Der lumbosakrale Übergangswirbel beim Deutschen Schäferhund
Formen, Häufigkeit und Genetik

Inaugural-Dissertation
zur Erlangung des Doktorgrades
beim Fachbereich Veterinärmedizin
der Justus-Liebig-Universität Giessen

Eingereicht von
CHRISTIAN JULIER-FRANZ

Giessen 2006
Der lumbosakrale Übergangswirbel beim Deutschen Schäferhund
Formen, Häufigkeit und Genetik

Inaugural-Dissertation
zur Erlangung des Doktorgrades
beim Fachbereich Veterinärmedizin
der Justus-Liebig-Universität Giessen

Eingereicht von
CHRISTIAN JULIER-FRANZ
Tierarzt aus Landau

Giessen 2006
Mit Genehmigung des Fachbereich Veterinärmedizin
der Justus-Liebig-Universität Giessen

Dekan: Prof. Dr. M. Reinacher

1. Berichterstatter: Prof. Dr. M. Kramer

2. Berichterstatter: Prof. Dr. Dr. h.c. R. Leiser

Tag der mündlichen Prüfung: 18.05.2006
Meinem Bruder
1. Einleitung... - 1 -
2. Literaturteil... - 2 -
2.1. Anatomische Grundlagen .. - 2 -
2.1.1. Wirbelsäule.. - 2 -
2.1.2. Wirbelzahl... - 3 -
2.1.3. Lendenwirbel ... - 4 -
2.1.4. Kreuzbein.. - 6 -
2.1.5. Lumbosakralgelenk.. - 8 -
2.1.6. Ileosakralgelenk.. - 8 -
2.1.7. Statik und Dynamik... - 9 -
2.2. Entwicklung der Wirbelsäule... - 10 -
2.2.1. Entwicklung der Sklerotome ... - 10 -
2.2.2. Ausbildung der endgültigen Wirbelkörper... - 12 -
2.2.3. Entwicklung der Wirbelbögen ... - 12 -
2.2.4. Entwicklung der Wirbelfortsätze .. - 13 -
2.2.5. Knorpelstadium der Wirbelsäule... - 13 -
2.2.6. Verknöcherung der Wirbelsäule.. - 13 -
2.2.7. Fusion der Kreuzbeinwirbel.. - 14 -
2.3. Biomechanik des Lumbosakralen Übergangs .. - 15 -
2.3.1. Biomechanik des Lumbosakralgelenks (LSG).. - 15 -
2.3.2. Biomechanik des Ileosakralgelenks (ISG).. - 24 -
2.4. Lumbosakrale Übergangswirbel (LÜW) ... - 28 -
2.4.1. Definition Übergangswirbel .. - 28 -
2.4.2. Lumbosakrale Übergangswirbel .. - 29 -
2.4.3. Lumbalisation und Sakralisation ... - 30 -
2.4.4. Entstehung von lumbosakralen Übergangswirbeln.. - 33 -
2.4.5. Formen des lumbosakralen Übergangswirbels... - 33 -
2.4.6. Häufigkeit der lumbosakralen Übergangswirbel beim Hund - 36 -
2.4.7. Lumbosakrale Übergangswirbel und Geschlecht... - 41 -
2.4.8. Lumbosakrale Übergangswirbel und Hüftgelenksdysplasie............................. - 41 -
2.4.9. Lumbosakrale Übergangswirbel und Achsenabweichungen der Wirbelsäule... - 43 -
2.4.10. Lumbosakrale Übergangswirbel und Kauda equina.. - 44 -
2.4.11. Heritabilität von lumbosakralen Übergangswirbeln - 49 -
2.4.12. Sakrokokzygealer Übergangswirbel (SÜW) ... - 49 -
2.5. Röntgenuntersuchung des lumbosakralen Bereichs - 50 -
2.5.1. Konventionelles Röntgen ... - 50 -
2.5.2. Computertomographische Untersuchung (CT) ... - 53 -
2.6. Magnetresonanztomographische Untersuchung (MRT) - 56 -
3. Eigene Untersuchungen .. - 57 -
3.1. Material ... - 57 -
3.2. Methoden ... - 57 -
3.2.1. Identität ... - 57 -
3.2.2. Identitätskontrolle ... - 57 -
3.2.3. Auswertbarkeit .. - 58 -
3.2.4. Beurteilungskriterien ... - 58 -
3.2.4.1. Querfortsätze ... - 58 -
3.2.4.2. Dornfortsätze ... - 61 -
3.2.4.3. Wirbelkörper .. - 62 -
3.2.5. Kreuzbeinwirbelanzahl ... - 64 -
3.2.6. Sakrokokzygealer Übergang ... - 64 -
3.2.7. Hüftgelenksdysplasie-Grad .. - 65 -
3.3. Formen des lumbosakralen Übergangs ... - 67 -
3.3.1. Normaler lumbosakraler Übergang ... - 67 -
3.3.2. Symmetrischer LÜW ... - 68 -
3.3.2.1. Isolierter Processus spinosus des ersten Kreuzbeinwirbels - 68 -
3.3.2.2. Ausgeprägter symmetrischer LÜW ... - 68 -
3.3.3. Asymmetrischer LÜW ... - 70 -
3.3.4. Datenerfassung ... - 71 -
3.5. Statistik .. - 71 -
4. Ergebnisse ... - 72 -
4.1. Geschlecht und Alter der Tiere ... - 72 -
4.2. Auswertbarkeit der Aufnahmen und Ausschlusskriterien - 73 -
4.3. Anatomische Merkmale des lumbosakralen Übergangs - 74 -
4.3.1. Länge der Querfortsätze .. - 74 -
4.3.2. Ausrichtung der Querfortsätze .. - 75 -
4.3.3. Kontaktaufnahme des Querfortsatzes mit dem Kreuzbein - 75 -
4.3.4. Abstand zwischen den Procc. spinosi der Crista dorsalis - 76 -
4.3.5. Wirbelkörper - 77 -
4.4. Lumbosakrale Übergangswirbel - 77 -
4.5. Formen des asymmetrischen LÜW - 78 -
4.6. Zusammenhang zwischen lumbosakralen und sakrokzygealen Übergangswirbeln - 79 -
4.7. Anzahl der Kreuzbeinwirbel - 79 -
4.8. Lumbosakrale Übergangswirbel und Hüftgelenksdysplasie - 80 -
4.8. Heritabilitätsschätzung - 83 -
5. Diskussion - 85 -
5.1. Literatur - 85 -
5.2. Material und Methoden - 92 -
5.3. Ergebnisse - 95 -
6. Zusammenfassung - 102 -
7. Summary - 103 -
8. Literaturverzeichnis - 104 -
Verzeichnis der Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>C</td>
<td>Halswirbel</td>
</tr>
<tr>
<td>C1-7</td>
<td>1.-7. Halswirbel</td>
</tr>
<tr>
<td>CES</td>
<td>Kauda equina Kompressionssyndrom</td>
</tr>
<tr>
<td>CT</td>
<td>Computertomographie</td>
</tr>
<tr>
<td>Cy</td>
<td>Schwanzwirbel</td>
</tr>
<tr>
<td>DD</td>
<td>degenerative Diskopathie</td>
</tr>
<tr>
<td>DLSS</td>
<td>degenerative lumbosakrale Stenose</td>
</tr>
<tr>
<td>DSH</td>
<td>Deutscher Schäferhund</td>
</tr>
<tr>
<td>For.</td>
<td>Foramen</td>
</tr>
<tr>
<td>Forr.</td>
<td>Foramina</td>
</tr>
<tr>
<td>HD</td>
<td>Hüftgelenksdysplasie</td>
</tr>
<tr>
<td>ISG</td>
<td>Ileosakralgelenk</td>
</tr>
<tr>
<td>L</td>
<td>Lendenwirbel</td>
</tr>
<tr>
<td>L1-7</td>
<td>1.-7. Lendenwirbel</td>
</tr>
<tr>
<td>Lig.</td>
<td>Ligamentum</td>
</tr>
<tr>
<td>Ligg.</td>
<td>Ligamenta</td>
</tr>
<tr>
<td>LSG</td>
<td>Lumbosakralgelenk</td>
</tr>
<tr>
<td>LÜW</td>
<td>lumbosakraler Übergangswirbel</td>
</tr>
<tr>
<td>LWS</td>
<td>Lendenwirbelsäule</td>
</tr>
<tr>
<td>MRT</td>
<td>Magnetresonanztomographie</td>
</tr>
<tr>
<td>Proc.</td>
<td>Processus (Singular)</td>
</tr>
<tr>
<td>Procc.</td>
<td>Processus (Plural)</td>
</tr>
<tr>
<td>PS S1</td>
<td>Processus spinosus des ersten Kreuzbeinwirbels</td>
</tr>
<tr>
<td>S</td>
<td>Kreuzbeinwirbel</td>
</tr>
<tr>
<td>S1-3</td>
<td>1.-3. Kreuzbeinwirbel</td>
</tr>
<tr>
<td>SÜW</td>
<td>sakrokokzygealer Übergangswirbel</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>Th</td>
<td>Brustwirbel</td>
</tr>
<tr>
<td>V</td>
<td>Vena</td>
</tr>
<tr>
<td>ZWS</td>
<td>Zwischenwirbelspalt</td>
</tr>
</tbody>
</table>
1. Einleitung

Die lumbosakralen Übergangswirbel (LÜW) als Variationen im Bereich der Wirbelsäule bei Mensch und Tier sind schon seit langem bekannt. Aufgrund der unterschiedlichen Belastung der Wirbelsäulen von Mensch und Tier, sowohl im Stand als auch im Gang, lassen sich die Ergebnisse der Untersuchungen bei Menschen nicht auf den Hund übertragen.

Da es sich bei dem Untersuchungsmaterial um standardisierte HD-Aufnahmen handelt, ist eine spätere Reproduktion der Ergebnisse gewährleistet.

Erfahrungen anderer Autoren mit modernen bildgebenden Verfahren wie MRT und CT werden zusammengefasst und erörtert. Die Biomechanik des lumbosakralen Übergangs wird dargestellt und die möglichen Auswirkungen eines LÜW auf die Bewegungsabläufe besprochen. Die Einteilung der LÜW in unterschiedliche Formen und die Zuordnung zu Sakralisationen und Lumbalisationen der verschiedenen Autoren werden zusammengefasst und verglichen. Besondere Beachtung findet hierbei die Form des „isolierten Processus spinosus des ersten Kreuzbein-".

2. Literaturteil

2.1. Anatomische Grundlagen

2.1.1. Wirbelsäule

Der Hund besitzt im Allgemeinen sieben Lendenwirbel, Vertebrae lumbales, seltener sind auch nur sechs Wirbel angelegt.

Das Kreuzbein, Os sacrum, besteht bei den Fleischfressern aus drei Wirbeln, die mit ca. 18 Monaten vollständig knochern verschmelzen. Dem entsprechend zeigt das Kreuzbein nur eine Extremitas cranialis bzw. caudalis (DYCE et al., 1991; NICKEL et al., 1992).

Die Normalform der Wirbelsäule des Hundes ergibt somit: 7 Halswirbel (C), 13 Brustwirbel (Th), 7 Lendenwirbel (L), 3 Kreuzbeinwirbel (S) und 20-23 Schwanzwirbel (Cy).

