechanismus durch das Hormon selbst: es macht sich auch hier seine lipophilen Eigenschaften zu nutze und kann so die Blut-Gehirn-Schranke passieren, um daraufhin an spezifische Glucocorticoidrezeptoren (GR) zu binden, welche in Hypothalamus, Hippocampus und Hypophyse lokalisiert sind. Dadurch wird direkt die Ausschüttung von CRH und ACTH gehemmt (Klinke & Silbernagl, 2003). Diese Inhibierung benötigt nach Juruena et al. (2004) die o.g. spezifischen Glucocorticoidrezeptoren (v.a. bei Stressantworten
und im Rahmen des zirkadianen Rhythmus), wobei die Mineralcorticoidrezeptoren ebenfalls eine bedeutende Rolle spielen bei der Modulation der GR-abhängigen Reaktionen.

Ein weiterer Mechanismus der Regulation des Glucocorticoidhaushaltes ist die Steuerung durch Neurotransmitter. So kann das serotonerge System über die hypothalamo-hypophysär-adrenale Achse zu einem Anstieg von ACTH und Cortisol führen, was u.a. Kilkens et al. (2005) durch einen Citalopram Challenge-Test gezeigt haben. Desweiteren gibt es auch Hinweise auf eine direkte Stimulation der Cortisolausschüttung durch Serotonin (Delarue et al. 1998).

Die serotonerge und noradrenerge Stimulation (ebenso Citalopram und Reboxetin) des Glucocorticoidhaushalts wurde ebenfalls in dieser Studie bearbeitet, ist jedoch nicht Gegenstand dieser Arbeit.

2.5.3. Rezeptoren und Wirkungsmechanismen

Die unten zu sehende Abb. 2 soll den gesamten Ablauf noch einmal vereinfacht darstellen.
2.5.4. Funktionen von Cortisol

Ein weiterer Effekt der Glucocorticoide ist die Induktion der Lipolyse, d.h. der Spaltung der Triglyzeride im Fettgewebe. Es kommt so zum Anstieg der freien Fettsäuren im Blut (Schmidt & Thews, 1997). Auch wird der Glucoseeinbau in die Fettzellen unterdrückt. Dadurch kommt es zur Hemmung der Lipogenese, also einer gesenkten Neubildung von Fettgewebe.

Einer der bekanntesten Effekte von Cortisol ist die Modulation von Immunantworten bzw. die entzündungshemmende Wirkung. So wird durch eine vermehrte Produktion von Lipocortin,
einem Hemmprotein der Phospholipase A2, die Freisetzung der Arachidonsäure blockiert, aus der Prostaglandine und Leukotriene entstehen.

Laut Karlson et al. (1994) besteht zwischen den Rezeptoren von Glucocorticoiden und Mineralcorticoiden eine starke Ähnlichkeit. Daher kann z.B. Aldosteron an Glucocorticoidrezeptoren binden sowie z.B. Cortisol auch an Mineralcorticoidrezeptoren. Zwar ist die Konzentration des Cortisols durchschnittlich um ein Vielfaches höher als die des Aldosterons, jedoch wird durch ein bestimmtes Enzym, die 11-Hydroxysteroid-
Dehydrogenase, das Cortisol am Rezeptor direkt inaktiviert. Daher ist die mineralcorticoide Wirkung der Glucocorticoide letztendlich eher als gering zu betrachten.

Als permissiver Effekt wird die potenzerhöhende Wirkung des Cortisols auf andere wichtige endogene Signalsubstanzen genannt. Dabei wird die Empfindlichkeit von Adrenozeptoren an der Muskulatur von Gefäßen als auch am Endothel selbst gesteigert, was schließlich zu einem erhöhten Tonus und Vasokonstriktion bzw. gesteigertem Gefäßwiderstand führt (Yang & Zhang, 2004). Durch eine gleichzeitige Abnahme des Gefäßtonus der Skelettmuskulatur wird eine Umverteilung des Blutvolumens in Richtung der quergestreiften Muskulatur erreicht (Schmidt & Thews, 1997), was wiederum zeigt, dass Glucocorticoide eine ergotrope Reaktionslage unterstützen. Auf parakrinem Weg wird das Nebennierenmark auch direkt durch Glucocorticoide zur vermehrten Adrenalin-Syntheseleistung stimuliert, und zwar durch eine Enzyminduktion auf sämtlichen Ebenen der Katecholamin-Produktion (Klinke & Silbernagl, 2003).

2.6. Interaktionen der Hormone untereinander

2.6.1. Prolaktin und Wachstumshormon

GHRF (Growth-Hormon Releasing Factor) scheint bei gesunden Personen keine Effekte auf den Prolaktinspiegel auszuüben; bei Kindern mit geringer Körpergröße ohne eine bestehende Störung im GH-System resultierte nach Applikation von GHRF keine Veränderung des Prolaktinspiegels, während bei denen mit einem chronischen GH-Defizit zumindest bei einigen Patienten eine positive Antwort des laktotropen Gewebes beobachtet wurde (van Vliet et al., 1985). Ghrelin, ein GHRP, welches an spezifische Rezeptoren in Hypothalamus und Hypophyse bindet (siehe auch Kapitel 2.4.2.), stimuliert die Ausschüttung von Prolaktin beim Menschen, wobei an Ratten demonstriert wurde, dass es die Prolaktinsekretion verringerte (Tena-Sempere et al., 2004).

Letztendlich kann anscheinend keine eindeutige, direkte Beziehung zwischen der Ausschüttung von Wachstumshormon und Prolaktin ausgemacht werden, was u.a. Volkl et al., (2005) in Untersuchungen an erkrankten Kindern beschrieben.

2.6.2. Interaktionen zwischen Cortisol und Prolaktin

Taylor et al. (1995) berichteten, das schon des häufigeren über einen supressiven Effekt von Glucocorticoiden auf die Prolaktin-Ausschüttung der Adenohypophyse hingewiesen wurde. Dies wurde an mehreren Versuchen mit Ratten und Menschen (z.B. Lupien et al.,

Interaktionen von Prolaktin und Glucocorticoiden machen, so dass diese Frage auch Gegenstand der hier gemachten Untersuchungen sein wird.

2.6.3. Interaktionen zwischen Cortisol und GH

Klaus et al. (2000) bestätigten dies. So habe Cortisol in Bezug auf das Wachstum eine ändernde Wirkung auf die somatotrope Achse an sich, als auch direkten, lokalen Einfluss auf die Chondrozyten der Wachstumsplatte. In hohen Dosen reduzieren Glucocorticoide die Expression von GH- und IGF-1-Rezeptoren, jedoch sei der stärkste wachstumsinhibierende Effekt durch die Reduzierung der basalen und hormonstimulierten IGF-1-Sekretion zu erklären.

Jedoch haben Glucocorticoide offensichtlich einen dualen Effekt auf die GH-Sekretion. Während eine langdauernde Applikation zu einer chronischen Mindersekretion führt, resultiert eine akute systemische Cortisol-Gabe offensichtlich in einem Anstieg der GH-Ausschüttung (Bertoldo et al., 2005).

AUC (Area under the Curve) unter Cortisol-Applikation im Vergleich zum Placebodurchgang deutlich an.

Prolong et al. (1991) beschreiben einen mindernden Effekt von Glucocorticoiden auf die GH-Ausschüttung zur Tageszeit, jedoch eine verzögerte und geringere Einwirkung auf die nächtliche Sekretion, also eine tageszeitabhängige Wirkung der Steroide auf das Wachstumshormon.

Nach Arvat et al. (1997) besitzen zumindest GHRP eine ACTH-freisetzende Wirkung und fördern somit die Ausschüttung von Cortisol. Somit entsteht durch das (synthetische) GHRP Hexarelin eine messbare Erhöhung des Plasmacortisolspiegels.
2.7. Gegenstand der Arbeit

Da dopaminerge Challengetests vielfach in der psychiatrischen und zum Teil internistischen Diagnostik verwendet werden, stellt sich häufig die Frage nach dem besten Indikator für die dopaminerge Funktion.

Der dopaminerge Agonist Bromocriptin wirkt sich auf das hormonelle System des menschlichen Organismus in bestimmter Weise aus. Diese Effekte, insbesondere auf die hormonellen Systeme von Prolaktin, Wachstumshormon und Cortisol, wurden im Theorieteil schon eingehend beschrieben.

Gegenstand der Arbeit ist nun die Frage, ob die ausgelösten Hormonreaktionen als gleichwertige Indikatoren der Funktionstüchtigkeit des dopaminergen Systems angesehen werden können. Dazu stellt sich zunächst die Frage, ob die genannten Hormonantworten durch die Bromocriptin-Applikation überhaupt induziert werden, und ob diese Veränderungen der Hormonspiegel bei denselben Individuen gleichsinnig und gleich stark sind.

Desweiteren stellen sich die Fragen, ob vermeintliche Korrelationen der untersuchten Hormonsysteme unter Placebo sich unter dopaminerger Beeinflussung verändern, und ob diese zeitlich parallel verlaufen, ob durch die angewandte Dosis von 1,25mg Bromocriptin Nebenwirkungen ausgelöst werden, und falls dies so ist, ob Korrelationen zu den Hormonreaktionen bestehen.

Fragestellungen:
1. Entstehen Veränderungen der hormonellen Serumspiegel unter dopaminriger Stimulation, die unter Placebo nicht vorhanden waren?
2. Korrelieren die einzelnen Hormonreaktionen unter Placebo miteinander? Ändern sich die Zusammenhangsverhältnisse unter der dopaminergen Stimulation?
3. Werden vegetative Nebenwirkungen erkennbar, die durch die dopaminerge Stimulation erkläbar sind?
4. Sind Korrelationen erkennbar zwischen den vegetativen Nebenwirkungen und den einzelnen Hormonreaktionen unter Placebo und unter dopaminriger Stimulation mit Bromocriptin?
3. Methodik

3.1. Versuchspersonencharakteristik

Für diese Studie, die im Fachbereich Psychologie von Oktober 2000 bis Juli 2001 stattfand, wurden 36 männliche, gesunde Versuchspersonen gewählt, die zwischen 18 und 38 Jahren sein sollten. Es wurde eine Festlegung bezüglich des Körpergewicht bezogen auf die Körpergröße getroffen, um durch diesbezüglich zu große Unterschiede keine Probleme mit zu breiten Schwankungen der medikamentösen Wirkung im Körper zu erhalten. Der Broca-Index (Körpergewicht in kg/ Körpergröße in cm - 100) erlaubte daher ein normales Körpergewicht mit einer Schwankungsbreite von +/- 20 %. Unter diesen Voraussetzungen lag das Körpergewicht der Versuchspersonen zwischen 61 und 98,5 kg (M=76,7; s=8,8).

Um einen Einfluss auf die zu ermittelnden Hormone zu verhindern bzw. um Gefahren eines Versuchsabbruchs zu vermeiden, wurden vor der Auswahl der Probanden folgende Ausschlusskriterien festgelegt:

- aktuelle Cortisonbehandlungen, z.B. im Rahmen einer atopischen Diathese oder Autoimmunerkrankungen, floride Allergien wie allergische Rhinitis, Neurodermitis, allergisches Asthma
- aktuelle Grippeerkrankungen, Erkältung
- Herz-Kreislauf-Erkrankungen, Hypertonie jeglicher Genese
- chronische Kopfschmerzen, Migräne
- Leber-, Nieren- oder Harnwegserkrankungen
- Diabetes mellitus
- Schilddrüsendysfunktion
- Hormonelle Dysfunktionen jeglicher Art
- neurologische Erkrankungen, Epilepsie
- Einnahme von Psychopharmaka
- Frühere oder aktuelle Behandlung mit Psychotherapie, psychiatrische Grunderkrankungen
Da es sich wegen einer zusätzlichen in dieser Arbeit nicht berücksichtigten Fragestellung um eine Raucherdeprivationsstudie handelte, mussten die Probanden mindestens 13 Zigaretten täglich konsumieren. Die Rauchgewohnheiten wurden von den psychologischen Mitarbeitern per Fragebogen ermittelt.

Der Proband Nr. 15 (DABU) wurde nach der Auswertung wegen Verwechslung der Präparatapplikation aus der Auswertung ausgeschlossen.

Das Anwerben der Probanden gelang über Plakate, Flyer, und über das regionale Magazin „Express“. Den Versuchspersonen wurden 400 DM bezahlt und die zusätzliche Möglichkeit angeboten, im Verlauf des Versuchs bis zu 100 DM im Rahmen psychologischer Tests zu gewinnen.

3.2. Vortermine

gemessen zur Bestimmung des Broca-Index. Blutdruck- und Pulsmessung wurden vom medizinischen Versuchsleiter durchgeführt, wobei nur systolische Drücke bis 140, diastolische bis 90 mmHg und Pulse bis 100/min akzeptiert wurden. Die Probanden mussten sich einverstanden erklären mit der Durchführung von 11 Blutentnahmen mit insgesamt 110ml Blutvolumen pro Versuchstag.

Eine Milchunverträglichkeit führte wegen der Einnahme der Medikamente mit Milch zum Ausschluss.

3.3. Pharmakologische Substanzen

Zum eigentlichen Ziel der Studie gehörte die Überprüfung der hormonellen Ansprechbarkeit auf bestimmte Botenstoff-Systeme, nämlich die von Serotonin, Noradrenalin und natürlich Dopamin. Daher wurde neben Bromocriptin (Handelsname Bromocriptin ratiopharm 2.5R) der selektive Serotonin-Reuptake-Hemmer Citalopram (Cipramil R) und der selektive Noradrenalin-Reuptake-Hemmer Reboxetin (Edronax R) eingesetzt.

Da es für Reboxetin schon eine optimale Dosisbestimmung gab, wurden lediglich für Bromocriptin und Citalopram Vorversuche durchgeführt, um eine ausreichende Hormonantwort mit möglichst geringen Nebenwirkungen zu erlangen. Dabei traten bei einer einmaligen Dosis von 2,5 mg Bromocriptin Fälle von Übelkeit/ Erbrechen auf, v.a. in Zusammenhang mit Nikotinkonsum, die bei 1,25 mg ausblieben. Aufgrund dieser Tatsache wurde die niedrigere Dosierung gewählt.

Eine genauere Erläuterung von Bromocriptin wurde bereits im Rahmen der Beschreibung des dopaminergen Systems (Kap. 2.2.5.) gegeben; Citalopram und Reboxetin sind nicht Gegenstand dieser Arbeit; deswegen wird an dieser Stelle auf deren Beschreibung verzichtet.
3.4. Versuchsplan

Jeder Proband erhielt in der Regel einen festen Wochentag, an dem er in 4 aufeinander folgenden Wochen erscheinen musste. An jedem Tag wurden parallel (wg. der zeitlichen Betreuung um 15min. verschoben) 2 Personen untersucht.

3.5. Erhebung der Hormonwerte

3.5.1. Gewinnung des Serums

Anhand eines festen Zeitmusters wurde festgelegt, zu welchen Zeitpunkten die Blutentnahmen stattfinden sollten (s.u.). Nachdem gegen 12.26 Uhr die Braunüle gelegt wurde, schloss sich daran die erste Blutentnahme (BE) mit der Bezeichnung „B0“ an. Um 14.30 erfolgte die nächste BE („B1“), woraufhin in halbstündigen Abständen die jeweils nächste BE folgte („B2“, „B3“ usw.). Um 19 Uhr wurde mit „B10“ die letzte BE durchgeführt und die Braunüle entfernt.

Um Messfehler wegen Verdünnung durch die Kochsalzlösung weitgehend zu vermeiden, wurden bei jeder BE 8ml vorgezogen und verworfen. Daraufhin wurde das zu verwertende Blut entnommen, und zwar 7,5 ml in eine Sarstedt Serum-Monovette (Best.-Nr. 01.1602). Um wiederum eine Verstopfung des Systems zu vermeiden, wurden 4ml Kochsalzlösung nachinjiziert.