2.1.2. Wirbelzahl

STARCK (1979) erstellt vier mögliche Thesen zur Entstehung von überzähligen Wirbeln oder von der Norm abweichenden Wirbelsäulenformeln:

1.) Terminale Erhöhung oder Verminderung der Wirbelzahl;
2.) Einfügen oder Herauslösen eines einzelnen Wirbels;
3.) Nicht die Wirbelzahl sondern die Wirbelsäulenlänge ist festgelegt und kann unterschiedlich eingeteilt werden (Nonius-Prinzip);
4.) Verschiebung des Beckenrings in der späten embryonalen Phase um bis zu 2 Wirbelsegmente
2.1.3. Lendenwirbel

Abb. 1: 7. Lendenwirbel, Sicht von kranial
1 Extremitas cranialis; 2 Incisura vertebralis cranialis; 3 Proc. transversus; 4 Proc. articularis caudalis; 4’ Proc. articularis cranialis; 5 Proc. spinosus; 6 For. vertebrale

Abb. 2: 7. Lendenwirbel, Sicht von lateral
1 Extremitas cranialis; 2 Extremitas caudalis; 3 Incisura vertebralis caudalis; 4 Proc. transversus; 5 Proc. articularis caudalis; 5’ Proc. articularis cranialis; 6 Proc. spinosus

Die Wirbelfortsätze dienen als Ansatzpunkte für Muskeln und sind auch an der Bildung gelenkiger Verbindungen beteiligt.

Die Form der kleinen Wirbelgelenke kann variieren von eben und kongruent, flach bogenförmig, ventral gekrümmt bis dorsal geknickt (HENNINGER und WERNER, 2002 a; Abb. 9).

Beim DSH sind die Gelenkflächen der kleinen Wirbelgelenke von L7-S1 oft keine Schiebegelenke, sondern bogenförmig und stellen sich teilweise walzenförmig dar (LANG, 1993; Abb. 11). Die kranialen Gelenkfortsätze fusionieren im kaudalen Anteil der Lendenwirbelsäule mit den Zitzenfortsätzen, Procc. mammillares, zu den Procc. mammilloarticulares.

2.1.4. Kreuzbein

Abb. 3: Kreuzbein, Sicht von kraniodorsal
1 Extremitas cranialis; 2 For. vertebrale; 3 For. sacrale ventrale; 4 Proc. articularis cranialis;
4´ Rudimente der Procc. articales; 4´´ Proc. articularis caudalis;
5 Ala sacralis; 5´ ihre Facies auricularis; 6 Pars lateralis; 7 Procc. spinosi

Abb. 4: Kreuzbein, Sicht von lateral
1 Ala sacralis; 1´ ihre Facies auricularis; 1´´ Anteil 2. Kreuzbeinwirbel; 2 Pars lateralis;
3 Proc. articularis caudalis 3´ Rudimente der Procc. articales; 4 Procc. spinosi;
5 For. sacrale dorsale
2.1.5. Lumbosakralgelenk

2.1.6. Ileosakralgelenk

2.1.7. Statik und Dynamik

Dem „Durchhängen“ des Brückenbogens bei Belastung wirken im Bereich der Lendenwirbelsäule neben der aktiven Bauchmuskulatur das ventrale Längsband, Lig. longitudinale ventrale, und die sich bei zu starkem Druck von dorsal ineinander verkeilenden Dornfortsätze entgegen.

Das „Überspannen“ des Bogens wird durch die Spannung der Muskeln und Sehnen des Obergurtes und der Stauchung der Wirbelkörper und Zwischenwirbelscheiben des Untergurtes verhindert.

Kopf und Hals, bzw. Kreuzbein und Schwanz werden in diesem Modell als „Konsolen“ betrachtet, die bei Bewegung die wechselnden zentrifugalen Schubkräfte im Untergurt neutralisieren.

Die Vordergliedmaßen sind als Stützgliedmaßen weniger gewinkelt als die Hintergliedmaßen, die über das Hüftgelenk, Becken, Kreuzdarmbeingelenk und das Lendenkreuzbeingelenk den Bewegungsimpuls auf den Rumpf übertragen. Die Gelenke der Gliedmaßen werden durch Sehnen und Muskeln am Einknicken gehindert. Pflanzenfresser, die ein relativ hohes Körpergewicht aufweisen, zeigen mehr sehnhige Strukturen, wohingegen beim relativ leichten Fleischfresser die Muskeln überwiegen.
Dies ermöglicht dem Fleischfresser einen schnellen und wendigen Bewegungsablauf, bedeutet aber gleichzeitig, dass er früher ermüdet und sich ablegt, da er viel aktive Muskelarbeit leisten muss, wo die Pflanzenfresser durch passiv gespannte Sehnen Energie sparen (NICKEL et al., 1992).

Trotz dieser stabilen Konstruktion des Rumpfes ist eine erhebliche seitliche Beweglichkeit der Brust- und Lendensegmente der Fleischfresser möglich, um sich zum Beispiel im Schlaf einzurollen (DYCE et al., 1991).

2.2. Entwicklung der Wirbelsäule

2.2.1 Entwicklung der Sklerotome

Die Mesodermzellen der Chorda dorsalis verlieren ihre Fortsätze, reihen sich erst aneinander (Geldrollenstadium) und bilden dann die typischen Vakuolen. Bei den Wirbeltieren wird diese Anordnung später wieder aufgegeben und die Zellen liegen im Querschnitt nebeneinander. Umschließend nimmt das Perichordalskelett die Chorda dorsalis und das Neuralrohr auf. Es ist erst häutig, dann knorpelig und später knochern angelegt.

Abb. 5: Entwicklung der Wirbelsäule, schematisch (nach CLARA, 1966; modifiziert)

A: Lage der Sklerotome; B: Lage der definitiven Wirbel, knorpeliges Stadium;
C: Lage der definitiven Wirbel, verknöcherte Wirbel
2.2.2. Ausbildung der endgültigen Wirbelkörper

2.2.3. Entwicklung der Wirbelbögen

2.2.4. Entwicklung der Wirbelfortsätze

2.2.5. Knorpelstadium der Wirbelsäule

2.2.6. Verknöcherung der Wirbelsäule

Abb. 6: Verknöcherungskerne der Wirbelkörper, schematisch

- Primäre Ossifikationszentren;
- sekundäre Ossifikationszentren;
- Ossifikationszentren im Bereich der vorderen Kreuzbeinwirbel (ventrale Seitenteile)

2.2.7. Fusion der Kreuzbeinwirbel

2.3. Biomechanik des Lumbosakralen Übergangs

2.3.1. Biomechanik des Lumbosakralgelenks (LSG)

Abb. 7: Vereinfachte Darstellung von Translations- und Rotationsbewegung

Die Gesamtbeweglichkeit zwischen zwei Wirbeln lässt sich durch den Winkel zwischen den Wirbelkanten bei maximaler Extension und maximaler Flexion bestimmen, sagt aber nichts über die Bewegungsart aus.

Durch die steile Stellung der kaudalen Gelenkfortsätze am letzten Lendenwirbel sind im Lumbosakralgelenk praktisch keine Seitwärtsbewegungen festzustellen. Vielmehr findet eine federnd-drehende Wellenbewegung statt (GEMBARDT, 1974).

Die Wirbelsäulenpräparate umfassen das Kreuzbein und die LWS nach kranial bis einschließlich L3. In einer Spannkonstruktion wird das LSG in 5°-Schritten gebeugt und gestreckt. Durchschnittlich zeigen die Präparate eine Gesamtbeweglichkeit im Lumbosakralgelenk von 60° auf.

Weibliche Tiere zeigen eine signifikant größere Beweglichkeit (im Schnitt etwa 5°) als männliche. Diesen Unterschied erklären die Autoren durch das höhere Körpergewicht der Rüden und den stärkeren Arbeitseinsatz im jungen Alter, die zu einer Umformung der Gelenke führen können.

WALLA (1986) sieht in einer erhöhten Beweglichkeit mit zu kleinem lumbosakralem Winkel in Extension einen Erkrankungsgrund für CES.

Anhand der Röntgenaufnahmen wird mit Hilfsgeraden für die einzelnen Schritte das Drehzentrum der Bewegung bestimmt (BÜRGER und LANG, 1993).

Das neurologisch auffällige Tier zeigt überwiegend Rotationsbewegungen im LSG. Von den beiden Hunden mit Spondylosen weist einer hauptsächlich Translationsbewegungen und der andere eine Mischform auf. Allgemein überwiegt im kaudalen Bereich der LWS die Rotationsbewegung und im kranialen Bereich die Translationsbewegung.

Hunde mit blockiertem ISG (siehe auch 2.3.2.) können den Bewegungsimpuls der Hinterhand nicht mehr im ISG bündeln und geben so die federnd-schwingende Wellenbewegung über das fixierte Kreuzbein direkt an das LSG weiter. Hauptverantwortlich für die Impulsweitergabe ist somit der Discus intervertebralis zwischen L7 und S1. Die Überbelastung der Bandscheibe führt zu Überdehnung der periostalen Verankerung des Lig. longitudinale ventrale und zu Osteophyten- und Ankylosenbildung im Verlauf des Periost (GEMBARDT, 1974; DÄMMRICH, 1981).

HANNA (2001) untersucht 34 Hunde (darunter 19 DSH), die mit CES vorgestellt werden und gleichzeitig eine Osteochondrosis dissecans dorsal an der kranialen Endplatte von S1 oder dorsal an der kaudalen Endplatte von L7 zeigen. 21 Hunde weisen eine dynamische Instabilität auf, die sich durch Überlagerung der Gelenkflächen der kleinen Wirbelgelenke von L7 und S1 und Verengung des Spatium lumbosakrale im ventrodorsalen Strahlengang bzw. durch Ventralverlagerung des Kreuzbeins auf der laterolateralen Röntgenaufnahme ausdrückt.

Abb. 8: Größe der kaudalen Gelenkfortsätze von L7, ihre Gelenkflächen und der daraus resultierende Bewegungsspielraum (schematisch, vereinfacht)

A: kleine Hunderassen:
Die kaudalen Gelenkfortsätze von L7 sind klein und ihre Gelenkfläche nimmt etwa 50% der Oberfläche ein. Die Gelenkfläche liegt größtenteils kaudal der Wirbelendplatte. Ein weites Vorgreifen der kranialen Gelenkfortsätze von S1 findet nicht statt

B: große Hunderassen:
Die kaudalen Gelenkfortsätze von L7 sind groß und ihre Gelenkfläche nimmt bis zu 95% der Oberfläche ein. Bis zu 45% der Gelenkfläche liegen kranial der Wirbelendplatte. Ein weites Gleiten der kranialen Gelenkfortsätze von S1 ist möglich und belastet so die Bandscheibe.

Der DSH zeigt im Vergleich zu anderen großrahmigen Hunden einen kleineren Inklinationswinkel βL7 (11,1° +/- 4,6°), die Gelenkflächen liegen somit parallel zur Wirbelsäulenlängsachse.

Die Inklinationswinkel αL7¹ und αL7² sind bei großen Hunden größer als bei kleinen Hunden, die Gelenkflächen stehen somit steiler.

Bei 63% der kleinen Hunde und 50% der großen Hunde ist die Gelenkfläche flach (αL7¹=αL7²). 37% der kleinen und 50% der großen Hunde zeigen eine konvexe Gelenkfläche (αL7¹>αL7²), was eine axiale Rotationsbewegung ermöglicht.
Bei jungen Hunden ist βL7 in der frühen Phase (<15 Wochen) negativ und somit die Gelenkfläche nicht nach kaudolateral sondern nach kaudomedial gerichtet. Sowohl βL7 als auch αL71 und αL72 werden mit zunehmendem Alter größer und die Gelenkflächen schrittweise aus einer mehr horizontalen in eine stellere Anlage umgebaut.

Die Vergrößerung der Fazettengelenkfläche nach kranial, die Abwesenheit eines Hilfsfortsatzes (GRUSENDOF, 1991) und eine steile Stellung der Gelenkflächen mit einem kleinen Inklinationswinkel βL7 ermöglichen ein leichtes Gleiten der Gelenke in kraniokaudaler Richtung (Translationsbewegung) und sind eine Prädisposition für DLSS.

Ist der Inklinationswinkel βL7 groß wird ein Gleiten in kraniokaudaler Richtung unterbunden, da der kraniale Gelenkfortsatz von S1 nach medial zum Wirbelbogen hin abgelenkt wird (BREIT und KÜNZEL, 2001).

Abb. 9: Schematische Darstellung der Form der Gelenkflächen des Proc. articularis cranialis des Kreuzbeins (linke Linie) und des Proc. articularis caudalis von L7 (rechte Linie) im CT-Bild (nach HENNINGER und WERNER, 2002)

A: Gerade, kongruent verlaufend; B: Ventral gekrömt; C: Bogenförmig konkav; D: Dorsal geknickt

Abb. 10: Gelenkstropismus (LANG, 2003)

Unterschiedliche Stellung der einzelnen kleinen Wirbelgelenkspalten der kaudalen LWS

Die Winkelung ist im kranialen Anteil der Lendenwirbelsäule fast sagittal und geht nach kaudal in eine Winkelung von etwa 35°-45° über. Dieser Übergang findet beim DSH sehr abrupt bei L7-S1 statt, wohingegen er sich bei den anderen Rassen über mehrere Wirbel erstreckt (Tab. 1).

Beim DSH ist die Winkeldifferenz der Fazettengelenke zwischen L7-S1 und L6-L7 fast doppelt so hoch wie bei den anderen Rassen, und die Winkeldifferenz zwischen L6-L7 und L5-L6 ist kleiner als die der anderen Rassen. Diese plötzliche Änderung in der Winkelstellung bündelt die Rotationsbewegung der Wirbelsäule in der Längsachse auf den lumbosakralen Übergang und führt zu einer übermäßigen Belastung der verschiedenen Anteile der lumbosakralen Verbindung, wie Bandscheibe, Fazettengelenke oder die Ligg. longitudinales.
Neben der Winkelung ist auch die Form von großer Bedeutung. Ein leicht gewinkelter oder gar runder Gelenkspalt vergrößert die Gelenkfläche und die Stabilität. 80% der Fazettengelenke der Lendenwirbelsäule beim DSH zeigen eine gerade, nur 17% eine gewinkelte und 3% eine runde Form. Bei den anderen Rassen überwiegt die runde Form (55%), gefolgt von der geraden (26%) und der gewinkelten (19%).

Tab. 1: Winkelung der Fazettengelenke der kaudalen Lendenwirbelsäule (LANG, 2003)

<table>
<thead>
<tr>
<th></th>
<th>DSH</th>
<th>Differenz</th>
<th>Andere Rasse</th>
<th>Differenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>L5 - L6</td>
<td>10,5°</td>
<td>4,7°</td>
<td>18,4°</td>
<td>6,7°</td>
</tr>
<tr>
<td>L6 - L7</td>
<td>15,2°</td>
<td>19,7°</td>
<td>25,1°</td>
<td></td>
</tr>
<tr>
<td>L7 – S1</td>
<td>34,9°</td>
<td>36,4°</td>
<td>11,3°</td>
<td></td>
</tr>
</tbody>
</table>

Abb. 11: Formen der Fazettengelenke im CT-Bild (LANG, 2003)

A: gerade Form B: gewinkelte Form C: runde Form
2.3.2. Biomechanik des Ileosakralgelenks (ISG)

81 Wirbelsäulen werden mittels Röntgenaufnahmen auf Spondylopathien untersucht. 29 Tiere zeigen keine Veränderungen, bei acht sind nur geringgradige Spondylopathien in Form von ventralen Exostosen festzustellen. Bei 44 Hunden sind mittelgradige bis schwere Spondylopathien zu erkennen, wobei es bei 28 Tieren vor allem das Lumbosakralgelenk betrifft. Unter den Hunden mit Veränderungen am Lumbosakralgelenk befinden sich zehn Tiere mit Ankylosen im ISG.
Alle DSH und Boxer, die älter als drei Jahre sind, zeigen veränderte Ileosakralgelenke (GEMBARDT, 1974).
Der Hund hat im Vergleich zu den Klauen- und Huftieren nur eine schwache Verspannung des Beckens mit dem Kreuzbein. Das Lig. sacrotuberale latum ist auf das Lig. sacrotuberale verkleinert, was eine deutliche Verringerung der Stabilität bedingt. Seitliche Traumata oder gynäko- bzw. andropathische Geschehen können zu einer Blockierung des ISG führen. Nach ZOHMANN und FUCHS (2000) kann mittels ausführlicher Anamnese, klinischer Untersuchung unter Berücksichtigung des zugehörigen Myotoms (Kruppen- und Glutealmuskulatur), Viszeroms (Beckenorgane), Sklerotoms (Beckengürtel) und Dermatoms (Hautsegment zwischen sechstem Lendenwirbel und Kreuzbeinmitte) sowie Gelenksfunktionsprüfung („Federtest“) die Diagnose blockiertes ISG gestellt werden.
Führt die digitale Palpation zu einer Schmerzreaktion ist von einer reversiblen Blockierung auszugehen, zeigt das Tier jedoch keine Schmerzen handelt es sich um einen irreversiblen, schon ankylosierten Vorgang. Lokale Infiltration, Gelenksinjektionen ins ISG, segmentale Akupunktur und manuelle Deblockierung bieten sich als Therapie von reversiblen Fällen an (ZOHMANN und FUCHS, 2000).

Das Pferd als schwergewichtiger Pflanzenfresser hat ein fast horizontal gestelltes ISG. Beim Hund steht das ISG jedoch steiler, bei großen Rassen wie dem DSH sogar fast sagittal (BREIT und KÜNZEL, 2001). Diese Stellung ermöglicht zwar einen gewissen Grad an Elastizität, verringert aber die Tragfähigkeit. Die Gewichtslast auf der Hinterhand beim stehenden Hund entspricht etwa 30-40% der Körpermasse. In Bewegung erhöht sich die Last auf etwa das Dreifache der Körpermasse.

Inklinationswinkel α bezeichnet die Neigung zur sagittalen Ebene, β_1 die Neigung zur horizontalen Ebene und β_2 die Tiefe der konkaven Wölbung der Kreuzbeinflügel. Die Gewichtslast wird als Quotient von Gewicht und Kreuzbeinflügelfläche angegeben. Die Zahlen werden nicht absolut, sondern relativ zu den Werten des Yorkshire Terriers aufgezeichnet. Die Gewichtslast kleiner Rassen entspricht mit Ausnahme des Maltesers etwa dem 1,4- bis 1,6-fachen, bei den großen Rassen sogar dem 1,7- bis 2,7-fachen der Gewichtslast des Yorkshire Terriers. Der Inklinationswinkel α ist bei großen Rassen signifikant (5,6° +/- 2,7°) kleiner als bei kleinen Rassen (7,5° +/- 3,2°). Der DSH zeigt einen besonders kleinen Inklinationswinkel α. Bei 43% aller DSH ist er kleiner als 3,2°. Diesen Wert hat sonst nur noch ein großer Münsterländer.

Die Beckenringanomalie wird häufiger unilateral, und bei weiblichen Tieren gefunden. Der Boxer zeigt eine Rassenprädisposition für diese Erkrankung.

Knöcherne Veränderungen können am Präparat vor allem im kranioventralen und kaudalen Bereich der ISG nachgewiesen werden. Der kaudoventrale Anteil des ISG ist nur bei einem Hund betroffen. Röntgenologisch lassen sich die Ankylosen abhängig von ihrer Ausprägung im kaudoventralen und im kranioventralen Anteil des ISG gut, im kaudalen wegen Überlagerungen mit verkalkenden Bandstrukturen schlecht darstellen. Die Ankylosen treten häufiger beiderseits als unilateral auf. Sie zeigen sich vermehrt bei Rüden und Hunden großer Rassen.

2.4. Lumbosakrale Übergangswirbel (LÜW)

2.4.1. Definition Übergangswirbel

Übergangswirbel können zwischen allen Wirbelsäulenabschnitten auftreten. Treten an mehreren Segmentgrenzen Übergangswirbel auf, kann man eine kopf- oder steiβwärts gerichtete Orientierung erkennen (JUNGHANNS, 1939).

Zervikothorakalen, thorakolumbalen und sakrokokzygealen Übergangswirbeln wird keine klinische Bedeutung zugeordnet. LÜW können am Entstehen einer HD oder eines CES mitbeteiligt sein (MORGAN, 1999 b).

2.4.2. Lumbosakrale Übergangswirbel

Der LÜW ist ein Wirbel an der Segmentgrenze zwischen Lendenwirbelsäule und Kreuzbein, der Merkmale beider Abschnitte aufweist. Dieses kann sich im einzelnen auf Asymmetrien im Bereich der Wirbelfortsätze (STIEVE, 1921) beziehen, oder soweit führen, dass der Wirbel durch komplette Annahme der Morphologie des benachbarten Wirbelsäulenabschnittes zu einer Mehr- oder Minderzahl der Wirbel in den einzelnen Segmenten führt (BLUMENSAAT und CLASING, 1932).

2.4.3. Lumbalisation und Sakralisation

JUNGHANNS (1939) sieht in der Sakralisation und der Lumbalisation beim Menschen zwei Prozesse, die rein morphologisch, ohne genaue Kenntnis der Wirbelzahl, nicht unterschieden werden können.

MORGAN et al. (1993) weist darauf hin, dass bei Lumbalisationen des ersten Kreuzbeinsegmentes häufig auch gleichzeitig eine Sakralisation des ersten Schwanzwirbels vorliegt und so wieder ein Kreuzbein aus drei Wirbeln entsteht.

LARSEN (1977) liegen in seiner Auswertung von HD-Begleitschreiben nur wenige Röntgenaufnahmen vor, und eine große Zahl lassen nur einen kleinen Teil der Lendenwirbelsäule erkennen, so dass die genaue Wirbelzahl nicht bestimmt werden kann. In den wenigen Fällen mit komplett in Röntgenaufnahmen vorliegenden Lendenwirbelsäulen zeigen sich die LÜW meistens als Sakralisation und so schließt der Autor, dass es sich beim Großteil der LÜW um Sakralisationen des letzten Lendenwirbels handelt.

Abb. 13: Lage und Winkelung der kranialen Gelenkfortsätze von L7 (A) und S1 (B)
(nach Winkler und Löfler, 1986)
A: Die Gelenkfortsätze am letzten Lendenwirbel stehen eng beieinander und sind steil gewinkelt
B: Die Gelenkfortsätze am ersten Kreuzbeinwirbel stehen weiter auseinander und sind flacher gewinkelt

Das isolierte Auftreten eines Proc. spinosus an S1 (PS S1) und seine Entfernung zum Dornfortsatz des zweiten Kreuzbeinwirbels auf Beckenaufnahmen im ventrodorsalen Strahlengang wird als weiteres Erkennungsmerkmal für eine Lumbalisation verwendet. Mit zunehmendem Grad der Lumbalisation vergrößert sich der Abstand zwischen den Dornfortsätzen.
WINKLER (1985) teilt die Lumbalisationen in drei Formen ein. Form A zeichnet sich durch einen isolierten PS S1 und eine ansatzweise Aufteilung der kranialen Kreuzbeinflügelkontur in Querfortsatz und kranialen Gelenkfortsatz, die durch eine bogenförmige Verbindungslinie getrennt sind. Form B entspricht in weiten Zügen Form A, nur dass hier die Querfortsätze deutlich zu erkennen sind und die Größe eines normalen Lendenwirbelquerfortsatzes aufweisen. Es können Mischformen vorkommen, so dass eine Kreuzbeinseite Form A und die andere Form B zeigt. Form C zeigt zusätzlich zu den Veränderungen von Form B einen Gelenkspalt zwischen dem ersten und zweiten Kreuzbeinsegment.

Sakralisationen zeigen sich durch Kontaktaufnahme eines oder beider Lendenwirbelquerfortsätze mit der Darmbeinschaufel. WINKLER (1985) betont, dass die einzelnen Formen der Lumbalisation im Gegensatz zu den Sakralisationen niemals einseitig auftreten und schließt daraus, dass die Lumbalisation nicht eine Umkehrung der Sakralisation darstellt.