Das erhaltene Blut blieb ca. 15 min. bei Zimmertemperatur stehen, bis es zentrifugiert wurde. Dies geschah 10 min lang bei 6000 U/min in einer Beckman-Zentrifuge (Modell TJ-6R). Danach wurde das überstehende Serum abgezogen, davon einmal 600µl sowie 2x 300µl in 3 verschiedene Eppendorf-Cups pipettiert und direkt im Anschluss bei –20 C° tiefgefroren.

3.5.2. Konzentrationsbestimmung von Cortisol

3.5.3. Konzentrationsbestimmung von Prolaktin

3.5.4. Konzentrationsbestimmung von GH

Zur GH-Konzentrationsbestimmung wurde ebenfalls die monoklonalen, auf Antikörper basierenden Enzymimmunoassay- Kits der DRG (DRG-Instruments GmbH Germany) genutzt.

3.6. Versuchsdurchführung

Die Versuchsräume waren ausgestattet mit je einem gepolsterten Untersuchungsstuhl mit aufrechter, leicht nach hinten geneigter Lehne (standardisiert). Die i.v.-Zugänge wurden je nach Händigkeit des Probanden an den nicht dominanten Arm positioniert. Über einen Dreiwegehahn konnte Blut entnommen und durch eine 0.9%-ige NaCl-Infusion das System freigehalten werden (s.o.).

Vor dem sitzenden Probanden befand sich in jedem Raum ein rollbarer Tisch, der aus Standardisierungsgründen möglichst im Abstand von 63cm positioniert war und auf dem ein Monitor und die Tastatur mit Maus platziert waren.

Das Beleuchtungssystem, welches ebenfalls standardisiert war, bestand aus Neonröhren, welche je nach Sitzausrichtung des Probanden so eingestellt wurden, dass dieser nicht geblendet wurde. Die Fenster waren abgedunkelt, so dass Licht- oder sonstige äußere Einflüsse unterbunden werden konnten.

Raum und Position der einzelnen Probanden wurden über die Versuchstage beibehalten.

Die Versuchsleiter verfügten über Protokollbögen, in welche sie u.a. Händigkeit, Blutdruck, Puls, Infusionsmenge der Kochsalzlösung und sämtliche, vom standardisierten Ablauf abwei-
chenden Vorkommnisse (Art, Zeitpunkt usw.) einzutragen hatten. Dies sollte ermöglichen, eventuelle unerklärliche Hormonabweichungen ggf. nachvollziehen zu können.

Wie oben bereits erwähnt, wurde ein standardisierter Zeitabstand von 1 Woche zwischen den Versuchstagen des einzelnen Probanden eingehalten, um einen vollständigen Abbau der vorher gegebenen Substanz gewährleisten zu können.

Die Probanden nahmen an jedem Versuchstag um 12 Uhr 40 (siehe Tab. 0) ein Standardessen ein, welches über einen Kaloriengehalt von etwa 700 verfügte.

Jeder der 4 Versuchstermine eines Probanden verlief identisch, abgesehen von einigen Fragebögen, die den psychologischen Teil der Studie betrafen.

Die unten dargestellte Tabelle soll den genauen Ablauf eines Versuchstages widerspiegeln. Sie beinhaltet ebenfalls die dem psychologischen Teil zuzuordnenden Zeitpunkte der Fragebögen, um auch hier eventuelle Einflüsse auf das hormonelle Geschehen in Betracht ziehen zu können.
Tabelle 0: Untersuchungsablauf

<table>
<thead>
<tr>
<th>Zeit</th>
<th>MKSL</th>
<th>Blut</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.15</td>
<td>Ankunft des Probanden</td>
<td></td>
</tr>
<tr>
<td>12.20</td>
<td>Vorversuch Reaktion</td>
<td></td>
</tr>
<tr>
<td>12.26</td>
<td>Auswahl d. Essens</td>
<td></td>
</tr>
<tr>
<td>12.40</td>
<td>Wecker stellen</td>
<td></td>
</tr>
<tr>
<td>12.40</td>
<td>Mittagessen, 200 ml Wasser</td>
<td></td>
</tr>
<tr>
<td>12.50</td>
<td>Rauchen, anchl. FB</td>
<td></td>
</tr>
<tr>
<td>13.05</td>
<td>Elektroden (EKG, EMG) kleben</td>
<td></td>
</tr>
<tr>
<td>(13.20)</td>
<td>anchl. habituelle FB</td>
<td></td>
</tr>
</tbody>
</table>

14.23	Toilettengang	5 Minuten
14.30	FB (x)	B1 Geld o. Zigarette Wahlentscheidung
15.00	Medikament/Placebo, FB	200 ml Milch (Baseline)

15.30	B2	
16.00	FB (x)	B4
16.30	B5	
17.00	100 ml Wasser	B6
17.30	FB (x)	B7 Wahlentscheidung

18.00	FB	B8
18.30	B9	
19.00	FB	x B10

(MKSL = mehrdimensionale körperliche Symptomenliste)
(FB = psychologischer Fragebogen)

Nach dem Punktieren der Vene und Legen des Verweilkatheters wurde die erste Blutentnahme (B0) durchgeführt. Falls es im Rahmen dieser Aktion zu einer vagal induzierten hypotonen Krise kam, wurde der Versuch abgebrochen und der Proband zu einem anderen Termin wieder einbestellt. Es waren maximal 2 Stechversuche erlaubt, gelang die Venenpunktion dennoch nicht, kam es ebenfalls zum Versuchsabbruch. Das Legen des Verweilkatheters sowie die Einnahme der Mahlzeit wurden absichtlich auf diesen frühen Zeitpunkt gelegt, um speziell die Cortisolantwort auf die Venenpunktion, Stress und die Essenseinnahme abzugrenzen von den durch die Medikamente provozierten Hormonantworten.

Postprandial rauchten die Probanden im angrenzenden Treppenhaus eine Zigarette mit gleichem Wert an Kondensat und Nikotin (0,9 und 12mg), um einen evtl. unterschiedlichen Effekt auf die Ansprechbarkeit der Transmittersysteme zu vermeiden. Die Probanden durften natürlich während der Untersuchungszeit nicht schlafen, um diesbezügliche Einflüsse auf die Botenstoff-Systeme auszuschließen.

Um etwa kurz vor 14.30 Uhr nahmen die Probanden platz, die zweite Blutentnahme wurde durchgeführt und die Infusion angeschlossen. Um 15 Uhr wurde die jeweilige Substanz in Form einer Kapsel appliziert. Der weitere Ablauf kann der oben dargestellten Tabelle 0 entnommen werden. Die 10. und letzte BE wurde um 19 Uhr durchgeführt. Zum Abschluss wurden erneut Blutdruck und Puls gemessen. Dem Probanden wurde ein Snack angeboten und er wurde entlassen.

3.7. Responsivitätsmaß

Zum einen wegen interindividuell unterschiedlicher Basalwerte der Hormone, zum weiteren wegen zirkadianer Rhythmik einiger beteiligter Hormonsysteme (siehe theoretischer Teil), wurde im Vorfeld der Untersuchung als Baseline-Wert der Blutwert zum Zeitpunkt der

3.8. Mehrdimensionale körperliche Symptomenliste (MKSL)

3.9. Statistische Auswertung

1. Um die Wirksamkeit der Bromocriptingabe im Vergleich zu Placebo auf die drei Hormone Prolaktin, Wachstumshormon und Cortisol zu testen, wurde eine Varianzanalyse mit dem 1. Messwiederholungsfaktor Substanz (Bromocriptin/Placebo) und den 10 Messzeitpunkten als 2. Messwiederholungsfaktor gerechnet.

3. Um den Zusammenhang zwischen den Hormonreaktionswerten zu prüfen, und zugleich um festzustellen, ob sich dieser Zusammenhang auch in unstimuliertem Zustand findet, wurden die oben beschriebenen Responsewerte der drei Hormone unter Bromocriptin und unter Placebo jeweils paarweise miteinander korreliert. Ebenso wurden noch einmal die Placebobereinigten Bromocriptin-Responsewerte korreliert, um zu testen, ob überhaupt durch die Stimulation gleichsinnige Hormonantworten postuliert werden können.

4. Die als Nebenwirkung von Bromocriptin in Frage kommenden körperlichen Symptome wurden zunächst zu 5 Symptomen kombiniert (Herzklopfen, Wärmegefühl, Kältegefühl, Mundtrockenheit, Übelkeit/Magenverstimmung), wobei Magen-Darm-Symptome, Kälte- und Wärmegefühl jeweils aus zwei Einzelsymptomen zusammengesetzt waren. Da sich hierbei sehr linksschiefe Häufigkeitsverteilungen ergaben, wurden diese 5 Merkmale dichotomisiert als nicht vorhanden (=0) und leicht bis stark ausgeprägt (1-4). Lediglich bei dem Symptom Wärmegefühl wurde nicht und leicht (0 bis 1) zusammengefasst, um eine ausgeglichenerere Häufigkeitsverteilung zu gewinnen.

Im Rahmen der Dichotomisierung der Hormonantworten wurden folgende cut-off-points für die Festlegung der Mediane gewählt, welche unter der jeweiligen Bedingung aussagen, ab
welcher Konzentration des gemessenen Hormons die Einteilung in low-response bzw. high-
response erfolgte. (vergl. Tab. 1).

Tab. 1: „Cut-Off-Points“ im Rahmen der Dichotomisierung der Hormonsummenmaße

<table>
<thead>
<tr>
<th>Placebo</th>
<th>Bromocriptin</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Median Cort-Plac (((t3 \text{ bis } t10) : t8) - t2)'</td>
<td>'Median Cort-Bromo (((t3 \text{ bis } t10) : t8) - t2)'</td>
</tr>
<tr>
<td>1 'low <= -3,62' 2 'high > -3,62'</td>
<td>1 'hi >= -4,95' 2 'lo < -4,95'</td>
</tr>
<tr>
<td>'Median GH-Plac (((t3 \text{ bis } t10) : t8) - t2)'</td>
<td>'Median GH-Bromo (((t3 \text{ bis } t10) : t8) - t2)'</td>
</tr>
<tr>
<td>1 'low <= 0,59' 2 'high > 0,59'</td>
<td>1 'hi >= 1,09' 2 'lo < 1,09'</td>
</tr>
<tr>
<td>'Median PRL-Plac (((t3 \text{ bis } t10) : t8) - t2)'</td>
<td>'Median PRL-Bromo (((t3 \text{ bis } t10) : t8) - t2)'</td>
</tr>
<tr>
<td>1 'low < 0,14' 2 'high >= 0,14'</td>
<td>1 'low >= -1,48' 2 'high < -1,48'</td>
</tr>
</tbody>
</table>

\(t = \text{Meßzeitpunkt} \)
4. Ergebnisse

4.1. Die Antwort der Hormone auf die Stimulation mit Bromocriptin

Als erstes soll nun geprüft werden, ob die applizierte Substanz überhaupt einen messbaren Unterschied des hormonellen Verlaufs über die gemessene Zeit bewirken konnte.

Der Verlauf jedes Hormons wird jeweils dargestellt über die Messzeitpunkte t 1-10 (-30 min., 0, +30 min., +60 min…+240 min), auf der X-Achse abgetragen. Die Baseline wurde, wie im Teil der Methodik bereits erwähnt, als Messzeitpunkt t2 (0 min, d.h. bei Medikamenten-applikation, roter Pfeil) festgelegt.

Auf der Y-Achse jeweils ablesbar ist der Konzentrationswert eines jeden Hormons, in ng/ml (vgl. Abb. 3 für Prolaktin).
4.1.1. Prolaktin (PRL)

Im Folgenden (Abb.3) werden die Hormonantworten auf Placebo/ Verum von PRL im Vergleich dargestellt, während die entsprechenden Ergebnisse der Varianzanalyse in Tabelle 2 aufgeführt sind.

Abb.3: Mittelwerte der Prolaktinkonzentrationen unter der Placebo- und Bromocriptinbedingung

Tab. 2: Ergebnisse der Varianzanalyse der Bromocriptin- vs. Placeboeffekte für die Prolaktinkonzentration

<table>
<thead>
<tr>
<th>Einflußgrößen</th>
<th>F</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substanz</td>
<td>54,517</td>
<td>1/ 33</td>
<td>< 0,001</td>
</tr>
<tr>
<td>Zeit</td>
<td>42,735</td>
<td>9/ 297</td>
<td>< 0,001</td>
</tr>
<tr>
<td>Substanz x Zeit</td>
<td>43,139</td>
<td>9/ 297</td>
<td>< 0,001</td>
</tr>
</tbody>
</table>
Somit bewirkt Bromocriptin eine hochsignifikante Absenkung der gemessenen Prolaktinproduktion im Vergleich zum Prolaktinniveau unter Placebo ($F=54,517; p<0,001$), was ebenfalls durch den t-Test für den Vergleich zwischen den beiden Baseline-bereinigten Responsewerten bestätigt wurde ($t=-8,024, p<0,001$) (Bromocriptin $M = -1,44 \pm 0,168$; Placebo $M = 0,282 \pm 0,135$). Ebenfalls hochsignifikant stellt sich die Wechselwirkung zwischen Substanz und Zeitfaktor dar; der Verlauf der Hormonkurve unter der Placebobedingung unterscheidet sich deutlich von dem unter der Verumbedingung.

4.1.2. Wachstumshormon (GH)

Es folgt die Darstellung der Hormonantwort des GH in Analogie zu den Ergebnissen zu PRL (Abb.4: Placebo- und Bromocriptinwerte und Tab.3 mit den zugehörigen Werten der Varianzanalyse)

Abb.4: Mittelwerte der GH-Konzentrationen unter Placebo- und Bromocriptinbedingung
Tab. 3: Ergebnisse der Varianzanalyse von Bromocriptin vs. Placebo für die GH-Konzentration

<table>
<thead>
<tr>
<th>Einflußgröße</th>
<th>F</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substanz</td>
<td>2,105</td>
<td>1/ 33</td>
<td>0,156</td>
</tr>
<tr>
<td>Zeit</td>
<td>7,192</td>
<td>9/ 297</td>
<td>< 0,001</td>
</tr>
<tr>
<td>Substanz x Zeit</td>
<td>0,76</td>
<td>9/ 297</td>
<td>0,703</td>
</tr>
</tbody>
</table>

Der in der Abbildung sichtbare Niveauunterschied nach Bromocriptinapplikation im Vergleich zu der Placebobedingung ergab insgesamt keine generellen signifikanten Unterschiede in der Messung der GH-Antwort (F=2,105; p=0,156) in der Varianzanalyse, und ein ähnliches Ergebnis für den Responsewert im t-Test (M Bromocriptin = 3,24 ± 0,693; M Placebo = 2,33 ± 0,769; t = 1,387; p = 0,175). Der Zeitfaktor erbrachte wiederum einen hochsignifikanten Einfluss auf den Verlauf der Hormonantwort von GH (F=7,192; p<0,001). Dieser kommt durch den starken Anstieg zwischen 16.30 Uhr und 18.00 Uhr zustande. Allerdings dokumentiert sich der frühere Gipfel unter Placebo nicht in einer signifikanten Wechselwirkung (F = 0,76; p = 0,73). Auf diesen ungewöhnlichen Verlauf auch unter Placebo (ab 16.00 Uhr) wird in der Diskussion näher eingegangen.
4.1.3. Cortisol

Die Verlaufskurven von Cortisol unter Placebo und Bromocriptin gibt Abb. 5 und die Ergebnisse der entsprechenden Varianzanalyse Tab. 4 wieder.