2.4.4. Entstehung von lumbosakralen Übergangswirbeln

2.4.5. Formen des lumbosakralen Übergangswirbels

Es gibt jeweils vier Grade, die beschreiben, ob der vorliegende Befund physiologisch ist oder eine geringe, mittlere oder schwere Ausprägung eines Charakteristikums einer Sakralisation, Lumbalisation oder eines LÜW ist.

Als Beispiel veranschaulicht auf einer Röntgenaufnahme im ventrodorsalen Strahlengang die erkennbare Ausbildung eines ventralen Seitenteils die Einteilung. Ein fehlendes ventrales Seitenteil ist ein ausgeprägtes Merkmal an S1 bei einer Lumbalisation, ein physiologischer Befund an L7 bei einer Sakralisation und ein nicht zu beurteilender Befund bei einem LÜW. Zeigt sich ein ventrales Seitenteil am morphologisch verdächtigen Wirbel in Form und Größe eines normalen Seitenteils eines Kreuzbeinwirbels, ist dies ein physiologischer Befund bei einer Lumbalisation von S1, einem ausgeprägten Merkmal einer Sakralisation von L7 und ein Hinweis auf einen LÜW.

2.4.6. Häufigkeit der lumbosakralen Übergangswirbel beim Hund

Nach JUNGHANNS (1939) streuen die Häufigkeitsangaben von LÜW beim Menschen sehr weit. Es werden Zahlen von 0,6%-25% angegeben. Untersucht wurden unterschiedliche Nierenübersichtsröntgenaufnahmen oder Skelette bzw. Teile davon.

Teilweise oder komplette Fusion des ersten Schwanzwirbels mit dem Kreuzbein (SÜW) treten bei 18 (12,5%) Tieren auf und ein Tier zeigt ein Pseudogelenk zwischen dem Querfortsatz des letzten Kreuzbeinwirbels und dem Querfortsatz des ersten Schwanzwirbels.

Von 51 (75%) Hunden mit Wirbelsäulenveränderungen kann die Krankheitsgeschichte eingesehen werden. 38 (74,5%) Tiere weisen keine orthopädischen oder neurologischen Symptome auf. Die restlichen 13 Hunde zeigen zwar Lahmheit, Schmerz oder Parästhesien im Bereich des Rückens oder der Hintergliedmaße, aber es finden sich bei allen 13 Hunden in der Sektion auch weitere Befunde, die diese Symptome besser erklären können. Die Relevanz der Wirbelsäulenveränderung bleibt in diesen Fällen ungeklärt.

JAGGY et al. (1987) untersuchen 57 Hunde mit einem CES. Bei neun (15,79%) Hunden finden sie Missbildungen in Form eines Keil-, Block- oder Übergangswirbels zwischen L7 und S1. Eine genauere Aufteilung nehmen sie nicht vor.

Beim Jagdterrier und Griffon werden mehr als 30% LÜW gefunden, jedoch ist die Anzahl der Röntgenbilder bei beiden Rassen gering. DSH und Dackel zeigen signifikant mehr Lumbalisationen, wogegen beim Spaniel die Sakralisation signifikant häufiger vorkommt. Nach Geschlechtern aufgeteilt, zeigen die Rüden einen signifikant höheren Anteil an Assimilationsstörungen am lumbosakralen Übergang als die Hündinnen.

Bei einer Reihenuntersuchung an 227 Hunden zur korrekten Lagerung bei Röntgenaufnahmen des lumbosakralen Übergangs finden KÖPPEL und REIN (1992) sieben (3,08%) Tiere mit einem LÜW, die sie als unvollständige Sakralisationen einstufen.

MATTOON und KOBLIK (1993) fertigen eine Röntgenstudie des lumbosakralen Übergangs an. Im Patientengut sind 26 Hunde, die an einem CES erkrankt sind, und 93 Tiere, die keinen Hinweis für eine CES aufweisen. Fünf Hunde mit CES (19,23%) und sechs Hunde ohne CES (6,45%) haben einen LÜW.

MORGAN (1999 b) bestimmt anhand von über 5000 Röntgenbildern von Hunden, die keinen Hinweis auf ein CES zeigen, die Häufigkeit der LÜW. 143 Hunde (2,5%)
werden als LÜW-positiv eingestuft. 82 davon sind männlich, 61 weiblich und 63 Hunde gehören zur Rasse DSH.

Neben dem lumbosakralen Übergang werden die Schulter-, Ellenbogen-, Hüft-, Knie- und Tarsalgelenke untersucht. 330 Tiere (32,4%) zeigen mindestens ein dysplastisches Gelenk. LÜW-positive Tiere haben einen sichtbaren Zwischenwirbelspalt zwischen den normalerweise fusionierten S1 und S2, einen seitlich flügelartig deformierten Querfortsatz an S1, einen isolierten PS S1 oder zwei asymmetrisch ausgebildete Querfortsätze am letzten Lendenwirbel. Es werden 37 (3,6%) Hunde als LÜW-positiv eingestuft, davon 27 weibliche (4,2%) und 10 (2,7%) männliche. Je zwei Hündinnen und Rüden zeigen gleichzeitig noch Veränderungen an den Ellenbogengelenken und zwei Rüden und eine Hündin eine Hüftgelenksdysplasie.

In einer computertomographischen Studie an sechs Hunden finden JONES und INZANA (2000) bei zwei (66%) der drei untersuchten DSH einen LÜW.

JONES et al. (2000) diagnostizieren insgesamt acht Wirbeldeformationen bei zwölf an DLSS erkrankten Arbeitshunden, ohne genaue Angabe der Lokalisation.

LINN et al. (2003) finden bei 25 an CES erkrankten militärischen Arbeitshunden drei LÜW (12%) und in einem Fall einen achten Lendenwirbel (4%). Das Untersuchungsgut setzt sich aus etwa einem Drittel DSH und etwa zwei Dritteln Malinois zusammen. Eine genaue Zuordnung der LÜW zu den Patienten findet nicht statt.
2.4.7. Lumbosakrale Übergangswirbel und Geschlecht

2.4.8. Lumbosakrale Übergangswirbel und Hüftgelenksdysplasie

Von 406 ausgewerteten Hunderöntgenaufnahmen im ventrodorsalen Strahlengang weisen 110 (27%) keinerlei Anzeichen für eine Arthrose auf.

Bei Hunden unter einem Jahr liegt der Anteil arthrosefreier Tiere bei 72,9%, bei Hunden über einem Jahr bei 17,4%. Geringgradige Koxarthrosen (Punktsumme neun und weniger) treten bei 245 (60%) Hunden auf.

Das Auftreten von arthrotischen Veränderungen wird nun mit den einzelnen Merkmalen der Assimilationsstörungen verglichen.

Bei Hunden unter einem Jahr zeigen sich 38 asymmetrische und 32 symmetrische Assimilationsstörungen. 19 (27,1%) Hunde zeigen eine Koxarthrose, davon haben 13 (68,4%) einen asymmetrischen und sechs (31,6%) einen symmetrischen LÜW. Bei allen symmetrischen und bei acht (61,5%) asymmetrischen Assimilationsstörungen sind die Arthosen beiderseits gleich stark ausgebildet. Fünf (38,5%) asymmetrische Wirbel haben auf der Seite stärkere Arthosen, welche den stärker veränderten Proc. costarius (transversus) zeigt.

Bei Hunden über einem Jahr sind 174 asymmetrische und 162 symmetrische Wirbelvariationen festzustellen. 143 (82%) Hunde mit asymmetrischen und 134 (83%) mit symmetrischen Assimilationsstörungen haben Koxarthrosen. Die Arthrosen sind bei 71% der symmetrischen und bei 40% der asymmetrischen Wirbel an beiden Hüftgelenken gleich stark ausgeprägt. Die Mehrzahl der 86 asymmetrischen Assimilationsstörungen, die eine einseitige stärkere Koxarthrose aufweisen, haben diese auf der Seite ausgeprägter, die die auffallendere Abweichung des Proc. costarius (transversus) und einen größeren Längsdurchmesser des Ileosakralgelenks mit einer Abweichung der Wirbelsäulenachse auf die andere Seite aufweist.

OWENS (1989) sieht in asymmetrischen LÜW eine mögliche Ursache für HD. Er lokalisiert die Arthrosen jedoch auf der zur größeren Kreuzbeinkontaktfläche gegenüber liegenden Seite. Asymmetrische LÜW können eine Skoliose hervorrufen und dadurch eine symmetrische Lagerung zur HD-Diagnostik unmöglich machen.

In einem Fallbeispiel zur HD-Beurteilung zeigt ein Hund mit asymmetrischem LÜW auf der Seite der größeren Kreuzbeinkontaktfläche eine deutliche Koxarthrose. Das andere Hüftgelenk ist unauffällig. Einen direkten Zusammenhang zwischen HD und LÜW kann aber nicht nachgewiesen werden (TELLHELM und BRASS, 1994).

In einer anderen Studie findet MORGAN (1999 b) bei Hunden mit LÜW in 58 Fällen (40,6%) eine Winkelung oder Rotation des Beckens. 32 dieser Tiere zeigen eine einseitige HD. Die Rotation und/oder Winkelung des Beckens kann einseitig zu einer stärkeren Abdeckung (geschlossener) und auf der anderen Seite zu einer schlechteren Abdeckung (offener) des Oberschenkelkopfes durch das Azetabulum führen. Die offene Seite weist stärkere Veränderungen im Sinne einer Femurkopfsubluxation und sekundären Arthrosen auf.

2.4.9. Lumbosakrale Übergangswirbel und Achsenabweichungen der Wirbelsäule

ZIEGLER (1989) bestimmt die Wirbelsäulenachsenabweichung bei vorliegendem LÜW. Es sind bei 133 (80,6%) der 165 auswertbaren symmetrischen LÜW keine Abweichungen der Wirbelsäulenchase festzustellen. Bei asymmetrischen LÜW zeigen 167 (87,9%) der 190 auswertbaren Aufnahmen Achsenabweichungen, die sich im Großteil zwischen 3°-5° bewegen. In der Mehrzahl der Fälle weicht die Wirbelsäulenchase zur Seite mit dem weniger veränderten Proc. costarius ab. Bei gleich ausgebildeten Procc. costarii ist keine Seitenpräferenz der Wirbelsäulenabweichung zu erkennen.

MORGAN (1999 b) entdeckt bei 73% der Hunde mit asymmetrischen LÜW eine Winkelung oder/und Rotation des Beckens.

Es werden in der Literatur auch Synonyme wie Spondylolisthese, Kauda equina Kompression, Kauda equina Syndrom, Malartikulation und Malformation des Lumbosakralgelenks und Spondylosis deformans des Lumbosakralgelenks verwendet (JAGGY et al., 1987; TACKE et al., 1997).

Die Nerven der Kauda equina haben ihren Ursprung in den Lenden-, Kreuzbein- und Schwanzsegmenten des Rückenmarks. Es sind vor allem Veränderungen des Nervus ischiadicus, des Nervus pudendus, der Nervi pelvini und der Nervi caudales, die für die unterschiedlichen klinischen Symptome beim CES verantwortlich sind.
CES tritt gehäuft beim DSH auf und wird bei Hunden mittleren Alters diagnostiziert. Männliche Tiere sind häufiger vertreten. Hunde mit einer intensiven Belastung im Hundesport erkranken öfter und früher (SLOCUM und DEVINE, 1986; JAGGY et al., 1987; LANG und JAGGY, 1989; BARTHEZ et al., 1993; MORGAN et al., 1993; TACKE et al., 1997).

OLIVER et al. (1978) berichten über lumbosakrale Malartikulation und Malformation der kleinen Wirbelgelenke als Ursache des CES. 13 der untersuchten 20 Hunde sind DSH. Röntgenologisch sind Spondylosen, Stenosen des Wirbelkanals und/oder Subluxationen von S1 nach ventral zu erkennen. LÜW werden vom Autor nicht direkt als Ursache für eine Malartikulation oder Malformation angesprochen.