Abb.5: Mittelwerte der Cortisolkonzentrationen unter der Placebo- und der Bromocriptinbedingung
Tab. 4: Ergebnisse der Varianzanalyse von Bromocriptin vs. Placebo für die Cortisol-Konzentration

<table>
<thead>
<tr>
<th>Einflussgröße</th>
<th>F</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substanz</td>
<td>2,631</td>
<td>1/ 32</td>
<td>0,115</td>
</tr>
<tr>
<td>Zeit</td>
<td>15,445</td>
<td>9/ 288</td>
<td>< 0,001</td>
</tr>
<tr>
<td>Substanz x Zeit</td>
<td>0,375</td>
<td>9/ 288</td>
<td>0,946</td>
</tr>
</tbody>
</table>

Sowohl in der Varianzanalyse als auch im t-Test zwischen den summierten Responsemaßen ergab die Bromocriptin-Applikation keine signifikanten Effekte (F=2,631; p=0,115; t = 0,144, p = 0,88; M Bromocriptin = -7,42 ± 3,589; M Placebo = -8,12 ± 4,216), wogegen der Zeitfaktor offenbar einen hoch signifikanten Einfluss auf den Hormonverlauf hat (F=15,445; p<0,001). Auch hier ergibt sich ein ungewöhnlicher Anstieg des Hormons unter den beiden Bedingungen (diesmal ab 16.30 Uhr), der zu diskutieren ist.

4.2. Zusammenhang zwischen den 3 Hormonsystemen unter der Placebobedingung

Die folgende Tabelle 5 gibt die Korrelationen der 3 Hormonresponsemaße unter der Placebobedingung wieder.

Tab.5: Die Korrelationen der Hormonresponsemaße unter Placebo

<table>
<thead>
<tr>
<th>Korrelationen</th>
<th>GH_GP2 GH Plac ((Summe t3 bis t10):8)-t2</th>
<th>COR_CP2 Cort Plac ((Summe t3 bis t10):8)-t2</th>
<th>PRL_PP2 PRL Plac ((Summe t3 bis t10):8)-t2</th>
</tr>
</thead>
<tbody>
<tr>
<td>GH_GP2 GH Plac ((Summe t3 bis t10):8)-t2</td>
<td>Korrelation nach Pearson</td>
<td>Signifikanz (2-seitig)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>,</td>
<td>,</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>COR_CP2 Cort Plac ((Summe t3 bis t10):8)-t2</td>
<td>Korrelation nach Pearson</td>
<td>Signifikanz (2-seitig)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.008</td>
<td>.964</td>
<td>.797</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>PRL_PP2 PRL Plac ((Summe t3 bis t10):8)-t2</td>
<td>Korrelation nach Pearson</td>
<td>Signifikanz (2-seitig)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.045</td>
<td>.258</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
</tbody>
</table>
Wie der Tabelle 5 zu entnehmen ist, sind unter der Placebobedingung zwischen den 3 Hormonresponsemaßen keine signifikanten Zusammenhänge erkennbar.

4.3. Zusammenhang zwischen den 3 Hormonsystemen unter der Bromocriptinbedingung

Die folgende Tabelle 6 gibt die Korrelationen der Hormonresponsemaße unter der Verumbedingung wieder:

<table>
<thead>
<tr>
<th>Korrelationen</th>
<th>GH_GB2 GH Bromo ((Summe t3 bis t10):8)-t2</th>
<th>CORT_CB2 Cort Bromo ((Summe t3 bis t10):8)-t2</th>
<th>PRL_PB2 PRL Bromo ((Summe t3 bis t10):8)-t2</th>
</tr>
</thead>
<tbody>
<tr>
<td>GH_GB2 GH Bromo ((Summe t3 bis t10):8)-t2</td>
<td>1</td>
<td>-.522**</td>
<td>-.405*</td>
</tr>
<tr>
<td>Korrelation nach Pearson</td>
<td></td>
<td>Signifikanz (2-seitig)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>35</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>CORT_CB2 Cort Bromo ((Summe t3 bis t10):8)-t2</td>
<td>-.522**</td>
<td>1</td>
<td>.356*</td>
</tr>
<tr>
<td>Korrelation nach Pearson</td>
<td></td>
<td>Signifikanz (2-seitig)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>.002</td>
<td>.002</td>
<td>.039</td>
</tr>
<tr>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>PRL_PB2 PRL Bromo ((Summe t3 bis t10):8)-t2</td>
<td>-.405*</td>
<td>.356*</td>
<td>1</td>
</tr>
<tr>
<td>Korrelation nach Pearson</td>
<td></td>
<td>Signifikanz (2-seitig)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>.016</td>
<td>.039</td>
<td>.039</td>
</tr>
<tr>
<td>35</td>
<td>34</td>
<td>34</td>
<td>34</td>
</tr>
</tbody>
</table>

**. Die Korrelation ist auf dem Niveau von 0,01 (2-seitig) signifikant.
*. Die Korrelation ist auf dem Niveau von 0,05 (2-seitig) signifikant.

Eine hoch signifikant negative Korrelation ergibt sich trotz nicht signifikanter Cortisolananstiege zwischen GH und Cortisol (Korrelation nach Pearson $\rho = -0,522$; $p=0,002$).

Dies besagt, dass Personen, die insgesamt auf Bromocriptin einen starken GH-Anstieg aufweisen, eher schwach mit Cortisol reagieren.

Das GH-System korreliert auch signifikant negativ mit der Prolaktinantwort (Korrelation nach Pearson $\rho = -0,405$; $p=0,016$), d.h. offenbar ist trotz der insgesamt schwächeren GH-Reaktion diese bei denselben Personen ausgeprägt, die auch eine stärkere PRL-Absenkung zeigen.

Eine positive Korrelation besteht zwischen Cortisol und Prolaktin (Korrelation nach Pearson $\rho = 0,356$, $p=0,039$).
Insgesamt bestehen unter dopaminerger Stimulation offensichtlich Zusammenhänge, die unter Normalbedingungen nicht vorhanden sind, was weiterer Bestand des Diskussionsteils sein wird.

4.4. Prüfung körperlicher Nebenwirkungen der dopaminergen Stimulation im Vergleich mit Spontansymptomen unter Placebo

Zur Klärung der Frage, ob die niedrige Dosis von Bromocriptin von 1,25mg immer noch zu typischen, messbaren Nebenwirkungen der dopaminergen Substanz führt, wurden folgende 5 relevanten Symptomenbereiche gewählt, die mittels der mehrdimensionalen körperlichen Symptomenliste (MKSL) erfragt wurden: Herzklopfen (bestehend aus 1 Item), Wärme (zusammengesetzt aus Hitzgefühl und heiße Wangen)-/ Kältegefühl (Items kalte Finger-/ Zehenspitzen und Frieren), Mundtrockenheit (1 Item), Missemempfindungen Magen/ Übelkeit (Items körperliches Unwohlsein und Übelkeit). Die potenziellen Effekte auf das Brechzentrum wurden durch die Kombination der Items Übelkeit und Magenbeschwerden erfasst und die anticholinerge Wirkung durch das Item Mundtrockenheit.

Die subjektiven Symptome am Ende der Untersuchung (Messzeitpunkt t10, 19.00 Uhr) wurden unter Bromocriptin und Placebo verglichen, um zu testen, ob die Symptome als Nebenwirkungen der Substanz anzusehen sind oder in gleicher Häufigkeit bzw. sogar bei denselben Probanden unter Placebo als persönlichkeitspezifisches Merkmal allgemeiner Klagsamkeit auftreten. Daher werden im Folgenden zu jeder einzelnen Nebenwirkung zuerst die Häufigkeitsverteilungen unter Bromocriptin denen unter Placebo zur Übersicht gegenübergestellt, wobei als Basis für den Vergleich der MKSL-Symptome die dichotomierte Version der Symptome verwendet wurde. Die Originalhäufigkeiten sind dazu abgebildet, um nebeneinander Bromocriptin und Placebo rein deskriptiv aufzulisten und zu zeigen, wo dichotomiert wurde.
4.4.1. Häufigkeiten der Nebenwirkungssymptome unter der Bromocriptinbedingung im Vergleich zu denen unter der Placebobedingung

Tab.6-20 geben die Häufigkeitsverteilungen der Ausprägungen der einzelnen Symptome im Vergleich zwischen der Placebo- zu der Bromocriptinbedingung wieder

Da Bromocriptin als Dopaminagonist potenziell stimulierend auf das Herz wirken kann, sowohl was die Herzfrequenz, die Kontraktion des Myokards als auch die Überleitungs geschwindigkeit betrifft (siehe auch Kapitel 5.4.), wurde dieses Symptom zur Überprüfung von möglichen Nebenwirkungen der Substanz gewählt.

Tab.6 und 7: Herzklopfen unter Placebo und Bromocriptin im Vergleich der Ausprägungen der Grundhäufigkeiten; Tab. 8: Zusammenhang des dichotomierten Symptoms Herzklopfen unter Bromocriptin und Placebo

Tab. 6 : Herzklopfen unter Placebo

<table>
<thead>
<tr>
<th>Gültig</th>
<th>Häufigkeit</th>
<th>Prozent</th>
<th>Gültige Prozente</th>
<th>Kumulierte Prozente</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 gar nicht</td>
<td>26</td>
<td>74,3</td>
<td>74,3</td>
<td>74,3</td>
</tr>
<tr>
<td>1 sehr schwach</td>
<td>4</td>
<td>11,4</td>
<td>11,4</td>
<td>85,7</td>
</tr>
<tr>
<td>2 schwach</td>
<td>2</td>
<td>5,7</td>
<td>5,7</td>
<td>91,4</td>
</tr>
<tr>
<td>3 etwas</td>
<td>1</td>
<td>2,9</td>
<td>2,9</td>
<td>94,3</td>
</tr>
<tr>
<td>4 ziemlich</td>
<td>2</td>
<td>5,7</td>
<td>5,7</td>
<td>100,0</td>
</tr>
<tr>
<td>Gesamt</td>
<td>35</td>
<td>100,0</td>
<td>100,0</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 7: Herzklopfen unter Bromocriptin

<table>
<thead>
<tr>
<th>Gültig</th>
<th>Häufigkeit</th>
<th>Prozent</th>
<th>Gültige Prozente</th>
<th>Kumulierte Prozente</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 gar nicht</td>
<td>28</td>
<td>80,0</td>
<td>80,0</td>
<td>80,0</td>
</tr>
<tr>
<td>1 sehr schwach</td>
<td>2</td>
<td>5,7</td>
<td>5,7</td>
<td>85,7</td>
</tr>
<tr>
<td>2 schwach</td>
<td>2</td>
<td>5,7</td>
<td>5,7</td>
<td>91,4</td>
</tr>
<tr>
<td>3 etwas</td>
<td>2</td>
<td>5,7</td>
<td>5,7</td>
<td>97,1</td>
</tr>
<tr>
<td>4 ziemlich</td>
<td>1</td>
<td>2,9</td>
<td>2,9</td>
<td>100,0</td>
</tr>
<tr>
<td>Gesamt</td>
<td>35</td>
<td>100,0</td>
<td>100,0</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 8: Zusammenhang von Herzklopfen unter Placebo und Bromocriptin
(Frequenzen der dichotomierten Symptome)

<table>
<thead>
<tr>
<th>Herzklopfen Bromocriptin</th>
<th>Herzklopfen Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>nein</td>
<td>25</td>
</tr>
<tr>
<td>ja</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gesamt</th>
<th>36</th>
</tr>
</thead>
</table>

\[\chi^2 \text{ n. Pearson} = 16,49; \ p=0,001 \]

Sowohl unter der Placebo- als auch unter der Bromocriptinbedingung sind die subjektiv wahrgenommenen Symptome Herzklopfen kaum vorhanden. Über 85% der Probanden beschrieben unter beiden Bedingungen gar keine bzw. sehr schwache Ausprägungen des Symptoms (Tab. 6 und 7). Dementsprechend äußerten 28 Probanden unter Bromocriptin gegenüber 26 unter der Placebobedingung kein Herzklopfen und es besteht mit einem \(\chi^2 \) von 16,49 offensichtlich der Anschein, dass es sich um dieselben Individuen handelt, die sich unter beiden Bedingungen zu der gleichen Antwort hinsichtlich der Symptomatik äußerten, mit \(p=0,001 \) ein hochsignifikanter Zusammenhang bzw. kein Bromocriptin -induzierter Effekt (Tab. 8).

Wegen der Prüfung der gleichen Organsysteme auf gegensätzliche Auswirkungen auf die Befindlichkeit der Personen werden im Folgenden die Symptome Wärme- und Kältegefühl zusammen beschrieben.

Durch die o.g. Effekte auf das vaskuläre System können in einigen Fällen durch Vasodilatation bzw. –konstriktion auch Wärme- oder Kältegefühle auftreten, die bei unseren Probanden aus je 2 Items zusammengestellt sind und daher etwas häufiger nachweisbar waren.
Tab. 9 und 10: Wärmegefühl unter Placebo und Bromocriptin im Vergleich der Ausprägungen der Grundhäufigkeiten; Tab. 11: dichotomierte Darstellung des Symptoms unter Bromocriptin und Placebo

Tab. 9: Wärmegefühl unter Bromocriptin

<table>
<thead>
<tr>
<th>Häufigkeit</th>
<th>Prozent</th>
<th>Gültige Prozent</th>
<th>Kumulierte Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gültig .00</td>
<td>9</td>
<td>25,7</td>
<td>25,7</td>
</tr>
<tr>
<td>.50</td>
<td>6</td>
<td>17,1</td>
<td>42,9</td>
</tr>
<tr>
<td>1,00</td>
<td>3</td>
<td>8,6</td>
<td>51,4</td>
</tr>
<tr>
<td>1,50</td>
<td>2</td>
<td>5,7</td>
<td>57,1</td>
</tr>
<tr>
<td>2,00</td>
<td>9</td>
<td>25,7</td>
<td>82,9</td>
</tr>
<tr>
<td>2,50</td>
<td>2</td>
<td>5,7</td>
<td>88,6</td>
</tr>
<tr>
<td>3,00</td>
<td>2</td>
<td>5,7</td>
<td>94,3</td>
</tr>
<tr>
<td>4,50</td>
<td>1</td>
<td>2,9</td>
<td>97,1</td>
</tr>
<tr>
<td>5,00</td>
<td>1</td>
<td>2,9</td>
<td>100,0</td>
</tr>
<tr>
<td>Gesamt</td>
<td>35</td>
<td>100,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Tab. 10: Wärmegefühl unter Placebo

<table>
<thead>
<tr>
<th>Häufigkeit</th>
<th>Prozent</th>
<th>Gültige Prozent</th>
<th>Kumulierte Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gültig .00</td>
<td>8</td>
<td>22,9</td>
<td>22,9</td>
</tr>
<tr>
<td>.50</td>
<td>3</td>
<td>8,6</td>
<td>31,4</td>
</tr>
<tr>
<td>1,00</td>
<td>6</td>
<td>17,1</td>
<td>48,6</td>
</tr>
<tr>
<td>1,50</td>
<td>5</td>
<td>14,3</td>
<td>62,9</td>
</tr>
<tr>
<td>2,00</td>
<td>8</td>
<td>22,9</td>
<td>85,7</td>
</tr>
<tr>
<td>2,50</td>
<td>2</td>
<td>5,7</td>
<td>91,4</td>
</tr>
<tr>
<td>3,00</td>
<td>1</td>
<td>2,9</td>
<td>94,3</td>
</tr>
<tr>
<td>5,50</td>
<td>2</td>
<td>5,7</td>
<td>100,0</td>
</tr>
<tr>
<td>Gesamt</td>
<td>35</td>
<td>100,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>
Tabelle 11: Zusammenhang von Wärmegefühl unter Placebo und Bromocriptin
(Frequenzen der dichotomierten Symptome)

<table>
<thead>
<tr>
<th>Wärmegefühl Bromocriptin</th>
<th>Wärmegefühl Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>nein</td>
<td>ja</td>
</tr>
<tr>
<td>nein</td>
<td>13</td>
</tr>
<tr>
<td>ja</td>
<td>4</td>
</tr>
<tr>
<td>Gesamt</td>
<td>17</td>
</tr>
</tbody>
</table>

χ^2 n. Pearson: 6,798; p = 0,009

Etwa die Hälfte der Probanden gab unter den beiden Bedingungen ein Wärmegefühl an. Zu erkennen sind die Schwerpunkte bei der Ausprägung 0 und 2,0 unter den beiden Bedingungen. Ebenfalls die kumulierten Prozente steigen fast parallel an, so dass unter Bromocriptin keine auffälligen Unterschiede zu der Placebobedingung auszumachen sind. Deswegen fällt auch bei der Gegenüberstellung des dichotomierten Symptoms Wärmegefühl unter den beiden Bedingungen der χ^2 Test signifikant aus (χ^2=6,798 p = 0,009), da 13 von 18 resp. 11 von 16 Probanden unter Verum und Placebo identische Angaben machten (Tab.11). D.h., die Substanz führt auch bei Wärmegefühl nicht zu einer Änderung der Symptomatik im Vergleich zu der Placebobedingung. Wiederum scheinen die gleichen Probanden dieselben Symptome zu verspüren.
Tab. 12 und 13: Kältegefühl unter Placebo und Bromocriptin im Vergleich der Ausprägungen der Grundhäufigkeiten; Tab. 14: Zusammenhang des dichotomierten Symptoms unter Bromocriptin und Placebo

<table>
<thead>
<tr>
<th>Häufigkeit</th>
<th>Prozent</th>
<th>Gültige Prozente</th>
<th>Kumulierte Prozente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gültig .00</td>
<td>18</td>
<td>51,4</td>
<td>51,4</td>
</tr>
<tr>
<td>.50</td>
<td>2</td>
<td>5,7</td>
<td>5,7</td>
</tr>
<tr>
<td>1,00</td>
<td>5</td>
<td>14,3</td>
<td>14,3</td>
</tr>
<tr>
<td>1,50</td>
<td>2</td>
<td>5,7</td>
<td>77,1</td>
</tr>
<tr>
<td>2,00</td>
<td>3</td>
<td>8,6</td>
<td>85,7</td>
</tr>
<tr>
<td>3,00</td>
<td>4</td>
<td>11,4</td>
<td>97,1</td>
</tr>
<tr>
<td>3,50</td>
<td>1</td>
<td>2,9</td>
<td>100,0</td>
</tr>
<tr>
<td>Gesamt</td>
<td>35</td>
<td>100,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Tab. 13: Kältegefühl unter Bromocriptin

<table>
<thead>
<tr>
<th>Häufigkeit</th>
<th>Prozent</th>
<th>Gültige Prozente</th>
<th>Kumulierte Prozente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gültig .00</td>
<td>17</td>
<td>48,6</td>
<td>48,6</td>
</tr>
<tr>
<td>.50</td>
<td>2</td>
<td>5,7</td>
<td>54,3</td>
</tr>
<tr>
<td>1,00</td>
<td>6</td>
<td>17,1</td>
<td>71,4</td>
</tr>
<tr>
<td>1,50</td>
<td>2</td>
<td>5,7</td>
<td>77,1</td>
</tr>
<tr>
<td>2,00</td>
<td>1</td>
<td>2,9</td>
<td>80,0</td>
</tr>
<tr>
<td>2,50</td>
<td>5</td>
<td>14,3</td>
<td>94,3</td>
</tr>
<tr>
<td>4,00</td>
<td>2</td>
<td>5,7</td>
<td>100,0</td>
</tr>
<tr>
<td>Gesamt</td>
<td>35</td>
<td>100,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Tabelle 14: Zusammenhang von Kältegefühl unter Placebo und Bromocriptin
(Frequenzen der dichotomierten Symptome)

<table>
<thead>
<tr>
<th>Kältegefühl Bromocriptin</th>
<th>Kältegefühl Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>nein</td>
<td>ja</td>
</tr>
<tr>
<td>nein</td>
<td>12</td>
</tr>
<tr>
<td>ja</td>
<td>6</td>
</tr>
<tr>
<td>Gesamt</td>
<td>18</td>
</tr>
</tbody>
</table>

nein	5	17
ja	12	18
Gesamt	18	35

χ² n. Pearson: 4,86; p = 0,028
Bei ca. 40-50% der Fälle wurde Kältegefühl beschrieben, Wärmegefühl noch häufiger. Ca. die Hälfte der Probanden gaben keine Kältegefühle unter beiden Bedingungen an. Die andere Hälfte verteilt sich ähnlich gleichmäßig mit leichten Schwerpunkten bei 1,0 und 2,5 auf der Skala der Symptomausprägungen. Auch hier finden sich im Vergleich beider Bedingungen kaum Unterschiede.

In der Tab. 14 ist erkennbar, dass die Anzahl der Angaben von Kältegefühl annähernd gleich häufig unter Bromocriptin und Placebo ist (18 resp. 17) und dass dies auch wieder überzufällig bei den gleichen Probanden der Fall ist, so dass ein signifikanter Zusammenhang mit einem \(\chi^2 \) von 4,86 p=0,028 resultiert.

Tab. 15 und 16: Mundtrockenheit unter Placebo und Bromocriptin im Vergleich der Ausprägungen der Grundhäufigkeiten; Tab. 17: Zusammenhang des dichotomierten Symptoms unter Bromocriptin und Placebo

<table>
<thead>
<tr>
<th>Tab. 15: Mundtrockenheit unter Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gültig</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>0 gar nicht</td>
</tr>
<tr>
<td>1 sehr schwach</td>
</tr>
<tr>
<td>2 schwach</td>
</tr>
<tr>
<td>3 etwas</td>
</tr>
<tr>
<td>4 ziemlich</td>
</tr>
<tr>
<td>Gesamt</td>
</tr>
</tbody>
</table>
Tabelle 17: Zusammenhang von Mundtrockenheit unter Placebo und Bromocriptin
(Frequenzen der dichotomierten Symptome)

<table>
<thead>
<tr>
<th>Mundtrockenheit</th>
<th>Bromocriptin</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nein</td>
<td>ja</td>
</tr>
<tr>
<td>nein</td>
<td>17</td>
<td>6</td>
</tr>
<tr>
<td>ja</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Gesamt</td>
<td>22</td>
<td>13</td>
</tr>
</tbody>
</table>

\(\chi^2 \) n. Pearson: 3,512 \(p = 0,012 \)

Eine starke Übereinstimmung der Symptomfrequenzen zwischen der Placebo- und der Bromocriptinbedingung wird auch hier deutlich.

Die Mundtrockenheit konnte nach der einmaligen Gabe von Bromocriptin bei den Versuchspersonen in ca. 35% der Fälle gefunden werden, also nur diskret häufiger als unter der Placebobedingung (Tab. 20 und 21). Dementsprechend stellt sich auch das dichotomierte Verteilungsmuster (Tab. 22) dar, in dem unter Verum gegenüber Placebo (12 resp. 13) wiederum annähernd die gleiche Häufigkeitsverteilung widerspiegelt wird. Auch hier ist der \(\chi^2 \)-Test mit \(p = 0,012 \) signifikant, d.h. wiederum sind es dieselben Personen, die vorwiegend unter Placebo und Verum die gleichen Angaben machen.

Durch die dopaminergen Effekte auf die Area postrema (siehe 2.2.4.) ist eine weitere bekannte Nebenwirkung der Substanz die Induktion von Übelkeit/ Erbrechen.
Tab. 18 und 19: Missempfindungen Magen/ Übelkeit unter Placebo und Bromocriptin im Vergleich der Ausprägungen der Grundhäufigkeiten; Tab. 20: Zusammenhang des dichotomierten Symptoms unter Bromocriptin und Placebo

<table>
<thead>
<tr>
<th>Tabelle 18: Übelkeit unter Bromocriptin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Häufigkeit</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Gültig ,00</td>
</tr>
<tr>
<td>,50</td>
</tr>
<tr>
<td>1,00</td>
</tr>
<tr>
<td>1,50</td>
</tr>
<tr>
<td>3,00</td>
</tr>
<tr>
<td>Gesamt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabelle 19: Übelkeit unter Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Häufigkeit</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Gültig ,00</td>
</tr>
<tr>
<td>,50</td>
</tr>
<tr>
<td>1,00</td>
</tr>
<tr>
<td>1,50</td>
</tr>
<tr>
<td>2,00</td>
</tr>
<tr>
<td>2,50</td>
</tr>
<tr>
<td>3,00</td>
</tr>
<tr>
<td>Gesamt</td>
</tr>
</tbody>
</table>

Tabelle 20: Zusammenhang von Missempfindungen des Magens/ Übelkeit unter Placebo und Bromocriptin
(Frequenzen der dichotomierten Symptome)

<table>
<thead>
<tr>
<th>Übelkeit/ Magen Bromocriptin</th>
<th>Übelkeit/ Magen Placebo nein</th>
<th>ja</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>nein</td>
<td>16</td>
<td>7</td>
<td>23</td>
</tr>
<tr>
<td>ja</td>
<td>3</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Gesamt</td>
<td>19</td>
<td>16</td>
<td>35</td>
</tr>
</tbody>
</table>

\(\chi^2\) n. Pearson: 6,311; \(p = 0,012\)
Auch das Auftreten von Missempfindungen des Magens bzw. Übelkeit wurde von den Probanden unter Placebo im Vergleich mit Bromocriptin ähnlich häufig beschrieben (16 unter Placebo resp. 12 unter Bromocriptin). Daher besteht auch hier ein signifikanter Zusammenhang zwischen beiden Bedingungen (p=0.012), was die Aussage zulässt, dass Bromocriptin nach einmaliger Applikation von 1,25mg zu keiner Zunahme der gastrointestinalen Beschwerden führt.

4.4.2. Überprüfung der Zusammenhänge zwischen den MKSL-Symptomen und den Hormonreaktionen

Tab. 21: Rangkorrelationen nach Spearman zwischen den quantitativen Hormonresponsemaßen auf Bromocriptin und auf Placebo mit den korrespondierenden dichotomierten Nebenwirkungssymptomen der MKSL (n=35)

<table>
<thead>
<tr>
<th>Hormonantwort</th>
<th>Bedingung</th>
<th>Mundtrockenheit</th>
<th>Herzklopfen</th>
<th>Missempfindung Magen/ Übelkeit</th>
<th>Kältegefühl</th>
<th>Wärmegefühl</th>
</tr>
</thead>
<tbody>
<tr>
<td>COR</td>
<td>Bromo.</td>
<td>-0,107</td>
<td>0,033</td>
<td>-0,056</td>
<td>0,033</td>
<td>0,183</td>
</tr>
<tr>
<td></td>
<td>Placebo</td>
<td>-0,304</td>
<td>-0,097</td>
<td>0,057</td>
<td>-0,238</td>
<td>0,280</td>
</tr>
<tr>
<td>GH</td>
<td>Bromo.</td>
<td>0,179</td>
<td>-0,255</td>
<td>-0,006</td>
<td>-0,028</td>
<td>-0,142</td>
</tr>
<tr>
<td></td>
<td>Placebo</td>
<td>-0,220</td>
<td>0,026</td>
<td>0,003</td>
<td>0,173</td>
<td>-0,411*</td>
</tr>
<tr>
<td>PRL</td>
<td>Bromo.</td>
<td>-0,072</td>
<td>0,191</td>
<td>0,054</td>
<td>0,096</td>
<td>0,023</td>
</tr>
<tr>
<td></td>
<td>Placebo</td>
<td>-0,064</td>
<td>0,000</td>
<td>0,176</td>
<td>0,054</td>
<td>0,000</td>
</tr>
</tbody>
</table>

* = signifikant auf dem 5% Niveau

Nur zwischen der GH-Reaktion und dem Wärmegefühl gab es einen signifikanten Zusammenhang, jedoch nur unter Placebo: je geringer die GH-Reaktion unter nicht stimulierter Bedingung, desto höher war das subjektive Gefühl von Wärme. Unter Bromocriptin allerdings geht dieser Zusammenhang offensichtlich verloren, weil durch die dopaminerge Stimulation in die Thermoregulation eingegriffen wurde. Dies dokumentierte sich in der Korrelation mit den Placebo-korrigierten Werten ebenfalls in einem signifikant negativen Zusammenhang von $\rho = -0,436 \ p = 0,009$ (siehe Anhang, Tab. 52). D.h. die Relation unter Placebo setzt sich hier durch, obwohl die MKSL-Werte unter Bromocriptin herangezogen wurden.

Dies wird weiterhin Thema der Diskussion sein. Keiner der übrigen Korrelationskoeffizienten war signifikant.
5. Diskussion

Dopaminerge Stimulation und ihre Auswirkungen auf die Hormonsysteme

5.1.1. Prolaktin unter dopaminerger Stimulation

Messzeitpunkte t

PRL-Konzentrationsdifferenz in ng/ml

Abb. 6: Prolaktinverlauf unter Bromocriptin nach Placebokorrektur im Vergleich zum Verlauf unter der Placebo-bedingung
Wie im Theorieteil erwähnt, geschieht die Regulation des Prolaktinhaushaltes v.a. durch die sich auf der Membran von laktotropen Zellen befindlichen D2-Rezeptoren, auf die das Bromocriptin sehr spezifisch wirkt. Durch diesen bekannten Effekt der dopaminergen Substanz war die oben abgebildete Reduktion des Prolaktinspiegels zu erwarten.

Auffällig ist desweiteren, dass das Hormon beginnt, verstärkt zu sinken ab dem Zeitmesspunkt t4, also 60 Minuten nach Applikation der Substanz (roter Pfeil). Offensichtlich spiegelt dies die Zeit wider, die benötigt wird nach oraler Applikation bis zur Anflutung am Wirkungsort. Nach Cicinelli et al. (1996) liegt der zu erwartende messbare Zeitpunkt des Prolaktinabfalls bei etwa 2h nach Applikation.

Wie aus dem Verlauf unter Placebo erkennbar wird, hat die evtl. entstandene Stresssituation für die Probanden im Rahmen der Nikotindepuration und recht lang dauernden sitzenden Position vor dem Monitor offenbar nicht ausgereicht, um einen steigernden Einfluss auf den Hormonspiegel auszuüben, was im Endeffekt der Aussage von Delitala et al., (1987) Recht gibt, welche psychischen Stress eher selten als Auslöser für Veränderungen im Prolaktinspiegel (und GH-Spiegel) sehen.