MORGAN et al. (1993) untersuchen die Röntgenaufnahmen von 161 DSH in zwei Gruppen. Gruppe 1 enthält Hunde, die an einem CES erkrankt sind, Gruppe 2 solche, die aufgrund anderer Erkrankungen im lumbosakralen Bereich geröntgt werden.

In den beiden Gruppen wird die Häufigkeit für LÜW und degenerative Diskopathie (DD) bestimmt.

Die Beschaffenheit des präsakralen Gelenkspalts wird teilweise durch die Form und Größe des letzten Lendenwirbels und im Falle eines LÜW auch durch eventuelle Kontaktaufnahme zwischen den Querfortsätzen und dem Kreuzbein und/oder Darmbein bestimmt. So können LÜW eine Prädisposition für DD sein.

Hunde mit Endplattensklerose an L7 oder S1 und/oder mit einem verengten Zwischenwirbelspalt zwischen L7 und S1 mit ausgeprägten Spondylosen werden zur Gruppe der Tiere mit DD zusammengefasst. Tiere ohne solche röntgenologischen Anzeichen werden als DD-frei bezeichnet.

Etwa 38% der Tiere mit CES zeigen einen LÜW, wohingegen in der Gruppe der nicht erkrankten Tiere nur 11% einen LÜW aufweisen. 28% der Hunde aus Gruppe 1 und 44% aus Gruppe 2 haben ein Kreuzbein, das aus vier Wirbeln besteht, ohne dass der erste Kreuzbeinwirbel isoliert vorliegt. Nur insgesamt 42% der untersuchten Röntgenaufnahmen zeigen ein aus drei Wirbeln bestehendes Kreuzbein.

Die Autoren vergleichen das Auftreten von LÜW und/oder DD bei CES-erkrankten und CES-freien Hunden und errechnen daraus die Koinfidenzintervalle. Im Einzelnen zeigen 77,8% +/- 16,1% der Hunde mit LÜW und DD, 57,5% +/- 12,9% der Hunde mit DD aber ohne LÜW, 55,3% +/- 21,2% der Hunde mit LÜW aber ohne DD und 14,8% +/- 6,2% der Hund ohne LÜW und ohne DD ein CES.

Das Vorliegen eines LÜW und/oder DD begünstigt danach das Auftreten eines CES.

81% der Röntgenaufnahmen der Wirbelsäule zeigen Spondylosen unterschiedlichen Grades am Übergang L7/S1. In 38 % der Fälle liegt eine Stufe zwischen L7 und S1 vor und 33% der Hunde haben einen LÜW. Sowohl Diskographie (19/21) als auch Epidurographie (18/18) erweisen sich als diagnostisch hilfreich.

DANIELSSON und SJÖSTRÖM (1999) finden in ihrer retrospektiven Studie an 131 Hunden mit DLSS einen überproportional hohen Anteil an DSH (57%). 12 (9%) Hunde weisen einen LÜW auf. Es wird aber nicht weiter aufgeschlüsselt, ob es sich um DSH oder Hunde anderer Rassen handelt.

2.4.11. Heritabilität von lumbosakralen Übergangswirbeln

In einer Studie an Labrador Retrievern kann das Auftreten von LÜW in vier Würfen eines Rüden mit unterschiedlichen Hündinnen, in den Würfen zweier Rüden mit je zwei unterschiedlichen Hündinnen und bei zwei Vollgeschwistern eines anderen Rüden nachgewiesen werden, was auf eine familiäre Häufung hinweist (MORGAN et al., 1999).

2.4.12. Sakrokokzygealer Übergangswirbel (SÜW)

BREIT und KÜNZEL (1998) finden bei 19 von 228 Wirbelsäulenpräparaten von Hunden unterschiedlicher Rassen vier Kreuzbeinwirbel und eine erhöhte Gesamtwirbelzahl (Halswirbel bis einschließlich Kreuzbein) von 31, ohne dass ein LÜW vorliegt. Dieser Befund entspricht einem SÜW.

2.5. Röntgenuntersuchung des lumbosakralen Bereichs

2.5.1. Konventionelles Röntgen

Durch absichtliche Schräglage des Patienten beim Röntgen kann diese Asymmetrie ausgeglichen werden (TELLHELM und BRASS, 1994).

MORGAN (1999 b) untersucht den Einfluß von LÜW auf die korrekte Lagerung von Röntgenaufnahmen. In 49,7% der Fälle liegt ein symmetrischer LÜW ohne Verkippung des Beckens vor. 69 Hunde haben symmetrische Kreuzbeinflügel mit beiderseits stark ausgeprägten Kontaktflächen zum Kreuzbein, zwei zeigen Querfortsätze wie an einem Lendenwirbel.

Bei acht Aufnahmen (5,5%) sind die Kreuzbeinflügel beiderseits angebildet, aber asymmetric in ihrer Form und ohne Kontakt zum Darmbein.

Asymmetrische LÜW (44,8%) zeigen sich in der ventrodorsalen Aufnahme durch einen Kreuzbeinflügel einerseits und einem Querfortsatz, ähnlich dem eines Lendenwirbels, auf der anderen Seite. 26 Hunde mit asymmetrischem LÜW zeigen eine Winkelung und Rotation im Becken, zwei nur eine Rotation und 19 nur eine Winkelung. Bei 17 Hunden ist das Becken ohne Schräglage abgebildet.

Wirbelkanals und die lumbosakrale Verbindung beurteilen. Auf einer ventrodorsalen Aufnahme kann man neben dem LÜW auch lateral am Wirbelkörper gelegene Osteophyten erkennen, die bei starker Ausbildung dorsal die Forr. intervertebralia einengen können (MORGAN et al., 1999).

Je nach Projektionsebene können unterschiedliche röntgenologische Befunde das Vorliegen eines LÜW bestätigen (MORGAN, 1999 b). LÜW sind im Röntgenbild durch ihre Form, ihre Verbindung zum Kreuzbein und/oder Darmbein und durch ihre segmentale Zuordnung in beiden Röntgenebenen zu erkennen. In der ventrodorsalen Aufnahme lassen sich die Symmetrie der Ileosakralgelenke und die Crista dorsalis beurteilen. Eine asymmetrische Verbindung des LÜW zum Darmbein lässt sich meist einfach erkennen, schwieriger ist es einen isolierten PS S1 zu diagnostizieren. Steht dieser isoliert und zeigt einen größeren Abstand zum Dornfortsatz des zweiten Kreuzbeinwirbels als dieser zum Dornfortsatz des dritten Kreuzbeinwirbels, ist dies ein Hinweis auf einen LÜW.

In der laterolateralen Aufnahme gibt die Winkelung des Wirbelkanalbodens einen Hinweis auf das Vorliegen eines LÜW. Die dorsale Winkelung in neutraler Position von etwa 20° zeigt sich im Falle einer Sakralisation zwischen dem ersten und zweiten Kreuzbeinsegment. Auch zeigt sich häufig bei einem LÜW eine Trennung des ersten und zweiten Kreuzbeinsegments. Bei 13,3% der Röntgenbilder ist eine abrupte Verringerung des Wirbelkanaldurchmessers im neuen ersten Kreuzbeinsegment festzustellen.

60,8 % der Hunde mit LÜW haben auch einen SÜW. Der ZWS zwischen dem letzten Lendenwirbel und dem LÜW ist in 5 Fällen (3,5%) verengt.

16 Hunde (11,2%) lassen Anzeichen einer Sklerose der Endplatten, 26 (18,2%) Anzeichen einer Spondylose an diesem ZWS erkennen (MORGAN, 1999 b).
2.5.2. Computertomographische Untersuchung (CT)

In der Humanmedizin wird die CT-Untersuchung routinemäßig zur Diagnostik bei lumbosakralen Schmerzen eingesetzt. FEENEY et al. (1996) untersuchen sechs klinisch unauffällige Hunde von 4,5 kg bis 24,5 kg im CT, die vorher eingehend klinisch und labortecnisch untersucht und als gesund eingestuft werden. In Narkose fertigen sie CT-Aufnahmen der LWS und der Lumbosakralregion an. Es werden Transversalschnitte mit einer Schichtdicke von 5,0 mm gefahren. Die Hunde befinden sich in Brust-Bauchlage, die Wirbelsäule ist nicht parallel zum Tisch gelagert. Die Höhe und Breite des Wirbelkanals werden jeweils auf Höhe der Wirbelkörpermitte, der kranialen und der kaudalen Endplatten gemessen.

RAMIREZ und THRALL (1998) sehen in der CT-Untersuchung ein gutes diagnostisches Verfahren für den Bereich des lumbosakralen Übergangs. Folgende Veränderungen können im CT gesehen und beurteilt werden: LÜW, Verlust von epiduralem Fett, vermehrte Weichteilzeichnung im For. intervertebrale, Verformung...
der Bandscheibe, Spondylosen, Einengungen des Wirbelkanals und die veränderten kleinen Wirbelgelenke.

HENNINGER und WERNER (2002 a und b) untersuchen in einer röntgenanatomischen Grundlagenstudie den lumbosakralen Übergang von 12 Hunden (darunter sieben DSH) mit CT. Alle 12 zeigen röntgenologisch keine Auffälligkeiten. Die narkotisierten Patienten werden in Rückenlage je einmal mit gebeugten und mit gestreckten Hintergliedmaßen untersucht. Es wird eine sagittale Schnittebene und eine Schichtdicke von 2,0 mm gewählt.

Im Vergleich zur Röntgenaufnahme kann man im Knochenfenster sehr gut die einzelnen Strukturen des lumbosakralen Übergangs identifizieren. Wirbelkörper, -bogen und -fortsätze, der Wirbelkanal, das Spatium lumbosakrale sowie die Form und Größe der Forr. intervertebralia lassen sich beurteilen. Vor allem die kraniale Begrenzung des Wirbeldaches vom ersten Kreuzbeinwirbel ist gut abgrenzbar von den kranialen Gelenkfortsätzen und stellt sich ohne Überlagerung durch die Darmbeinschaufeln dar. Die Gelenkflächen der kleinen Wirbelgelenke sind bei vier Hunden flach und kongruent und bei allen anderen leicht gekrümmt, bogenförmig oder geknickt (Abb. 9). Die mittlere Winkelung beträgt etwa 45°, aber auch Winkel von 35° oder 60° treten auf.

Im Weichteilfenster lassen sich die Bandscheibe, der Verlauf der Cauda equina, einzelne Bandstrukturen (Ligg. longitudinalia dorsalia et ventralia, Ligg. flava) und nach Kontrastmittelapplikation Anteile des Plexus vertebra lis internus und der V. intervertebralis und V. iliaca communis darstellen.

Zusammengefasst ist eine CT-Untersuchung ein hilfreiches Diagnostikum bei Erkrankungen im lumbosakralen Bereich, da alle wichtige Strukturen isoliert und Anzeichen einer Instabilität oder morphologische Veränderungen wie ein LÜW festgestellt werden können.

2.6. Magnetresonanztomographische Untersuchung (MRT)

Die MRT-Untersuchung des lumbosakralen Übergangs ist im Vergleich zur CT-Untersuchung durch einen besseren Weichteilkontrast gekennzeichnet. Besonders die Bandscheiben lassen sich im MRT besser beurteilen (RAMIREZ und THRALL, 1998).

MRT-Untersuchungen werden in der Tiermedizin nicht sehr häufig angewendet, da nur in wenigen Einrichtungen Geräte zur Verfügung stehen und diese mit hohen Betriebskosten verbunden sind (MAYHEW et al., 2002; LANG, 2003).

Auch im MRT lassen sich LÜW eindeutig nachweisen.
3. Eigene Untersuchungen

3.1. Material

3.2. Methoden

Die Beurteilung der Röntgenbilder fand an einem Röntgenbildbetrachter mit variabler Lichtstärke und verschiebbaren Jalousien statt.