5.1.2. GH unter dopaminerger Stimulation

Auch das Wachstumshormon erfuhr durch die dopaminerge Stimulation eine Änderung des Plasmaspiegels, die allerdings nicht signifikant von Placebo verschieden war. Da die Probanden im Normalbereich liegende Ausgangswerte eine halbe Stunde vor Medikamentengabe hatten, war eine steigernde Wirkung von Bromocriptin auf den GH-Spiegel zu erwarten, was bei alleiniger Betrachtung der GH-Kurve unter Bromocriptin auch den Anschein hatte. Es musste allerdings überprüft werden, ob dies auch nach Abzug der Placebowerte noch erkennbar ist. Daher wird in Abb. 7 die Placebo-korrigierte Verlaufskurve dargestellt. Es bleibt ein Anstieg 2 ½ Stunden nach Medikamentengabe sichtbar. Die Annahme, dass die Steigerung hauptsächlich über D1-Rezeptoren vermittelt wird (Bluet-Pajot et al. (1990)), konnte wegen der D2-Spezifität von Bromocriptin nicht bestätigt werden. Möglicherweise entsteht der Effekt, wie von Vance et al. (1987) postuliert, durch die senkende Wirkung von Dopamin auf die hypothalamische Somatostatinausschüttung, welche wiederum die steigernde Wirkung von GHRH auf den GH-Spiegel erklärt (Kapitel 2.2.5.2.). Kitajima et al. (1989) (Kapitel 2.2.5.2.) nahmen zusätzlich eine direkte stimulierende Wirkung des

![GH-Konzentration in ng/ml](image)

Abb. 7: Verlauf des GH nach Placebobedingungen

Ebenfalls wird aus Abb. 7 die wichtige Zeit-Komponente erkennbar. Nachdem ein leichter Anstieg der GH-Konzentration etwa 1h (t4) nach Substanzgabe zu sehen ist, folgt ein steiler Anstieg ab 2h nach Applikation. Dies entspräche auch dem zu erwartenden Zeitpunkt des Wirkungseintritts, zumindest bei GH (s.o.).

Auffällig am Verlauf von GH ist der ungewöhnliche Anstieg im Verlauf unter Placebo. Nach Schmidt & Thews (1997, Kap. 2.4.2.) gibt es anscheinend Sekretionsphasen der Hypophyse ohne erkennliche Ursache, die aber eher episodenhaft aussehen sollten. Da es davon bei gesunden Menschen ca. 4-8/Tag gibt (Prank et al., 1997), könnte eine solche pulsatile Frei-

Augenscheinlich ist auch, wie im Ergebnisteil schon erwähnt, der ungewöhnliche, zeitversetzte Anstieg des Hormons unter Bromocriptin im Vergleich zur Placeboreihe. Möglicherweise ist diese Tatsache dadurch zu erklären, dass die stimulierende Wirkung dopaminriger Substanzen wirklich hauptsächlich D1-Rezeptor-gesteuert ist (Bluet-Pajot et al. (1990), s.o.), und daher durch die o.g. komplexeren Vorgänge insgesamt eine Verzögerung eintritt. Auch hier könnte wiederum eine zeitliche Verschiebung durch das Erreichen der Substanz bzw. einer wirksamen Dosis am Wirkungsort eine Rolle spielen, v.a. da eine therapeutisch subdosierte, jedoch für die hier benötigten Zwecke ausreichende Dosis für Bromocriptin gewählt wurde.

5.1.3. Bromocriptin und Cortisol

Da nach wie vor wenig Literatur über die Interaktion zwischen dem dopaminergen System und den Glucocorticoiden zu finden ist, wurde die Cortisolreaktion auf Bromocriptin bestimmt, um weitere Daten über die Zusammenhänge zwischen den Systemen in Erfahrung zu bringen.

Jedoch zeigte sich, wie in Kapitel 2.2.5.3. bereits erwähnt, auch in der vorliegenden Studie keine deutliche Tendenz eines dopaminergen Einflusses auf den Cortisolhaushalt. Vielmehr schien dieser völlig unbeeinflusst zu sein von der Bromocriptin-Applikation, wie die unten dargestellte Abbildung 8 widerspiegelt, wenn man von der Reaktion unter Bromocriptin die unter Placebo subtrahierte.
Physiologischerweise, also ohne Bromocriptin, wäre prinzipiell ein Absinken des Cortisols am Nachmittag im Rahmen des zirkadianen Rhythmus zu erwarten gewesen, der sich in dieser Studie jedoch nicht erkennen ließ. Vielmehr schien der Hormonspiegel v.a. unter der Placebobedingung zwischen 16.30 Uhr und 18.00 Uhr einen steigenden Verlauf anzunehmen, der sich dann wieder abflachte. Es stellt sich die Frage, ob dieser Effekt durch die gleiche experimentelle Stressinduktion erklärbar sein könnte, der sich unter dopaminer Stimulation in etwas schwächerer Form dargestellt hat. Eine Stresssituation könnte ja, wie bereits erwähnt, z.B. durch das Geldgewinnspiel hergestellt worden sein. Um dieser Möglichkeit nachzugehen, hätte man eventuell begleitend eine Langzeit-Blutdruck- und Herzfrequenzmessung durchführen müssen, da ja das Cortisol, wie im Theorieteil erwähnt, unter Stresssituationen permissive Effekte hat auf die Wirkung der Katecholamine in Bezug auf die glatte Gefäßwandmuskulatur.

5.2. Korrelationen der 3 Hormonsysteme unter Placebobedingung

Um überprüfen zu können, ob überhaupt Korrelationen zwischen den 3 Hormonsystemen bestehen, und um eine Vergleichsreihe für Korrelationen bzw. Korrelationsänderungen unter dopaminer Bedingung zu besitzen, wurden die hormonellen Zusammenhänge auch unter der Placebobedingung geprüft. Es ergaben sich keinerlei Korrelationen zwischen den Hormonsystemen unter Placebo (Tab. 5).

Während der Prolaktinverlauf unter Placebo weitgehend unbeeinflusst blieb, erfuhren der GH- und der Cortisol-Spiegel, wie oben erwähnt (Abb. 5 und 6), einen ungewöhnlichen Anstieg. Durch die unveränderten Hormonspiegel von Prolaktin wäre demnach auch keine Auswirkung auf die jeweils anderen beiden Hormonsysteme zu erwarten gewesen. Nach Tena-Sempere et al. (2004), die ja mit Ghrelin, einem GH-Agonisten, durch direkte Wirkung an Hypothalamus und Hypophyse einen Anstieg des Prolaktinspiegels nachwiesen (siehe Kap. 2.6.1.), hätte daher ebenfalls mit einer Prolaktinerhöhung gerechnet werden können, die sich aber nicht einstellte.

durch das GHRH induziert worden sein, so konnte er in der vorliegenden Studie zumindest unter unstimulierter Bedingung nicht bestätigt werden.

5.3. Korrelationen der 3 Hormonsysteme unter der Bromocriptinbedingung

Im Gegensatz zu den Hormonzusammenhängen unter der Placebobedingung ergaben sich unter dopaminerger Stimulation erkennbare Korrelationen im Vergleich der 3 Hormonsysteme. Dies lässt die Annahme zu, dass die Korrelationen ausschließlich bedingt sind durch den Zusammenhang zwischen den Hormonen mit dem dopaminergen Transmittersystem bzw. dass überhaupt grundsätzlich eine Verbindung besteht zwischen jedem Hormon und dem Dopamin.

Wie im Ergebnisteil beschrieben, ergab sich eine hoch signifikant negative Korrelation zwischen Cortisol und GH unter Bromocriptineinfluss (Tab. 6). Hätte sich die Annahme von Swerdlow et al. (1999) bestätigt, nämlich dass der Cortisolspiegel ebenfalls gestiegen wäre durch die dopaminerge Stimulation, wäre die Korrelation zwischen GH und Cortisol eventuell positiv ausgefallen.

Eine positive Korrelation ergab sich unter der Bromocriptinbedingung im Gegensatz zu der Placebobedingung zwischen Cortisol und Prolaktin. Da der Cortisolspiegel durch die dopaminerge Stimulation im Mittel weitgehend unbeeinflusst blieb, kann über die Rolle der Glucocorticoide im Dopamin- bzw. Prolaktinhaushalt jedoch nur spekuliert werden. Nach Swerdlow et al. (1999) hätte der Cortisolspiegel unter dopaminerger Stimulation ja steigen sollen, was im Endeffekt eher eine negative Korrelation zwischen Prolaktin und Cortisol unter Bromocriptinbedingung bedeutet hätte. Ebenso lassen auch Freeman et al. (2000, Kap. 2.6.2.) einen eher divergierenden Verlauf von Prolaktin zu Cortisol erwarten, welcher durch die dopaminerge Stimulation ja nochmals verschärft werden sollte. Daher war dieses Ergebnis nicht zu erwarten.

Zusätzlich hätte, nach Wrobel et al. (2004, siehe Kap. 2.2.5.3.), ein Anstieg des Cortisols zu erhöhter Affinität von Dopamin an D2-Rezeptoren führen können, was möglicherweise in einer noch stärkeren Senkung des Prolaktinspiegels resultiert hätte.

Prinzipiell stellt sich die Frage, ob eher das Dopamin oder das (niedrige) Prolaktin einen Einfluss auf den Cortisolhaushalt hat. Während man häufiger die Interaktionen von Dopamin zu Cortisol darstellte, gibt es vergleichsweise wenig Literatur zum Cortisolverlauf nach Prolaktinapplikation.

In Kap. 2.6.2. wurde bereits erwähnt, dass u.a. Moro et al. (1997) einen reduzierenden Effekt von Dopamin bzw. einen stimulierenden von Prolaktin auf den Cortisolspiegel für möglich halten, was sich demnach, zumindest was die Korrelation angeht, eher auf unsere Studie übertragen ließe.

Eine negative, ebenfalls signifikante Korrelation, die nach Placeboapplikation nicht vorhanden war, besteht unter der Bromocriptinbedingung zwischen GH und Prolaktin. Da unter der Placebobedingung keinerlei Korrelation bestand, muß auch hier der gemeinsame Nenner für die hormonellen Zusammenhänge im dopaminergen System bestehen. Da eine dopaminerge Stimulation zur Steigerung von GH und zum Absinken des Prolaktinspiegels im
Blut führt, hat das Ergebnis den Erwartungen entsprochen, die im Einleitungsteil (siehe auch Abb. 0) postuliert wurden.

In Kap. 2.6.2. bereits erwähnt, bestehen ebenfalls weitgehend unklare Zusammenhänge zwischen GH und Prolaktin. So kann beispielsweise ein durch Bromocriptin induziertes Absinken von Somatostatin einerseits ein Ansteigen von GH bewirken, andererseits sind auch hemmende Eigenschaften des Somatostatins auf die Prolaktinproduktion bekannt, so dass dies ein möglicher Erklärungsansatz für die erhobenen Befunde sein könnte. Nach Aussagen von van Vliet et al. (1985, Kap. 2.6.1.) scheint die Ursache im Anstieg weniger durch GHRH induziert worden zu sein, da die Probanden sich in guter Gesundheit befanden.

5.4. Die subjektiven Symptome unter der Bromocriptinbedingung im Vergleich zu denen unter der Placebobedingung

Wie im theoretischen Teil (2.2.4.) bereits beschrieben, kann Bromocriptin potentiell zu Nebenwirkungen führen. Zwar treten die meisten Nebenwirkungen unter Bromocriptin nur unter höheren Dosierungen auf (Küttler, 1996), jedoch besteht die Möglichkeit, dass bei Gesunden, die nie Dopaminagonisten einnahmen, unter niedriger Dosierung und einmaliger Applikation unerwünschte Effekte auftreten, denn Nebenwirkungen treten mit Bromocriptin besonders zu Therapiebeginn auf. Wie im Methodikteil erwähnt, wurde sich, zur Findung einer optimalen Medikamentendosis, Testdurchläufen mit 2,5 mg und 1,25 mg Bromocriptin bedient. Im Anschluß an diese Testläufe wurde sich wegen aufgetretener Nebenwirkungen für die niedrigere Dosis entschieden. Diese sollte im Rahmen der Hauptstudie weiter auf die potentiellen Nebenwirkungen überprüft werden.

Da es im Rahmen dieser Arbeit in erster Linie nur um den Zusammenhang zwischen bromocriptinbedingten Hormonantworten und den subjektiven Symptomen ging, waren die Häufigkeiten der Symptome unter Bromocriptin mit den Spontanangaben unter Placebo verglichen worden, da die unspezifischen Symptome, die hier als Nebenwirkungen nachgewiesen werden sollen, ja bekanntermaßen auch spontan sehr oft auftreten.

Als Dopaminagonist kann Bromocriptin in der Lage sein, neben den zentralen auch periphere Effekte zu erzielen. Diese entstehen, wie in Kap. 2.2.3. bereits kurz erwähnt, sowohl über Dopamin-Rezeptoren im Nieren- und Splanchnikusgebiet als auch durch Stimulation von

Da mit 80% der Probanden der Großteil gar keine Empfindungen bezüglich Herzklopfens angab und nur ein einziger ziemlich starkes Herzklopfen empfand, muss man davon ausgehen, dass mit der gewählten Bromocriptindosis keine kardialen Komplikationen zu erwarten sind. Dies spiegelt sich auch wider im Vergleich der Symptomhäufigkeiten zu der Placebobedingung, in der praktisch nur minimale Unterschiede zu den Verteilungen unter der Bromocriptinbedingung erkennbar sind.

Unter einer Bromocriptinmedikation tritt zusätzlich häufiger Mundtrockenheit, wahrscheinlich auf dem Boden einer anticholinergen Wirkung an den Speicheldrüsen, auf. Daher wurde über die MKSL auch dieses Symptom abgefragt, um ein Auftreten des Symptoms unter unserer Medikationsdosis prüfen zu können.
Auch hier scheint das Medikament bei dieser Dosierung und zumindest einmaliger Gabe im Rahmen eines gesunden Probandenkollektivs keine starken Symptome hervorzurufen. Ebenfalls stellt sich die Frage, ob die 20% der Versuchspersonen, die eine gewisse Symptomatik verspürt haben, diese eventuell durch andere, unabhängig vom Bromocriptin entstandenen, Ursachen erfahren haben, denn auch unter der Placebobedingung gab ein Fünftel der Probanden eine gewisse Ausprägung der Symptomatik an. Auch bei dieser Nebenwirkung ähnelt sich das Verteilungsmuster sehr stark unter beiden Bedingungen.

Da Bromocriptin als selektiver D2-Rezeptor-Agonist bekannt ist, über die Erregung der D2-Rezeptoren in der Area postrema Übelkeit bzw. Erbrechen hervorzurufen, besteht in diesen Symptomen eine typische und häufige Nebenwirkung der Substanz. Daher wirken Dopaminantagonisten wie Metoclopramid oder Domperidon durch ihre höhere Affinität an D2-Rezeptoren im ZNS und Magen gegen Übelkeit und Erbrechen (Nappi et al., 1987) und finden u.a. auf diesem Gebiet ihre klinische Anwendung als Antiemetikum.

Die dichotomisierte Aufteilung der subjektiven Einstufung der Magensymptomatik (Tab.20) zeigt im Vergleich zwischen der Placebo- und der Verumbedingung daher auch kaum Unterschiede auf.

Insgesamt lässt diese Studie den Schluss zu, dass eine einmalige Gabe von 1,25mg Bromocriptin, zumindest was die typischen Medikamentennebenwirkungen angeht, bei einem
gesunden Probandenkollektiv zu keinen Nebenwirkungen führt. Man muss davon ausgehen, dass, wie oben angedeutet, sowohl eine gewisse Vulnerabilität, als auch die Umstände der Studiensituation, zu einer Anfälligkeit führt, bestimmte Symptome zu empfinden, insbesondere dann, wenn explizit danach gefragt wird.

5.5. Zusammenhänge zwischen den 3 Hormonsystemen und den Nebenwirkungen

Karmazyn et al. (1982) beschreiben eine positiv inotrope Wirkung von Prolaktin, die eventuell über eine Freisetzung von Katecholaminen entsteht. Im Rahmen der dopaminergen Stimulation fällt der Prolaktinspiegel ab, was demnach eher eine negative Inotropie am Herzmuskel zur Folge hätte und in diesem Fall zu einer Verringerung des subjektiven Gefühls von Herzklopfen führen würde. Der Tab. 21 ist zu entnehmen, dass in dieser Studie kein Zusammenhang erkennbar wurde zwischen der Prolaktinreaktion bzw. Änderungen des Prolaktinspiegels unter der Bromocriptinbedingung und u.a. dem Symptom Herzklopfen.