3.2.1. Identität

Aus dem HD-Befundbogen wurden Tiername, Zwingernamen, Geschlecht, Geburtsdatum, Datum der Röntgenaufnahme und Zuchtbuchnummer entnommen. Das Alter des Tieres in Monaten zum Zeitpunkt der Aufnahme errechnete sich aus Röntgendarumf und Geburtsdatum.

3.2.2. Identitätskontrolle

3.2.3. Auswertbarkeit

3.2.4. Beurteilungskriterien

Die Auswertbarkeit der Röntgenbilder, im Bezug auf den lumbosakralen Übergang vorausgesetzt, konnten nun Veränderungen im Sinne von Übergangswirbeln festgestellt und anhand ihrer Morphologie unterteilt werden. Von besonderem Interesse war hier die Form und Größe der einzelnen Wirbelfortsätze, der Wirbelkörperabstand und die Anzahl der fusionierten Kreuzbeinwirbel.

3.2.4.1. Querfortsätze

Die Querfortsätze, Procc. costales, des letzten Lendenwirbels zeigen nach kranioventral und sind kräftig ausgebildet. Die des Kreuzbeins verschmelzen beiderseits zur Pars lateralis, die im Bereich des ersten und zweiten Kreuzbeinwirbels den Kreuzbeinflügel, Ala sacralis, bilden. Zeigte ein Wirbelkörper Querfortsätze, die dieser Norm nicht entsprachen, wurden ihre Ausprägungen beschrieben.

<table>
<thead>
<tr>
<th>Symmetrie der Querfortsätze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe 1</td>
</tr>
<tr>
<td>Gruppe 2</td>
</tr>
<tr>
<td>Gruppe 3</td>
</tr>
<tr>
<td>Gruppe 4</td>
</tr>
</tbody>
</table>

Tab. 2: Symmetrie der Querfortsätze

Die Einteilung der Länge der Querfortsätze (Tab. 3, Skizze 1) erfolgte in vier Gruppen. In der ersten Gruppe entsprach die Länge der eines normalen Lendenwirbels. In Gruppe zwei wurden jene eingeteilt, die deutlich kürzer, aber noch klar als Querfortsatz zu identifizieren waren. Gruppe drei zeigte nur rudimentär zu erkennende Querfortsätze. Die vierte Gruppe bildeten die Querfortsätze, die mit der Pars lateralis des Kreuzbeins verschmolzen waren.

<table>
<thead>
<tr>
<th>Länge der Querfortsätze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe 1</td>
</tr>
<tr>
<td>Gruppe 2</td>
</tr>
<tr>
<td>Gruppe 3</td>
</tr>
<tr>
<td>Gruppe 4</td>
</tr>
</tbody>
</table>

Tab. 3: Länge der Querfortsätze
Skizze 1: Länge der Querfortsätze

Die Unterteilung der Ausrichtung der Querfortsätze (Tab. 4) wurde mit kraniolateral, lateral oder nicht zu beurteilen beschrieben. In die letzte Gruppe fallen die rudimentären und verschmolzenen Querfortsätze.

<table>
<thead>
<tr>
<th>Ausrichtung der Querfortsätze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe 1</td>
</tr>
<tr>
<td>Gruppe 2</td>
</tr>
<tr>
<td>Gruppe 3</td>
</tr>
</tbody>
</table>

Tab. 4: Ausrichtung der Querfortsätze

Bei manchen Wirbeln kam es zu einer Kontaktaufnahme der Querfortsätze des Lendenwirbels mit der Pars lateralis des Kreuzbeins (Tab. 4, Skizze 2). Es wurden vier Gruppen gebildet. In die erste kamen die Querfortsätze ohne Tendenz zur Kontaktaufnahme. Die zweite Gruppe bildeten jene, die eine Ausziehung nach kaudal zeigten, aber keinen Kontakt zum Kreuzbein aufnahmen. In der dritten Gruppe wurden die Querfortsätze zusammengefasst, die mit der Pars lateralis in engem Kontakt standen und so ein For. sacralis bildeten. In der letzten Gruppe waren die vollständigen Fusionen von Querfortsatz und Pars lateralis (Tab. 5, Skizze 2).
Kontaktaufnahme der Querfortsätze des letzten Lendenwirbels mit der Pars lateralis des Kreuzbeins

<table>
<thead>
<tr>
<th>Gruppe 1</th>
<th>Kein Kontakt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe 2</td>
<td>Ausziehung nach kaudal ohne Kontakt</td>
</tr>
<tr>
<td>Gruppe 3</td>
<td>Kontaktaufnahme, ursprünglicher Querfortsatz noch abgrenzbar</td>
</tr>
<tr>
<td>Gruppe 4</td>
<td>Vollständige Fusion</td>
</tr>
</tbody>
</table>

Tab. 5: Kontaktaufnahme der Querfortsätze mit dem Kreuzbein

3.2.4.2. Dornfortsätze

Abstand zwischen den Dornfortsätzen der Kreuzbeinwirbel

<table>
<thead>
<tr>
<th>Gruppe 1</th>
<th>Abstände zwischen Dornfortsätzen S1-S2 und S2-S3 sind gleich groß</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe 2</td>
<td>Abstand zwischen S1-S2 ist größer als S2-S3, Dornfortsatz von S1 ist an seiner Basis aus Crista dorsalis herausgelöst</td>
</tr>
</tbody>
</table>

Tab. 6: Abstand der Dornfortsätze der Kreuzbeinwirbel

Skizze 3: Abstand der Dornfortsätze der Kreuzbeinwirbel

3.2.4.3. Wirbelkörper

Es wurde der Abstand zwischen dem letzten Lendenwirbel und dem ersten Kreuzbeinwirbel oder im Falle eines morphologisch veränderten Wirbels der Abstand kaudal zum nächsten Wirbelkörper beurteilt (Tab. 7, Skizze 4). Die Einteilung erfolgte in vier Gruppen.

Abstand zwischen letztem Lendenwirbel und dem Kreuzbein

Gruppe 1	Zwischenwirbelspalt (ZWS) normal ausgebildet
Gruppe 2	Laterale Kontaktaufnahme der Wirbelkörper, ZWS noch deutlich
Gruppe 3	Kontaktaufnahme, ZWS nur noch als radioopake Linie zu erkennen
Gruppe 4	Vollständige Fusion

Tab. 7: Wirbelkörper

Skizze 4: Wirbelkörper
3.2.5. Kreuzbeinwirbelanzahl

3.2.6. Sakrokokzygealer Übergang

Der letzte Kreuzbeinwirbel und der erste Schwanzwirbel wurden ebenfalls auf ihre Morphologie hin untersucht. Der erste Schwanzwirbel ist in der Regel vollständig vom letzten Kreuzbeinwirbel getrennt und zeigt zwei kurze, kräftige, dreieckige Querfortsätze, die nach kaudal gerichtet sind.

Von dieser Form abweichende Übergänge wurden den SÜW zugeordnet (Abb. 14).

![Abb. 14: SÜW, im Röntgenbild und skizziert](image-url)
3.2.7. Hüftgelenksdysplasie-Grad

<table>
<thead>
<tr>
<th>Kriterium 1</th>
<th>Kriterium 2</th>
<th>Kriterium 3</th>
<th>Kriterium 4</th>
<th>Kriterium 5</th>
<th>Kriterium 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norberg-winkel</td>
<td>Lage des Femurkopf-zentrums (FKZ) in Bezug zum dorsalen Azetabulum-rand (DAR)</td>
<td>Form des kranio-lateralen Azetabulumrandes</td>
<td>Ausbildung des subchondralen Knochens cranial am Azetabulum</td>
<td>Form von Femurkopf (K). Uebergang Kopf-Hals (U), Femurhals (H)</td>
<td>Zubildung kaudolateral am Femurhals (Morganlinie)</td>
</tr>
<tr>
<td>105° od. mehr</td>
<td>FKZ medial DAR (> 2 mm)</td>
<td>Lateral nachfassend</td>
<td>schmal, gleichmäßig dick</td>
<td>K: rund, deutlich abgesetzt</td>
<td>nicht sichtbar oder flacher Buckel auf abgebeugter Aufnahme</td>
</tr>
<tr>
<td>105° od. mehr, Gelenkflächen divergierend, oder 100-104°, aber Gelenkflächen parallel</td>
<td>FKZ medial DAR (1-2 mm)</td>
<td>horizontal</td>
<td>breit, aber gleichmäßig</td>
<td>K: rund, schlecht abgesetzt, U: keine Zubildungen, H: walzen-förmig</td>
<td>kantiger Buckel auf abgebeugter Aufnahme: (flacher Buckel wird nicht erfasst)</td>
</tr>
<tr>
<td>100-104°</td>
<td>FKZ liegt auf dem DAR</td>
<td>leichtgradig abgerundet oder leicht-gradige Zubildungen</td>
<td>lateral leichtgradig verdickt, medial leichtgradig reduziert</td>
<td>K: leichtgradig abgeflacht, U: leichtgradige Zubildungen</td>
<td>feiner Grat bis 1 mm Breite (nur erfasst, wenn zusätzl. path. Befunde bestehen)</td>
</tr>
<tr>
<td>90-99°</td>
<td>FKZ lateral DAR (1-5 mm), > 1/3 des K überdacht</td>
<td>mittelgradig abgerundet, leichtgradig Zubildungen, zweiteilige Gelenksfläche</td>
<td>lateral mittelgradig verdickt, medial mittelgradig reduziert</td>
<td>K: mittelgradig abgeflacht, U: leichtgradige Zubildungen</td>
<td>(unscharfer) Grat bis 2-3 mm Breite</td>
</tr>
<tr>
<td>80-89°</td>
<td>FKZ lateral DAR (6-10 mm), > 1/4 des K überdacht</td>
<td>Stark abgerundet, mäßige Zubildungen</td>
<td>lateral stark verdickt oder nur lateral ausgebildet</td>
<td>K: mittelgradig verformt, U: mittelgradige Zubildungen</td>
<td>Leiste von mehr als 3 mm Breite</td>
</tr>
<tr>
<td>< 80°</td>
<td>FKZ lateral DAR (> 10 mm), < 1/4 des K überdacht</td>
<td>Rand fehlt, Pfanne massiv verformt</td>
<td>verschmilzt mit lateralem Beckenrand, manchmal fehlend</td>
<td>K: massiv verformt, U: massive Zubildungen</td>
<td>Leiste überlagert durch ausgedehnte Exostosen</td>
</tr>
</tbody>
</table>

Tab. 8: Radiologische Kriterien zur HD-Klassifizierung beim Hund (FLÜCKIGER, 1993)
3.3. Formen des lumbosakralen Übergangs

Der lumbosakrale Übergang wurde anhand der unter 3.2.4. erwähnten Merkmale in vier Formen eingeteilt.

3.3.1. Normaler lumbosakraler Übergang

Abb. 15: Normaler lumbosakraler Übergang, im Röntgenbild und skizziert
3.3.2. Symmetrischer LÜW

3.3.2.1. Isolierter Processus spinosus des ersten Kreuzbeinwirbels

![Abb. 16: LÜW isolierter PS S1, im Röntgenbild und skizziert](image)

3.3.2.2. Ausgeprägter symmetrischer LÜW

Die Variationen der Wirbelmorphologie können an L7 und/oder S1 gesehen werden. Betrachtet man die Veränderungen am letzten Lendenwirbel so reichen diese von verkürzten, nach lateral weisenden Querfortsätzen bis zu kompletten Fusionen des Wirbelkörpers mit dem Kreuzbein.
Der erste Kreuzbeinwirbel zeigt rudimentäre Querfortsätze kranial der Ileosakraalgelenke oder stellt sich isoliert da und weist komplett die Form eines Lendenwirbels auf. Zwischen den jeweiligen Grenzfällen sind die Übergänge fließend (Abb. 17 und 18).