Wie oben erwähnt, entsteht die Mundtrockenheit unter Bromocriptin wahrscheinlich durch eine anticholinerge Wirkung. Ein direkter Zusammenhang mit Prolaktin ist nicht beschrieben und konnte auch in dieser Arbeit nicht erkannt werden.

Zwischen GH und der Herzfunktion sind direkte Zusammenhänge bekannt. So beschrieben z.B. Nyström et al. (2005) eine schnell einsetzende und dauernde Erhöhung der Herzrate bei erhöhtem Spiegel von GH. Wie auch schon in Kap. 2.4.4. beschrieben, besitzt das Hormon eine ausgesprochen wichtige Funktion, was die Ausbildung der Myokardwände und die damit einhergehende Auswurflistung des Herzens betrifft. Letztendlich hat in dieser Studie der GH-Anstieg offenbar nicht ausgereicht für eine merkbare Veränderung der Herzleistung bzw. -funktion.

Während bekannt ist, dass GH einen direkten Einfluss hat auf die Größe und das Wachstum der Speicheldrüsen, ist ein regulatorischer Effekt des Hormons auf die exokrinen Funktionen...
nicht bekannt. Auch bei den Probanden konnte diesbezüglich keine Korrelation festgestellt werden.

Der Anstieg des GH hatte offensichtlich auch keine Wirkungen auf den gastrointestinalen Bereich, wobei ebenfalls kein Effekt des Hormons auf das Brechzentrum bekannt ist. Die Zusammenhangsanalysen sind der Tab. 21 (Kap. 4.4.2.) zu entnehmen.

Wie in Kap. 2.5.4. erwähnt, besitzt Cortisol permissive Effekte, über die es die Wirkungen der Katecholamine verstärken kann. Im Rahmen dieser Fähigkeit wäre bei Erhöhung des Cortisolspiegels u.a. eine erhöhte Herzfrequenz, u.U. auch mit einem verstärkten Herzschlag möglich gewesen. Zudem hätte über diese Wirkungsweise eine periphere Vasokonstriktion erfolgen können mit einem konsekutiven Kältegefühl, speziell im Bereich der Akren.

Bei Verwendung des dichotomisierten Hormonresponsemaßes zum Vergleich mit den Nebenwirkungssymptomen mit Hilfe des χ^2-Tests bestätigte sich das Ergebnis für GH (Anhang, Tab. 32 bis 41). Es ergab sich aber auch für Cortisol unter Placebo ein Zusammenhang mit dem Wärmegefühl (Anhang, Tab. 45), der aber diesmal positiv ausfällt ($\chi^2 = 5,025; \ p = 0,025$) und sich in abgeschwächter Form auch unter Bromocriptin zeigte ($\chi^2 = 2,940; \ p = 0,085$). D.h. mit höheren Cortisolwerten war unter beiden Bedingungen ein höheres Wärmegefühl verbunden. Diesbezüglich sind keine direkten Zusammenhänge zwischen Cortisol und der Körperkern-Temperatur beschrieben. Hennig et al. (1993), die an gesunden Probanden die
6. Zusammenfassung

Diese Arbeit war ausgelegt auf die Beantwortung folgender Fragen:

1. Werden überhaupt messbare, signifikante Niveau- und Verlaufsänderungen aller drei Hormonblutspiegel durch Bromocriptin provoziert?
2. Besteht ein Zusammenhang der Hormonverläufe bereits in unstimuliertem Zustand unter Placebo?
3. Ist die Ansprechbarkeit auf Bromocriptin durch gleichsinnige Antworten aller drei Hormonsysteme gekennzeichnet, d. h. kommt es zu Änderungen der hormonellen Zusammenhänge unter dem dopaminergen Challenge-Test?
4. Kommt es unter Bromocriptin zu einer stärkeren Häufigkeit und Intensität von typischen Nebenwirkungen als unter Placebo?
5. Bestehen Zusammenhänge zwischen den erhobenen Nebenwirkungen und den Reaktionen der 3 Hormone auf die Placebo- und auf die Verumapplikation?

Hierzu wurden 36 männliche Studenten im Abstand von je einer Woche einbestellt und erhielten in identischen Kapseln entweder Placebo oder 1.25 mg Bromocriptin. Es wurde den Probanden im Abstand von 30 min über einen Zeitraum von 270 min. unter jeder Substanzbefugung Blut entnommen, um darüber die Plasmaspiegel der Hormone zu bestimmen. Ferner füllten sie zu Beginn und am Ende der Untersuchung eine Liste zu körperlichen Symptomen (MKSL) aus.
Folgende Ergebnisse konnten erzielt werden:

2. Nachdem als so genannte Responsemaße die vom Ausgangswert bereinigten Summen-maße über 8 Messzeitpunkte gebildet waren, um die Korrelation zwischen den Hormonreaktionen berechnen zu können, stellte sich heraus, dass unter der Placebo-bedingung keinerlei signifikante Zusammenhänge zwischen den 3 Hormonsystemen bestanden.

3. Im Gegensatz dazu traten unter dopaminerger Challenge-Situation durchaus signifikante Korrelationen auf. So ergab sich eine deutliche, negative Korrelationen zwischen GH und Prolaktin, was der Erwartung entsprach. Cortisol korrelierte jedoch in unerwarteter Weise signifikant positiv mit Prolaktin und negativ mit GH, d.h. ein Nichtansprechen von Cortisol auf dopaminerge Stimulation, gekennzeichnet durch den einfachen zirkadianen Abfall, ging mit stärkeren Reaktionen der beiden anderen Hormonantworten einher. Es scheint also in der Tat das dopaminerge System ursächlich am Zusammenhang der verschiedenen Hormonsysteme beteiligt zu sein, wobei aber die verschiedenen neurochemischen Wege der Hormonstimulation offenbar nicht in gleicher Weise angestoßen werden.

4. Für die Auswertung der mehrdimensionalen körperlichen Symptomenliste ergab sich, dass unter Bromocriptin die Bereiche Herzklopfen, Wärme- bzw. Kältegefühl, Mundtrockenheit sowie Übelkeit/ Missempfindungen des Magens keine Steigerung von körperlichen Missempfindungen im Vergleich zu Placebo erkennenließen, so dass man davon ausgehen darf, dass mit einer Gabe von 1,25 mg Bromocriptin eine durchaus hormonell messbare, jedoch nicht unverträgliche Dosierung gewählt wurde.

6. Summary

Within a larger study on effects of deprivation from nicotine performed in the Department of Psychology at the University of Giessen the present experiment investigated the comparability and significance of different hormone responses to a bromocriptine-challenge-test. Therefore bromocriptine was applied in a balanced placebo controlled design in a double blind manner. The blood level of hormone responses of prolactin (PRL), growth hormone (GH) and cortisol were measured. It was expected to observe a decrease of prolactin levels and a marked increase of GH as well as a slight increase of cortisol as responses to bromocriptine. The relationships between these hormone responses were to be investigated. Furthermore typical side effects of bromocriptine were assessed by means of a specific symptom check list, which were tested for correlations with the substance as well as with the three hormone responses.

The study was designed to answer the following questions:

1. Are there measurable, significant changes of levels and response curves of all three hormones at all?
2. Is there a relationship between the response curves of the hormones already under non-stimulated conditions?
3. Is the responsiveness to bromocriptine characterized by similar responses of all three hormones; i.e. are there changes of correlations between response curves of the three hormones under the dopaminergic challenge as compared to the placebo condition?
4. Are there higher frequencies and intensities of typical side effects in the bromocriptine condition than in the placebo condition?
5. Are there correlations between the observed side effects and the responses of the three hormone systems upon the application of the placebo and of the drug?

Method: 36 male students were tested at intervals of one week and received identical capsules containing either placebo or 1,25mg of bromocriptine. Blood samples were taken at intervals of 30 minutes across a period of 270 minutes under each substance condition, in order to determine plasma levels of the hormones. Furthermore, participants filled in a list of physical symptoms at the beginning and at the end of each test day.
The following results were obtained:

1. As compared to placebo differences of levels as well as of response curves were observed for PRL (highly significant) and for GH (observed only as a tendency) while cortisol responses did not show differences between the placebo and the bromocriptine condition.

2. After computing so called response measures defined as baseline corrected sum scores across 8 time points of measurement in order to compute correlations between the hormone responses, it was found, that under the placebo condition no correlations between the three hormone systems could be observed.

3. On the other hand, under the dopaminergic challenge, substantial correlations between the hormones were obtained: As expected, a significant negative correlation between GH and PRL was obtained. In contrast, cortisol unexpectedly was positively correlated with prolactin and negatively with GH, which means that non-response to the dopaminergic stimulation, characterized by a decline of cortisol as it is typical for a normal circadian decrease, was accompanied by stronger responses of both the two other hormones. Indeed it seems that the dopaminergic system is causally responsible for the relationships between the different hormone systems, although the different neurochemical pathways of hormonal stimulation are obviously not activated in the same way. Furthermore, Swerdlow´s theory (1995) which claims that a dopaminergic stimulation leads to a noticeable increase of cortisol, could not be confirmed.

4. The analysis of the multidimensional list of physical symptoms showed that under bromocriptine the domains of heart rate, sense of warmth and coldness, dry mouth and nausea/ gastric symptoms did not exhibit any increase of negative sensations in comparison to the placebo condition, so that it may be assumed, that the dose of 1,25mg bromocriptin chosen was suitable to produce measurable hormone responses without causing substantial side effects.

5. The correlations between the side effects investigated and the three hormone systems showed a significant negative correlation between the sense of warmth and GH under placebo, which was not observed any more with bromocriptine. However, this negative correlation obtained with placebo was still observed when tested for the placebo corrected bromocriptine response.
A significant positive correlation was obtained between cortisol and nausea/gastric symptoms. The other correlations between side effects and hormones did not show any additional relationships, so that it may be assumed that, in case some individuals developed side effects, these were not related to the hormone responses.
Literaturverzeichnis

Anissa, Abi-Dargham., M.D., Roberto, Gil., M.D., John Krystal, M.D., Ronald M. Baldwin, Ph.D., John P. Seibyl, M.D., Malcom Bowers, M.D., Christopher H. van Dyck, Dennis S. Charney, M.D., Robert B. Innis, M.D., Ph.D., and Marc Laruelle, M.D. *Increased Striatal Dopamine Transmission in Schizophrenia: Confirmation in a Second Cohort.* American Journal of Psychiatry, 1998;155:761-767.

Arafat, MA., Otto, B., Rochlitz, H., Tschop, M., Bahr, V., Mohlig, M., Diederich, S., Spranger, J., Pfeiffer, AF.

Arosio, M., Ronchi, CL., Epaminonda, P., di Lembo, S., Adda, G.

Arvat, E., Maccagno, B., Ramunni, J., Di Vito, L., Broglio, F., Deghenghi, R., Camanni, F., Ghigo, E.

Balsa, JA., Cacicedo, L., Lara, JI., Lorenzo, MJ., Pazos, F., Sanchez-Franco, F.
Autocrine and/or paracrine action of vasoactive intestinal peptide on thyrotropin-releasing hormone induced prolactin release. Endocrinology. 1996;137(1):144-50.

Bansal, SA., Lee, LA., Woolf, PD.

Behr, Joachim.
Interaktion zwischen entorhinalem Kortex und Hippokampus bei der Temporallappenepilepsie. hu-berlin.de/habilitationen, 2004, S.23

Ben-Jonathan, N., Hnasko, R.
Dopamine as a prolactin (PRL) inhibitor. Endocrine Reviews. 2001;22(6):724-63.

Bertoldo, F., Olivieri, M., Franchina, G., De Blasio, F., Lo Cascio, V.

Chang, A., Shin, SH., Pang, SC. Dopamine D2 receptor mediates both inhibitory and stimulatory actions on prolactin release. Endocrine. 1997;7(2):177-82.

Clark, RG., Thomas, GB., Mortensen, DL., Won, WB., Ma, YH., Tomlinson, EE., Fairhall, KM., Robinson, IC. **Growth hormone secretagogues stimulate the hypothalamic-pituitary-adrenal axis and are diabetogenic in the Zucker diabetic fatty rat.** Endocrinology. 1997;138(10):4316-23.

Cuk, M., Cuk, D., Dvornik, S., Mamula, O., Manestar, MM. **Recent findings regarding physiological characteristics and effects of renal dopamine.** Lijec Marknic Markki Vjesnik. 2004;126(5-6):147-55.

Drozak, J., Bryla, J. Dopamine: not just a neurotransmitter. Postepy Higieny i Medycyny Doswiadczalnej (Online) 2005;59:405-20.

Eis, D. Multiple Chemikaliensensitivität und ähnliche Symptomenkomplexe. MCS und ähnliche Syndrome, 2002.

Fomicheva, EE., Nemirovich-Danchenko, EA. *Effect of prolactin on the level of corticosterone in the blood and synthesis of lymphocyte-activating factors by macrophages under conditions of glucocorticoid loading.* Ross Fiziol Zh Im I M Sechenova. 2003;89(9):1117-26.

Gorelick, DA., Wilkins, JN. *Bromocriptine treatment for cocaine addiction: Association with plasma prolactin levels.* Drug and Alcohol Dependence. 2005;

Hennig, J. & Netter, P. Neurotransmitter und Persönlichkeit.

Juruena, MF., Cleare, AJ., Pariante, CM. The hypothalamic pituitary adrenal axis, glucocorticoid receptor function and relevance to depression. Revista Brasileira de Psiquiatria, 2004;26(3):189-201.

Klinke, R., Silbernagl, S. **Lehrbuch der Physiologie.** 2001

Kreutzig, T., Biochemie. 9.Auflage, 1997

Lee, TY., Pan, JT. Involvement of central GABAergic neurons in basal and diurnal changes of tuberoinfundibular dopaminergic neuronal activity and prolactin secretion. Life Sciences. 2001;68(17):1965-75.

Liang, SL., Pan, JT. An endogenous serotonergic rhythm acting on 5-HT(2A) receptors may be involved in the diurnal changes in tuberoinfundibular dopaminergic neuronal activity and prolactin secretion in female rats. Neuroendocrinology. 2000;72(1):11-9.

Mattheij, JA., Swarts, HJ. Evidence that exteroceptive stimuli other than suckling have no major effect on plasma prolactin in lactating rats. Acta Endocrinologica. 1987;114(3):417-25.

McAllister-Williams, RH., Rugg, MD. Effects of repeated cortisol administration on brain potential correlates of episodic memory retrieval. Psychopharmacology (Berl.)

Missale, C., Nash, SR., Robinson, SW., Jaber, M., Caron, MG. Dopamine receptors: from structure to function. Physiological Reviews. 1998;78(1):189-225.

Schaaf, MJ., Cidlowski, JA. Molecular determinants of glucocorticoid receptor mobility in living cells: the importance of ligand affinity. Methods in Molecular and Cellular Biology. 2003;23(6):1922-34.