Abb. 17: Ausgeprägter symmetrischer LÜW, im Röntgenbild und skizziert

Abb. 18: Ausgeprägter symmetrischer LÜW, im Röntgenbild und skizziert
3.3.3. Asymmetrischer LÜW

Der asymmetrische Übergangswirbel unterscheidet sich von symmetrischen durch die unterschiedliche Ausbildung der beiden Querfortsätze oder eine asymmetrische Form seines Wirbelkörpers (selten). Die Querfortsätze weichen in ihrer Morphologie voneinander ab. Manche Wirbel haben auf der einen Seite einen Querfortsatz wie bei einem Kreuzbeinwirbel und auf der anderen den eines Lendenwirbels (Abb. 19), bei anderen war nur die Größe der Querfortsätze unterschiedlich (Abb. 20).

Abb. 19: Asymmetrischer LÜW, im Röntgenbild und skizziert

Abb. 20: Asymmetrischer LÜW, im Röntgenbild und skizziert
Die asymmetrischen LÜW werden nach Ursprung ihrer Asymmetrie in zwei Gruppen unterteilt. Gruppe eins fasst die Hunde zusammen, die sich nur in der Morphologie der Querfortsätze unterscheiden, es aber nicht zur Kontaktaufnahme mit der Darmbeinschaufel kommt (Abb. 20) oder die Kontaktflächen auf beiden Seiten gleich groß sind. Die zweite Gruppe bilden jene Tiere mit asymmetrischen LÜW, die mit ihren Querfortsätzen Kontakt zur Darmbeinschaufel aufnehmen und sich die Größe dieser Kontaktfläche zwischen den beiden Seiten unterscheidet (Abb. 19).

3.4. Datenerfassung

3.5. Statistik

4. Ergebnisse

4.1. Geschlecht und Alter der Tiere

Tab. 9 zeigt die nach Geschlechtern getrennte Altersverteilung der untersuchten Hunde. Die erste Gruppe umfasst die Einjährigen. Jüngere Tiere sind nicht vertreten, da 12 Monate das vorgeschriebene Mindestalter zur offiziellen HD-Untersuchung ist. Bis zum Alter von zwei Jahren wird die Gruppeneinteilung im Dreimonateintervall vorgenommen, danach wird das Intervall auf ein Jahr vergrößert.

54,92% der Aufnahmen stammen von Rüden, 45,08% von Hündinnen. Die meisten Hunde (88,84%) sind am Tag der Röntgenuntersuchung zwischen 12 und 18 Monaten alt. 37,94% der Hunde sind genau 12 Monate, 40,90% zwischen 13 und 15 Monaten und weitere 10,00% zwischen 16 und 18 Monaten alt. 11,16% aller Hunde sind über 18 Monate alt. Das älteste Tier ist ein 81 Monate alter Rüde.

Der Unterschied in der Häufigkeit der einzelnen Altersgruppen bei Hündinnen und Rüden ist nicht signifikant (p>0,45).

<table>
<thead>
<tr>
<th>Alter in Monaten</th>
<th>Männlich</th>
<th>Weiblich</th>
<th>Gesamtanzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 M</td>
<td>1008 (36,70%)</td>
<td>888 (39,40%)</td>
<td>1897 (37,94%)</td>
</tr>
<tr>
<td>13-15 M</td>
<td>1158 (42,17%)</td>
<td>888 (39,40%)</td>
<td>2045 (40,90%)</td>
</tr>
<tr>
<td>16-18 M</td>
<td>277 (10,09%)</td>
<td>223 (9,89%)</td>
<td>500 (10,00%)</td>
</tr>
<tr>
<td>19-24 M</td>
<td>185 (6,74%)</td>
<td>147 (6,52%)</td>
<td>332 (6,64%)</td>
</tr>
<tr>
<td>25-36 M</td>
<td>83 (3,02%)</td>
<td>78 (3,46%)</td>
<td>161 (3,22%)</td>
</tr>
<tr>
<td>37-48 M</td>
<td>25 (0,91%)</td>
<td>21 (0,93%)</td>
<td>46 (0,92%)</td>
</tr>
<tr>
<td>49-60 M</td>
<td>6 (0,22%)</td>
<td>6 (0,27%)</td>
<td>12 (0,24%)</td>
</tr>
<tr>
<td>Über 60 M</td>
<td>4 (0,14%)</td>
<td>3 (0,13%)</td>
<td>7 (0,14%)</td>
</tr>
<tr>
<td>Summe</td>
<td>2746 (100,00%)</td>
<td>2254 (100,00%)</td>
<td>5000 (100,00%)</td>
</tr>
</tbody>
</table>

Tab. 9: Geschlechter- und Altersverteilung
4.2. Auswertbarkeit der Aufnahmen und Ausschlusskriterien

Tab. 10 zeigt die Auswertbarkeit der Röntgenbilder unter Berücksichtigung des Geschlechts der Tiere. 87,72% der Aufnahmen lassen eine Auswertung des lumbosakralen Übergangs zu. Die Rüden zeigen eine hochsignifikant (p<0,0001) schlechtere Auswertbarkeit (83,18%) der Röntgenbilder gegenüber den Hündinnen (93,26%).

<table>
<thead>
<tr>
<th></th>
<th>Männlich</th>
<th>Weiblich</th>
<th>Gesamtanzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicht auswertbar</td>
<td>462 (16,82%)</td>
<td>152 (6,74%)</td>
<td>614 (12,28%)</td>
</tr>
<tr>
<td>Auswertbar</td>
<td>2284 (83,18%)</td>
<td>2102 (93,26%)</td>
<td>4386 (87,72%)</td>
</tr>
<tr>
<td>Summe</td>
<td>2746 (100,00%)</td>
<td>2254 (100,00%)</td>
<td>5000 (100,00%)</td>
</tr>
</tbody>
</table>

Tab. 10: Auswertbarkeit der Röntgenaufnahmen

Mehr als die Hälfte der nicht auswertbaren Aufnahmen weisen Lagerungsmängel auf, etwa ein Drittel ist von schlechter technischer Qualität und etwa 11% sind aufgrund von Überlagerung der lumbosakralen Region nicht zu verwenden. Tab. 11 gibt die einzelnen Mängel aufgeteilt nach Geschlecht wieder.

<table>
<thead>
<tr>
<th>Kriterium</th>
<th>Männlich</th>
<th>Weiblich</th>
<th>Gesamtanzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technik</td>
<td>169 (36,58%)</td>
<td>29 (19,08%)</td>
<td>198 (32,25%)</td>
</tr>
<tr>
<td>Lagerung</td>
<td>252 (54,55%)</td>
<td>99 (65,13%)</td>
<td>351 (57,17%)</td>
</tr>
<tr>
<td>Überlagerung</td>
<td>41 (8,87%)</td>
<td>24 (15,79%)</td>
<td>65 (10,58%)</td>
</tr>
<tr>
<td>Summe</td>
<td>462 (100,00%)</td>
<td>152 (100,00%)</td>
<td>614 (100,00%)</td>
</tr>
</tbody>
</table>

Tab. 11: Ausschlusskriterien der Röntgenaufnahmen
4.3. Anatomische Merkmale des lumbosakralen Übergangs

4.3.1. Länge der Querfortsätze

Einen physiologisch ausgebildeten Lendenwirbelquerfortsatz am letzten Lendenwirbel bzw. am LÜW haben 3189 Hunde, bei 62 ist er verkürzt und bei 44 nur als Rudiment zu erkennen. Eine vollständige Fusion liegt in 1091 Fällen vor (Tab. 12).

<table>
<thead>
<tr>
<th>Länge der Querfortsätze</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normaler Lendenwirbelquerfortsatz</td>
<td>3189 (72,71%)</td>
</tr>
<tr>
<td>Kürzer, als Querfortsatz zu erkennen</td>
<td>62 (1,42%)</td>
</tr>
<tr>
<td>Rudimentär angelegt</td>
<td>44 (1,00%)</td>
</tr>
<tr>
<td>Vollständige Fusion/ nicht ausgebildet</td>
<td>1091 (24,87%)</td>
</tr>
<tr>
<td>Summe</td>
<td>4386 (100%)</td>
</tr>
</tbody>
</table>

Tab. 12: Länge der Querfortsätze

Tab. 13 zeigt die Verteilung der Längen der beiden Querfortsätze bei asymmetrischen LÜW. Die Spalten geben die Länge für den rechten, die Zeilen für den linken Querfortsatz an. Die fett gedruckten Zahlen zeigen die asymmetrischen LÜW mit gleichlangen Querfortsätzen.

<table>
<thead>
<tr>
<th>Länge der Querfortsätze</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normaler Lendenwirbelquerfortsatz (I)</td>
<td>41</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kürzer, aber klar als Querfortsatz zu erkennen (II)</td>
<td>12</td>
<td>27</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Rudimentär angelegt (III)</td>
<td>0</td>
<td>7</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Vollständige Fusion/ nicht ausgebildet (IV)</td>
<td>0</td>
<td>2</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

Tab. 13: Länge der beiden Querfortsätze bei asymmetrischen LÜW
4.3.2. Ausrichtung der Querfortsätze

Der Querfortsatz am letzten Lendenwirbel bzw. dem LÜW weist bei 3258 Hunden nach kraniolateral, 39-mal nach lateral und auf 1089 Aufnahmen ist keine Ausrichtung zu erkennen (Tab. 14)

<table>
<thead>
<tr>
<th>Ausrichtung der Querfortsätze</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach kraniolateral</td>
<td>3258 (74,28%)</td>
</tr>
<tr>
<td>Nach lateral</td>
<td>39 (0,89%)</td>
</tr>
<tr>
<td>Keine Ausrichtung erkennbar</td>
<td>1089 (24,83%)</td>
</tr>
<tr>
<td>Summe</td>
<td>4386 (100%)</td>
</tr>
</tbody>
</table>

Tab. 14: Ausrichtung der Querfortsätze

Tab. 15 gibt die Ausrichtung der beiden Querfortsätze der asymmetrischen LÜW wieder, die fett gedruckten Zahlen zeigen wieder asymmetrische LÜW mit gleich ausgerichteten Querfortsätzen. Die Spalten geben die Ausrichtung für den rechten, die Zeilen für den linken Querfortsatz an.

<table>
<thead>
<tr>
<th>Ausrichtung der Querfortsätze</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach kraniolateral (I)</td>
<td>75</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>Nach lateral (II)</td>
<td>3</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>Keine Ausrichtung erkennbar (III)</td>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Tab. 15: Ausrichtung der Querfortsätze der asymmetrischen LÜW

4.3.3. Kontaktaufnahme des Querfortsatzes mit dem Kreuzbein

In 3192 Fällen findet keine Annäherung des Querfortsatzes an das Kreuzbein statt. Fünfmal sieht man eine Ausziehung nach kaudal ohne dass es zu einer Berührung kommt. 25 Aufnahmen zeigen einen engen Kontakt des ursprünglichen, noch abgrenzbaren, Querfortsatzes mit dem Kreuzbein. 1164mal ist kein Querfortsatz mehr abgrenzbar (Tab. 16).
Kontakt zwischen Querfortsatz und Kreuzbein	Anzahl
Kein Kontakt | 3192 (72,78%)
Ausziehung nach kaudal ohne Kontakt | 5 (0,01%)
Kontaktaufnahme, ursprünglicher Querfortsatz abgrenzbar | 25 (0,57%)
Nicht abgrenzbar | 1164 (26,54%)
Summe | 4386 (100%)

Tab. 16: Kontaktaufnahme des Querfortsatzes mit dem Kreuzbein

Im Falle eines asymmetrischen LÜW zeigt Tab. 17 die Annäherung der beiden Querfortsätze des Wirbels an das Kreuzbein. Die Spalten geben die Kontaktaufnahme für den rechten, die Zeilen für den linken Querfortsatz an. Die fett gedruckten Zahlen stehen wieder für gleiche Annäherung der beiden Querfortsätze.