Zawilska, JB. **Dopamine receptors-structure, characterization and function.** Post Inverted Question Markpy Higieny i Medycyny do Inverted Question Markwiadczalnej. 2003;57(3):293-322.
Anhang

Überprüfung der Zusammenhänge zwischen den Symptomen und Prolaktin

Tab. 22 und 23: Zusammenhang zwischen der Prolaktin-Antwort (dichotom) und Herzklopfen unter Bromocriptin (oben) und Placebo (unten)

<table>
<thead>
<tr>
<th>Herzklopfen</th>
<th>Prolaktinantwort unter Bromocriptin</th>
<th>zus</th>
<th>Chi² n. Pearson:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nein</td>
<td>Stark</td>
<td>Schwach</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Ja</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>zus</td>
<td>Stark</td>
<td>Schwach</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Herzklopfen</th>
<th>Prolaktinantwort unter Placebo</th>
<th>zus</th>
<th>Chi² nPearson:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nein</td>
<td>Stark</td>
<td>Schwach</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Ja</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>zus</td>
<td>Stark</td>
<td>Schwach</td>
<td>16</td>
</tr>
</tbody>
</table>
Tab. 24 und 25: Zusammenhang zwischen der Prolaktin-Antwort (dichotom) und Wärmegefühl unter Bromocriptin (oben) und Placebo (unten)

<table>
<thead>
<tr>
<th>Wärmegefühl</th>
<th>Prolaktinantwort unter Bromocriptin</th>
<th>zus.</th>
<th>Chi² n. Pearson:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stark</td>
<td>Schwach</td>
<td></td>
</tr>
<tr>
<td>Nein</td>
<td>9</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>Ja</td>
<td>7</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>zus.</td>
<td>16</td>
<td>19</td>
<td>35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wärmegefühl</th>
<th>Prolaktinantwort unter Placebo</th>
<th>zus.</th>
<th>Chi² n. Pearson:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stark</td>
<td>Schwach</td>
<td></td>
</tr>
<tr>
<td>Nein</td>
<td>8</td>
<td>9</td>
<td>17</td>
</tr>
<tr>
<td>Ja</td>
<td>7</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>zus.</td>
<td>15</td>
<td>18</td>
<td>33</td>
</tr>
</tbody>
</table>
Tab. 26 und 27: Zusammenhang zwischen der Prolaktin-Antwort (dichotom) und Kältegefühl unter Bromocriptin (oben) und Placebo (unten)

<table>
<thead>
<tr>
<th>Kältegefühl</th>
<th>Prolaktinantwort unter Bromocriptin</th>
<th>zus.</th>
<th>Chi² n. Pearson: 0,696 p = 0,404</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nein</td>
<td>Stark: 9 Schwach: 8</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Ja</td>
<td>Stark: 7 Schwach: 11</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>zus</td>
<td>Stark: 15 Schwach: 20</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kältegefühl</th>
<th>Prolaktinantwort unter Placebo</th>
<th>zus.</th>
<th>Chi² n. Pearson: 0,253 p = 0,615</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nein</td>
<td>Stark: 8 Schwach: 10</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Ja</td>
<td>Stark: 9 Schwach: 8</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>zus</td>
<td>Stark: 17 Schwach: 18</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>
Tab. 28 und 29: Zusammenhang zwischen der Prolaktin-Antwort (dichotom) und Mundtrockenheit unter Bromocriptin (oben) und Placebo (unten)

<table>
<thead>
<tr>
<th>Mundtrockenheit</th>
<th>Prolaktinantwort unter Bromocriptin</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Chi² n. Pearson: 0,135 (p = 0,713)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>stark</td>
<td>schwach</td>
<td>zus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nein</td>
<td>10</td>
<td>13</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ja</td>
<td>6</td>
<td>6</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zus</td>
<td>16</td>
<td>19</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mundtrockenheit</th>
<th>Prolaktinantwort unter Placebo</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Chi² n. Pearson: 0,048 (p = 0,826)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>stark</td>
<td>schwach</td>
<td>zus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nein</td>
<td>11</td>
<td>11</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ja</td>
<td>6</td>
<td>7</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zus</td>
<td>17</td>
<td>18</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tab. 30 und 31: Zusammenhang zwischen der Prolaktin-Antwort (dichotom) und Übelkeit/ Mißempfindungen Magen unter Bromocriptin (oben) und Placebo (unten)

<table>
<thead>
<tr>
<th>Übelkeit/ Magen</th>
<th>Prolaktinantwort unter Bromocriptin Stark</th>
<th>Schwach</th>
<th>zus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nein</td>
<td>12</td>
<td>11</td>
<td>23</td>
</tr>
<tr>
<td>Ja</td>
<td>4</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>zus</td>
<td>16</td>
<td>19</td>
<td>35</td>
</tr>
</tbody>
</table>

Chi² n. Pearson: 1,128 p = 0,288

<table>
<thead>
<tr>
<th>Übelkeit/ Magen</th>
<th>Prolaktinantwort unter Placebo Stark</th>
<th>Schwach</th>
<th>zus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nein</td>
<td>8</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>Ja</td>
<td>9</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>zus</td>
<td>17</td>
<td>18</td>
<td>35</td>
</tr>
</tbody>
</table>

Chi² n. Pearson: 0,696 p = 0,404
Überprüfung der Zusammenhänge zwischen den Symptomen und GH

Tab. 32 und 33: Zusammenhang zwischen der GH-Antwort (dichotom) und Herzklopfen unter Bromocriptin (oben) und Placebo (unten)

<table>
<thead>
<tr>
<th></th>
<th>GH-Antwort unter Bromocriptin</th>
<th></th>
<th></th>
<th></th>
<th>Chi² n. Pearson:</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stark</td>
<td>Schwach</td>
<td>zus</td>
<td></td>
<td>2,331</td>
<td>0,127</td>
</tr>
<tr>
<td>Herzklopfen Nein</td>
<td>11</td>
<td>17</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ja</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zus</td>
<td>16</td>
<td>19</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>GH-Antwort unter Placebo</th>
<th></th>
<th></th>
<th></th>
<th>0,083</th>
<th>0,774</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stark</td>
<td>Schwach</td>
<td>zus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herzklopfen Nein</td>
<td>13</td>
<td>13</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ja</td>
<td>5</td>
<td>4</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zus</td>
<td>18</td>
<td>17</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tab. 34 und 35: Zusammenhang zwischen der GH-Antwort (dichotom) und Wärmegefühl unter Bromocriptin (oben) und Placebo (unten)

<p>| Wärmegefühl | GH-Antwort unter Bromocriptin | |</p>
<table>
<thead>
<tr>
<th></th>
<th>Stark</th>
<th>Schwach</th>
<th>zus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nein</td>
<td>6</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>Ja</td>
<td>10</td>
<td>7</td>
<td>17</td>
</tr>
<tr>
<td>zus</td>
<td>16</td>
<td>19</td>
<td>35</td>
</tr>
</tbody>
</table>

Chi² n. Pearson: 2,289 p = 0,130

<table>
<thead>
<tr>
<th>Wärmegefühl</th>
<th>GH-Antwort unter Placebo</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nein</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Ja</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>zus</td>
<td>16</td>
<td>17</td>
</tr>
</tbody>
</table>

Chi² n. Pearson: 3,694 p = 0,055
Tab. 36 und 37: Zusammenhang zwischen der GH-Antwort (dichotom) und Kältegefühl unter Bromocriptin (oben) und Placebo (unten)

<table>
<thead>
<tr>
<th>Kältegefühl</th>
<th>GH-Antwort unter Bromocriptin</th>
<th>ZUS</th>
<th>Chi² n. Pearson:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stark</td>
<td>Schwach</td>
<td></td>
</tr>
<tr>
<td>Nein</td>
<td>8</td>
<td>9</td>
<td>17</td>
</tr>
<tr>
<td>Ja</td>
<td>8</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>zus</td>
<td>16</td>
<td>19</td>
<td>35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kältegefühl</th>
<th>GH-Antwort unter Placebo</th>
<th>ZUS</th>
<th>Chi² n. Pearson:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stark</td>
<td>Schwach</td>
<td></td>
</tr>
<tr>
<td>Nein</td>
<td>8</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>Ja</td>
<td>10</td>
<td>7</td>
<td>17</td>
</tr>
<tr>
<td>zus</td>
<td>18</td>
<td>17</td>
<td>35</td>
</tr>
</tbody>
</table>
Tab. 38 und 39: Zusammenhang zwischen der GH-Antwort (dichotom) und Mundtrockenheit unter Bromocriptin (oben) und Placebo (unten)

<table>
<thead>
<tr>
<th>Mundtrockenheit</th>
<th>GH-Antwort unter Bromocriptin</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stark</td>
<td>Schwach</td>
<td>zus</td>
<td></td>
</tr>
<tr>
<td>Nein</td>
<td>12</td>
<td>11</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Ja</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>zus</td>
<td>16</td>
<td>19</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

Chi² n. Pearson:
1,128 p = 0,288

<table>
<thead>
<tr>
<th>Mundtrockenheit</th>
<th>GH-Antwort unter Placebo</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stark</td>
<td>Schwach</td>
<td>zus</td>
<td></td>
</tr>
<tr>
<td>Nein</td>
<td>12</td>
<td>10</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Ja</td>
<td>6</td>
<td>7</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>zus</td>
<td>18</td>
<td>17</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

Chi² n. Pearson:
0,230 p = 0,631
Tab. 40 und 41: Zusammenhang zwischen der GH-Antwort (dichotom) und Übelkeit/ Missempfindungen Magen unter Bromocriptin (oben) und Placebo (unten)

<table>
<thead>
<tr>
<th>Übelkeit/ Magen</th>
<th>GH-Antwort unter Bromocriptin</th>
<th>zus</th>
<th>Chi² n. Pearson: 0,135 p = 0,713</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nein</td>
<td>Stark 10, Schwach 13</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Ja</td>
<td>Stark 6, Schwach 6</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>zus</td>
<td>Stark 16, Schwach 19</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Übelkeit/ Magen</th>
<th>GH-Antwort unter Placebo</th>
<th>zus</th>
<th>Chi² n. Pearson: 0,274 p = 0,600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nein</td>
<td>Stark 9, Schwach 10</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Ja</td>
<td>Stark 9, Schwach 7</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>zus</td>
<td>Stark 17, Schwach 18</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>
Überprüfung der Zusammenhänge zwischen den Symptomen und Cortisol

Tab. 42 und 43: Zusammenhang zwischen der Cortisol-Antwort (dichotom) und Herzklopfen unter Bromocriptin (oben) und Placebo (unten)

<table>
<thead>
<tr>
<th>Herzklopfen</th>
<th>Cortisol-Antwort unter Bromocriptin</th>
<th>zus</th>
<th>Chi² n. Pearson: 0,180 p = 0,671</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nein</td>
<td>Stark 14</td>
<td>Schwach 13</td>
<td>27</td>
</tr>
<tr>
<td>Ja</td>
<td>Stark 3</td>
<td>Schwach 4</td>
<td>7</td>
</tr>
<tr>
<td>zus</td>
<td>Stark 17</td>
<td>Schwach 17</td>
<td>34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Herzklopfen</th>
<th>Cortisol-Antwort unter Placebo</th>
<th>zus</th>
<th>Chi² n. Pearson: 0,008 p = 0,929</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nein</td>
<td>Stark 14</td>
<td>Schwach 12</td>
<td>26</td>
</tr>
<tr>
<td>Ja</td>
<td>Stark 5</td>
<td>Schwach 4</td>
<td>9</td>
</tr>
<tr>
<td>zus</td>
<td>Stark 19</td>
<td>Schwach 16</td>
<td>35</td>
</tr>
</tbody>
</table>
Tab. 44 und 45: Zusammenhang zwischen der Cortisol-Antwort (dichotom) und Wärmegefühl unter Bromocriptin (oben) und Placebo (unten)

<table>
<thead>
<tr>
<th>Wärmegefühl</th>
<th>Cortisol-Antwort unter Bromocriptin</th>
<th>zus</th>
<th>Chi² n. Pearson:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nein</td>
<td>Stark: 11</td>
<td>Schwach: 6</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Ja: 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>zus: 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ja</td>
<td>Stark: 6</td>
<td>Schwach: 11</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Nein: 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>zus: 18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wärmegefühl</th>
<th>Cortisol-Antwort unter Placebo</th>
<th>zus</th>
<th>Chi² n. Pearson:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nein</td>
<td>Stark: 6</td>
<td>Schwach: 11</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Nein: 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>zus: 18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tab. 46 und 47: Zusammenhang zwischen der Cortisol-Antwort (dichotom) und Kältegefühl unter Bromocriptin (oben) und Placebo (unten)

<table>
<thead>
<tr>
<th>Kältegefühl</th>
<th>Cortisol-Antwort unter Bromocriptin Stark Schwach zus</th>
<th>Chi² n. Pearson: 0,118 p = 0,732</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nein</td>
<td>8 9 17</td>
<td></td>
</tr>
<tr>
<td>Ja</td>
<td>9 8 17</td>
<td></td>
</tr>
<tr>
<td>zus</td>
<td>17 17 34</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kältegefühl</th>
<th>Cortisol-Antwort unter Placebo Stark Schwach zus</th>
<th>Chi² n. Pearson: 2,289 p = 0,130</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nein</td>
<td>12 6 18</td>
<td></td>
</tr>
<tr>
<td>Ja</td>
<td>7 10 17</td>
<td></td>
</tr>
<tr>
<td>zus</td>
<td>19 16 35</td>
<td></td>
</tr>
</tbody>
</table>
Tab. 48 und 49: Zusammenhang zwischen der Cortisol-Antwort (dichotom) und Mundtrockenheit unter Bromocriptin (oben) und Placebo (unten)

<table>
<thead>
<tr>
<th>Mundtrockenheit</th>
<th>Cortisol-Antwort unter Bromocriptin</th>
<th>zus</th>
<th>Chi² n. Pearson:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nein</td>
<td>Stark</td>
<td>10</td>
<td>Nein</td>
</tr>
<tr>
<td></td>
<td>Schwach</td>
<td>12</td>
<td>Ja</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>zus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mundtrockenheit</th>
<th>Cortisol-Antwort unter Placebo</th>
<th>zus</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nein</td>
<td>Stark</td>
<td>14</td>
<td>Nein</td>
</tr>
<tr>
<td></td>
<td>Schwach</td>
<td>8</td>
<td>Ja</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>zus</td>
</tr>
</tbody>
</table>

Chi² n. Pearson: 0,515, p = 0,473
Chi² n. Pearson: 2,087, p = 0,137
Tab. 50 und 51: Zusammenhang zwischen der GH-Antwort (dichotom) und Übelkeit/ Missempfindungen Magen unter Bromocriptin (oben) und Placebo (unten)

<table>
<thead>
<tr>
<th>Übelkeit/ Magen</th>
<th>Cortisol-Antwort unter Bromocriptin</th>
<th>zus</th>
<th>Chi² n. Pearson: 0,000 p = 1,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nein</td>
<td>Stark 11</td>
<td>Schwach 11</td>
<td>22</td>
</tr>
<tr>
<td>Ja</td>
<td>Stark 6</td>
<td>Schwach 6</td>
<td>12</td>
</tr>
<tr>
<td>zns</td>
<td>Stark 17</td>
<td>Schwach 17</td>
<td>34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Übelkeit/ Magen</th>
<th>Cortisol-Antwort unter Placebo</th>
<th>Zus.</th>
<th>Chi² n. Pearson: 0,046 p = 0,830</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nein</td>
<td>Stark 10</td>
<td>Schwach 9</td>
<td>19</td>
</tr>
<tr>
<td>Ja</td>
<td>Stark 9</td>
<td>Schwach 7</td>
<td>16</td>
</tr>
<tr>
<td>zns</td>
<td>Stark 19</td>
<td>Schwach 16</td>
<td>35</td>
</tr>
</tbody>
</table>
Tab. 52: Korrelationen der MKSL-Symptome mit den dichotomierten Hormonresponses unter Bromocriptin und Placebo-korrigiert

<table>
<thead>
<tr>
<th>Korrelationen</th>
<th>GH_GB2 GH Bromo (Summe t3 bis t10)/8</th>
<th>CORT_CB2 Cort Bromo (Summe t3 bis t10)/8</th>
<th>PRL_PB2 PRL Bromo (Summe t3 bis t10)/8</th>
<th>DIFPG_2 GHBromo - Plac ((difbpg3 bis 10)/8)-difbpg2</th>
<th>DIFPC_2 CortBromo - Plac ((difbpc3 bis 10)/8)-difbpc2</th>
<th>DIFPP_2 PRLBromo - Plac ((difbpg3 bis 10)/8)-difbpg2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kendall-Tau-b</td>
<td>MKS20B4D Mundtrockenheit Bromo 19 Uhr dichotom</td>
<td>Korrelationskoeffizient Sig. (2-seitig)</td>
<td>N</td>
<td>.148</td>
<td>-.088</td>
<td>.059</td>
</tr>
<tr>
<td></td>
<td>MKSL4B4D MKSL Herzklopfen, Bromo 19 Uhr dichotom</td>
<td>Korrelationskoeffizient Sig. (2-seitig)</td>
<td>N</td>
<td>-.211</td>
<td>.028</td>
<td>.158</td>
</tr>
<tr>
<td></td>
<td>MAGENB4D MKSL 2 +21, Bromo 19 Uhr dichotom</td>
<td>Korrelationskoeffizient Sig. (2-seitig)</td>
<td>N</td>
<td>-.005</td>
<td>-.047</td>
<td>.044</td>
</tr>
<tr>
<td></td>
<td>KALTBD4 MKSL5 + 18, 19 Uhr dichotom</td>
<td>Korrelationskoeffizient Sig. (2-seitig)</td>
<td>N</td>
<td>-.023</td>
<td>.027</td>
<td>.080</td>
</tr>
<tr>
<td></td>
<td>WARMBD4 MKSL7 + 9, Bromo 19 Uhr dichotom</td>
<td>Korrelationskoeffizient Sig. (2-seitig)</td>
<td>N</td>
<td>-.159</td>
<td>.151</td>
<td>.019</td>
</tr>
<tr>
<td>Spearman-Rho</td>
<td>MKS20B4D Mundtrockenheit Bromo 19 Uhr dichotom</td>
<td>Korrelationskoeffizient Sig. (2-seitig)</td>
<td>N</td>
<td>.179</td>
<td>-.107</td>
<td>-.072</td>
</tr>
<tr>
<td></td>
<td>MKSL4B4D MKSL Herzklopfen, Bromo 19 Uhr dichotom</td>
<td>Korrelationskoeffizient Sig. (2-seitig)</td>
<td>N</td>
<td>-.255</td>
<td>.033</td>
<td>.191</td>
</tr>
<tr>
<td></td>
<td>MAGENB4D MKSL 2 +21, Bromo 19 Uhr dichotom</td>
<td>Korrelationskoeffizient Sig. (2-seitig)</td>
<td>N</td>
<td>-.006</td>
<td>-.056</td>
<td>.054</td>
</tr>
<tr>
<td></td>
<td>KALTBD4 MKSL5 + 18, 19 Uhr dichotom</td>
<td>Korrelationskoeffizient Sig. (2-seitig)</td>
<td>N</td>
<td>-.028</td>
<td>.033</td>
<td>.096</td>
</tr>
<tr>
<td></td>
<td>WARMBD4 MKSL7 + 9, Bromo 19 Uhr dichotom</td>
<td>Korrelationskoeffizient Sig. (2-seitig)</td>
<td>N</td>
<td>-.192</td>
<td>.163</td>
<td>.023</td>
</tr>
</tbody>
</table>

* Korrelation ist auf dem Niveau von 0,05 signifikant (2-seitig).
** Korrelation ist auf dem Niveau von 0,01 signifikant (2-seitig).
400,- bar auf die Kralle!

Kannst Du Dir verdienen, wenn Du
⇒ männlich und Raucher bist
⇒ 18-35 Jahre alt bist
⇒ Student in Giessen oder Umgebung bist
⇒ 4 Nachmittage in 1-wöchigem Abstand Zeit hättest
⇒ mit der Einnahme eines handelsüblichen Präparats und Blutabnahme einverstanden bist
⇒ ein kostenloses Mittagessen nicht verschmähst

Ruf doch einfach an und mach einen Termin für weitere Infos aus bei
Claudia, Anja, Bettina, Christian oder Tatjana.

Tel. 99-26166

Abb. Werbematerial
Informationen zum Versuch

Zunächst einmal möchten wir Ihnen für Ihr Interesse an der Teilnahme unserer wissenschaftlichen Untersuchung danken.

Wir möchten Sie nun bitten, die Informationen zum Versuch in Ruhe zu lesen und evtl. aufgetretene Fragen zu stellen.

Ziel der Untersuchung

Ablauf der Untersuchung

Die Untersuchung besteht aus vier jeweils ca. 7-stündigen Einzelversuchen, die am gleichen Wochentag in vier aufeinander folgenden Wochen durchgeführt werden. Sie werden gebeten, pünktlich um 12:30 Uhr ins Psychologische Institut, Otto-Behagel-Str. 10F in den 5. Stock, Raum 509 zu kommen. Zwei Tage vor dem Versuch werden Sie zur Erinnerung noch einmal telefonisch kontaktiert.

An diesen Untersuchungstagen wird Ihnen zunächst von einem Mediziner eine venöse Verweilkanüle für die Blutabnahme gelegt. Aus dieser werden im Verlauf des Versuchs insgesamt 11 Blutproben a ca. 10 ml entnommen.

Desweiteren werden zur Erhebung physiologischer Maße (EKG, EMG) Elektroden auf die Haut geklebt. Hierbei wird natürlich kein Strom zugeführt, sondern elektrophysiologische Potentialenergie gemessen. Die EKG-Elektroden werden auf den Oberkörper aufgeklebt, wozu Sie sich bitte (falls erforderlich) vor dem jeweiligen Untersuchungstermin die Brusthaare abrasieren, Je eine Elektrode wird mit Kleberingen oberhalb bzw. unterhalb eines Auges befestigt.

Um 15.00 Uhr wird jeweils eine der Substanzen verabreicht. Weder Sie noch der Untersuchungsleiter wissen, welche Substanz an welchem Tag gegeben wird. Bei den Substanzen handelt es sich um handelsübliche Präparate, die kurzfristig die Verfügbarkeit der Überträgerstoffe Dopamin, Serotonin und Noradrenalin im Gehirn verändern sollen. Die hier verabreichte Einmaldosis liegt unter den für Therapiezwecke eingesetzten Dosierungen (s. Tabelle 1).

Die Substanzen werden jeweils mit 1 Glas Milch eingenommen.

Alle wichtigen Informationen bezüglich der Präparate haben wir in der folgenden Tabelle aufgelistet. Anzumerken ist jedoch, dass das Auftreten der unten angegebenen Nebenwirkungen unwahrscheinlich ist, da Sie jedes Medikament nur einmal und in niedriger Dosis einnehmen werden.
Während des Versuchs werden Sie zu verschiedenen Zeitpunkten gebeten, Fragebögen auszufüllen. Die Versuche werden jeweils um 19:30 Uhr abgeschlossen sein.

Sämtliche Daten von Ihnen werden selbstverständlich völlig anonym erfasst und verarbeitet und nicht an Dritte weitergegeben.

Tabelle 1: Informationen zu den Substanzen

<table>
<thead>
<tr>
<th>Substanzname</th>
<th>Citalopram</th>
<th>Bromicriptin</th>
<th>Reboxetin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handelsname</td>
<td>Cipramil®</td>
<td>Pravidel®</td>
<td>Edronax®</td>
</tr>
</tbody>
</table>

Dosierung	30 mg	1,25mg	2mg
Therapeutische Indikation	Depression und Morbus Parkinson	Depression	
Therapeutische Dosierung	40-60mg/Tag	≥ 5mg/Tag	8mg/Tag
Mögliche Nebenwirkungen	Unruhe, Übelkeit, Benommenheit, Schwitzen, Kopfschmerzen, Mundtrockenheit, Müdigkeit, gelegentlich Schwindel, Kribbeln, Zunahme der Herzfrequenz		

Die Teilnahme an der Studie wird mit DM 400,- vergütet. Die Bezahlung erfolgt nur bei vollständiger Teilnahme aller Sitzungen, da der Versuch nur in seiner Gesamtheit auswertbar ist, als Gesamtbetrag am letzten Untersuchungstermin.

Ein Abbruch des Experiments ist selbstverständlich – auch ohne Angabe von Gründen – zu jedem Zeitpunkt möglich, ein Anspruch auf anteilige Versuchsvergütung entsteht dann aber nicht.

Des Weiteren sollten sie unmittelbar nach Abschluss einer Sitzung nicht mit dem Auto fahren und am Abend des Versuchstages keinen Alkohol trinken.

Teilnahmebedingungen

Die folgenden Punkte sind Bedingungen und Instruktionen, die von den Teilnehmern gewährleistet werden müssen:

Bereitschaft…

- zur Teilnahme an allen vier Terminen
- an dem Tag vor der Untersuchung und am Untersuchungstag selbst keine Medikamente, Schokolade, kakaohaltigen Speisen und Getränke, Nüsse oder Bananen zu sich zu nehmen;
- am Untersuchungstag selbst zusätzlich keine koffeinhaltigen Getränke (Kaffee, schwarzer Tee, Cola) sowie keine Mittagsmahlzeit zu sich nehmen;
- am Vorabend des Untersuchungstages vor 24.00 Uhr zu Bett gehen;
- die Brustbehaarung (falls erforderlich) abzurasieren;
- psychische und körperliche Begleiterscheinungen vor, während oder nach jedem Versuch unmittelbar den Untersuchungsleitern mitzuteilen;
- zur gewissenhaften, vollständigen und wahrheitsgemäßen Beantwortung der Fragen im Gesundheitsfragebogen, damit schädliche Wechselwirkungen mit den verabreichten Substanzen ausgeschlossen werden können;
- nach Abschluss einer Sitzung nicht mit dem eigenen Fahrzeug zu fahren;

Haben Sie noch Fragen?
Einverständniserklärung

Ich habe die Information zum Versuch gelesen und verstanden. Etwaige Rückfragen sind von den Untersuchungsleitern zu meiner Zufriedenheit beantwortet worden.

Ich erkläre mich bereit, an der geschilderten Untersuchung (d.h. an allen vier Terminen) teilzunehmen und verpflchte mich, zu den vereinbarten Terminen (s.u.) im Psychologischen Institut zu erscheinen, es sei denn, dass zwingende Gründe eine Verschiebung des Termins unvermeidbar machen. In diesem Fall werde ich unverzüglich unter einer der folgenden Telefonnummern Bescheid geben:

Frau Dipl. Psych. C. Toll
(0641 / 9926066)

Frau Prof. Dr. Dr. P. Netter
(0641 / 9926150)

Sekretariat, Frau Teuscher
(0641 / 9926151)

Ich bin mit der jeweils einmaligen Gabe der Substanzen Bromocriptin, Citalopram und Reboxetin einverstanden und wurde ausführlich über Wirkungen, Nebenwirkungen und Dosierungen der jeweiligen Substanzen aufgeklärt.

Ich erkläre mein Einverständnis, dass mir am Anfang des Versuchs eine venöse Verweilbraunüle gelegt wird und dass aus dieser insgesamt ca. 110mL Blut entnommen werden. Ich bin einverstanden, dass zur Aufzeichnung von physiologischen Messwerten während der Sitzung drei Elektroden auf der Brustwand und zwei im Gesicht (über der Augenbraue bzw. unter dem Auge) geklebt werden. Desweiteren erkläre ich mich einverstanden, zu verschiedenen Zeitpunkten des Experiments Fragebögen auszufüllen und drei kurze Computertests durchzuführen.

Ich gewährleiste:

1. an dem jeweiligen Untersuchungstag **pünktlich um 12:30 Uhr** im Psychologischen Institut, Otto-Behagel-Str. 10F, Raum 509, einzutreffen
2. an **vier Hauptuntersuchungen**, die jeweils bis ca. 19:30 Uhr dauern, teilzunehmen. Die Untersuchungen finden statt am:

<table>
<thead>
<tr>
<th>Wochentag</th>
<th>Datum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. **am Vorabend** des Untersuchungstages vor 24 Uhr schlafen zu gehen;
4. an dem **Tag vor der Untersuchung** und **am Untersuchungstag selbst** keine Medikamente, keinen Alkohol, keine Schokolade, kakaohaltigen Speisen und Getränke, Nüsse oder Bananen zu mir zu nehmen
5. **am Untersuchungstag selbst** zusätzlich keine koffeinhaltigen Getränke (Kaffee, schwarzer Tee, Cola) sowie keine Mittagsmahlzeit zu mir zu nehmen;
6. **am Untersuchungstag** ab 12 Uhr nicht mehr zu rauchen;
7. die Brustbehaarung (falls erforderlich) vor dem Untersuchungstermin abzurasieren
8. psychische und körperliche Begleitscheinungen vor, während oder nach jedem Versuch unmittelbar den Untersuchungsleitern mitzuteilen;
9. die Fragen im Gesundheitsfragebogen sowie alle anderen wahrheitsgemäß und gewissenhaft beantwortet zu haben, damit schädliche Wechselwirkungen mit den verabreichten Substanzen ausgeschlossen werden können;
10. eigene Lektüre für die Wartezeiten im Experiment mitzubringen
11. nach Abschluss einer Sitzung nicht mit dem eigenen Fahrzeug zu fahren und keinen Alkohol zu trinken.

Für Brillenträger: Bitte vergessen Sie nicht, Ihre Brille mitzubringen und während des Versuches zu tragen.

Mir ist gesagt worden, dass ich die Versuche ohne Angabe von Gründen abbrechen kann, und dass meine Daten nicht namentlich, sondern in codierter (anonymisierter) Form verarbeitet und nicht an Dritte weitergegeben werden. Des Weiteren ist mir eine Vergütung für die Teilnahme in Höhe von DM 400,- nach Abschluss des gesamten Versuches zugesagt worden.

Giessen, den __________________

(Unterschrift des Probanden)
Danksagungen:

Ich möchte mich vielmals bedanken bei Frau Professor Dr. Dr. Netter für ihre scheinbar endlose Geduld und Unterstützung bei dieser Arbeit.
Lebenslauf

Name: Christian Brüggenolte

Geboren: 22.02.1975 in Lippstadt

Schulbildung: 08/81-07/85 Grundschule Nils Stensen Bad Waldliesborn
08/85-06/94 Marienschule, Gymnasium Lippstadt-Lipperbruch
06/94 Abitur

Zivildienst: 11/94-12/95 Rehabilitationszentrum für Orthopädie und Rheumatologie Klinik Eichholz in Bad Waldliesborn

Pflegepraktikum: 01/96-02/96 Ev. Krankenhaus Lippstadt

Hochschulstudium: 03/96-05/03 Humanmedizin an der Justus-Liebig-Universität Giessen

03/99 Ärztliche Vorprüfung
08/00 1. Staatsexamen
10/00-07/01 Experimentelle Doktorarbeit
03/02 2. Staatsexamen
04/02-03/03 Praktisches Jahr
1. Tertial: Dermatologie (Universität Giessen)
2. Tertial: Innere Medizin dto.
3. Tertial: Chirurgie dto.

Famulaturen: 09/00 Visceral- und Unfallchirurgie (Giessen)
03/01 Innere Medizin (Lippstadt)
08/01 Anaesthesiologie/ Intensivmedizin (Lohne)
09/01 Innere Medizin (Giessen)

Berufliche Laufbahn: 10/03-09/04 Visceral- und Unfallchirurgie Bethanien-Krankenhaus Dortmund-Hörde
seit 10/04 Orthopädie Bethanien-Krankenhaus Dortmund-Hörde

Christian Brüggenolte

Gießen, den 23.03.2006