<table>
<thead>
<tr>
<th>Kontakt zwischen Querfortsätzen und Kreuzbein</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kein Kontakt (I)</td>
<td>39</td>
<td>1</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>Ausziehung nach kaudal ohne Kontakt (II)</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kontakt, Querfortsatz noch abgrenzbar (III)</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Vollständige Fusion (IV)</td>
<td>20</td>
<td>0</td>
<td>4</td>
<td>21</td>
</tr>
</tbody>
</table>

Tab. 17: Kreuzbeinkontakt der Querfortsätze von asymmetrischen LÜW

4.3.4. Abstand zwischen den Procc. spinosi der Crista dorsalis

<table>
<thead>
<tr>
<th>Abstand zwischen Dornfortsätzen der Kreuzbeinwirbel</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstände Dornfortsätze S1-S2 und S2-S3 gleich groß</td>
<td>3140 (71,59%)</td>
</tr>
<tr>
<td>Abstand S1-S2 größer als S2-S3, PS S1 isoliert</td>
<td>1246 (28,41%)</td>
</tr>
<tr>
<td>Summe</td>
<td>4386 (100%)</td>
</tr>
</tbody>
</table>

Tab.18: Abstand der Procc. spinosi der Crista dorsalis
4.3.5. Wirbelkörper

3203 Hunde haben einen vollständig ausgebildeten ZWS zwischen dem letzten isoliert dargestellten Wirbel der LWS bzw. dem LÜW und dem Kreuzbein (siehe Kapitel 3.2.4.3.). In 7 Fällen ist der ZWS noch gut sichtbar, aber die Wirbelkörper sind schon teilweise verschmolzen. Bei 7 Aufnahmen ist vom ZWS nur noch eine radioopaque Linie zu sehen und 1069mal besteht eine vollständige Fusion (Tab. 19).

<table>
<thead>
<tr>
<th>Abstand zwischen letztem Lendenwirbel und Kreuzbein</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZWS normal ausgebildet</td>
<td>3203 (73,03%)</td>
</tr>
<tr>
<td>Laterale Kontaktaufnahme der Wirbelkörper, ZWS noch deutlich</td>
<td>7 (0,16%)</td>
</tr>
<tr>
<td>Kontaktaufnahme, ZWS als radioopake Linie</td>
<td>7 (0,16%)</td>
</tr>
<tr>
<td>Vollständige Fusion</td>
<td>1069 (26,65%)</td>
</tr>
<tr>
<td>Summe</td>
<td>4386 (100%)</td>
</tr>
</tbody>
</table>

Tab. 19: Abstand zwischen den Wirbelkörpern von L7 und S1

4.4. Lumbosakrale Übergangswirbel

Tab. 20 zeigt die Unterteilung der LÜW nach Symmetrie und Geschlecht, Tab. 21 stellt die Häufigkeit der beiden Formen des symmetrischen LÜW wieder.

Insgesamt 1270 (28,96%) Aufnahmen zeigen einen LÜW. Die Häufigkeit der Übergangswirbel ist in beiden Geschlechtern etwa gleich. Mit 78% ist die Gruppe der Übergangswirbel mit isoliertem PS S1 am häufigsten vertreten. Ausgeprägte symmetrische Übergangswirbel haben 12% der Tiere mit LÜW und 10% weisen einen asymmetrischen Übergangswirbel auf. Der Unterschied in der Häufigkeit des Auftretens von LÜW bei Rüden und Hündinnen erweist sich als nicht signifikant (P>0,05).
<table>
<thead>
<tr>
<th>LÜW</th>
<th>Männlich</th>
<th>Weiblich</th>
<th>Gesamtanzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetrisch</td>
<td>571 (92,10%)</td>
<td>578 (89,92%)</td>
<td>1149 (90,47%)</td>
</tr>
<tr>
<td>Asymmetrisch</td>
<td>49 (7,90%)</td>
<td>72 (11,08%)</td>
<td>121 (9,53%)</td>
</tr>
<tr>
<td>Summe</td>
<td>620 (100,00%)</td>
<td>650 (100,00%)</td>
<td>1270 (100,00%)</td>
</tr>
</tbody>
</table>

Tab. 20: Lumbosakrale Übergangswirbel

<table>
<thead>
<tr>
<th>Symmetrische LÜW</th>
<th>Männlich</th>
<th>Weiblich</th>
<th>Gesamtanzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolierter PS S1</td>
<td>493 (86,34%)</td>
<td>499 (86,33%)</td>
<td>992 (86,33%)</td>
</tr>
<tr>
<td>Ausgeprägte sym. LÜW</td>
<td>78 (13,66%)</td>
<td>79 (13,67%)</td>
<td>157 (13,67%)</td>
</tr>
<tr>
<td>Summe</td>
<td>571 (100,00%)</td>
<td>578 (100,00%)</td>
<td>1149 (100,00%)</td>
</tr>
</tbody>
</table>

Tab. 21: Symmetrische Übergangswirbel

4.5. Formen des asymmetrischen LÜW

Tab. 22 zeigt die Häufigkeiten der asymmetrischen LÜW unterteilt nach dem Ursprung ihrer Asymmetrie. 68 (56,20%) Hunde zeigen eine asymmetrische Ausformung der beiden Querfortsätze des LÜW, aber die ventralen Seitenteile sind, so vorhanden, symmetrisch ausgebildet. Bei 53 (43,80%) Tieren unterscheiden sich die Kontaktaufnahmeflächen der ventralen Seitenteile zur Darmbeinschaufel. Waren beide Merkmale asymmetrisch wurde der Befund der Gruppe der größeren Abweichung zugeordnet.

<table>
<thead>
<tr>
<th>Asymmetrie</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Querfortsätze</td>
<td>68 (56,20%)</td>
</tr>
<tr>
<td>Ventrale Seitenteile</td>
<td>53 (43,80%)</td>
</tr>
<tr>
<td>Gesamt</td>
<td>121 (100%)</td>
</tr>
</tbody>
</table>

Tabelle 22: Asymmetrie der LÜW
4.6. Zusammenhang zwischen lumbosakralen und sakrokokzygealen Übergangswirbeln

Tab. 23 stellt das gemeinsame Auftreten von SÜW und LÜW dar. In 251 Fällen ist der sakrokokzygeale Übergang nicht auswertbar. Insgesamt treten 1515 (36,64%) SÜW auf. Bei Hunden mit LÜW werden insgesamt 674 (56,40%) SÜW gefunden, wohingegen 841 (28,61%) der Tiere ohne LÜW diese Wirbelveränderung aufweisen. SÜW sind hoch signifikant (p<0,0001) häufiger bei Tieren mit LÜW zu finden.

<table>
<thead>
<tr>
<th></th>
<th>LÜW</th>
<th>Kein LÜW</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>SÜW</td>
<td>674 (56,40%)</td>
<td>841 (28,61%)</td>
<td>1515 (36,64%)</td>
</tr>
<tr>
<td>Kein SÜW</td>
<td>521 (43,60%)</td>
<td>2099 (71,39%)</td>
<td>2620 (63,36%)</td>
</tr>
<tr>
<td>Summe</td>
<td>1195 (100,00%)</td>
<td>2940 (100,00%)</td>
<td>4135 (100,00%)</td>
</tr>
</tbody>
</table>

Tab. 23: Lumbosakrale und sakrokokzygeale Übergangswirbel

4.7. Anzahl der Kreuzbeinwirbel

Tab. 24 zeigt die Kreuzbeinwirbelanzahl der Tiere mit und ohne LÜW. Eine erhöhte oder erniedrigte Anzahl der Kreuzbeinwirbel weisen 148 (3,37%) der Hunde auf. 110 Hunde haben ein auf zwei verschmolzene Segmente reduziertes Kreuzbein und 38 zeigen ein aus vier Segmenten gebildetes Kreuzbein. In etwa 75% der Fälle ist die Kreuzbeinwirbelanzahl erniedrigt und nur zu 25% erhöht. 143 (96,62%) Tiere mit einer veränderten Kreuzbeinwirbelanzahl haben einen LÜW und nur fünf (3,38%) einen normalen lumbosakralen Übergang. Insgesamt zeigen 11,25% der Hunde mit LÜW eine veränderte Anzahl von Kreuzbeinwirbeln gegen 0,16% der Hunde ohne LÜW. Dieser Unterschied ist hoch signifikant (p<0,0001).

Tab. 24: Lumbosakrale Übergangswirbel und Anzahl der Kreuzbeinwirbel

4.8. Lumbosakrale Übergangswirbel und Hüftgelenksdysplasie

Tab. 26 zeigt die Aufteilung der HD-Grade auf die einzelnen LÜW-Formen. 58,60% der Hunde mit einem ausgeprägten symmetrischen LÜW sind HD-frei, im Vergleich zu 51,51% der Hunde mit einem isolierten PS S1 bzw. 49,59% der Hunde mit einem asymmetrischen Übergangswirbel. Statistisch erweist sich diese Differenz als nicht signifikant (p>0,25). Die HD-Übergangsform tritt am zweithäufigsten bei 26,11% der Tiere mit isolierten PS S1, 26,75% mit ausgeprägten symmetrischen und 24,79% mit asymmetrischen LÜW auf. 14,42% der Hunde mit einem isolierten PS S1, 10,19% mit einem ausgeprägten symmetrischen LÜW und 18,18% mit einem asymmetrischen LÜW werden mit leichter HD befundet. Mittlere HD zeigen 6,95% der Tiere mit einem isolierten PS S1, 4,46% mit einem ausgeprägten symmetrischen LÜW und 7,53% mit einem asymmetrischen LÜW. In die Gruppe schwere HD werden 1,01% der Hunde mit einem isolierten PS S1 eingestuft, aus den anderen beiden Gruppen wird keiner mit schwerer HD beurteilt. Auch die Unterschiede in den Häufigkeiten der leichten, mittleren und schweren HD zeigen keine statistische Signifikanz (p>0,3).

<table>
<thead>
<tr>
<th>HD-Grad</th>
<th>Isolierter PS S1</th>
<th>Ausgeprägter Symmetrischer LÜW</th>
<th>Asymmetrischer LÜW</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD-frei</td>
<td>511 (51,51%)</td>
<td>92 (58,60%)</td>
<td>60 (49,59%)</td>
<td>663 (52,20%)</td>
</tr>
<tr>
<td>HD-Übergangsform</td>
<td>259 (26,11%)</td>
<td>42 (26,75%)</td>
<td>30 (24,79%)</td>
<td>331 (26,06%)</td>
</tr>
<tr>
<td>HD-leicht</td>
<td>143 (14,42%)</td>
<td>16 (10,19%)</td>
<td>22 (18,18%)</td>
<td>181 (14,26%)</td>
</tr>
<tr>
<td>HD-mittel</td>
<td>69 (6,95%)</td>
<td>7 (4,46%)</td>
<td>9 (7,43%)</td>
<td>85 (6,69%)</td>
</tr>
<tr>
<td>HD-schwer</td>
<td>10 (1,01%)</td>
<td>0 (0,00%)</td>
<td>0 (0,00%)</td>
<td>10 (0,79%)</td>
</tr>
<tr>
<td>Summe</td>
<td>992 (100,00%)</td>
<td>157 (100,00%)</td>
<td>121 (100,00%)</td>
<td>1270 (100,00%)</td>
</tr>
</tbody>
</table>

Tab. 26: LÜW-Typ und HD-Befunde

An insgesamt 4186 Röntgenaufnahmen wird der HD-Befund nach dem Schweizer Punkteschema (siehe 3.2.7.) erhoben. Bei 639 Hunden liegt ein asymmetrischer HD-Befund vor, wobei 46 mangels Kennzeichnung nicht einer Seite zugeordnet werden können. 309 (52,11%) mal zeigte die linke Hüfte eine größere Punktzahl und in 284 (47,89%) Fällen die rechte (Tab. 27).
HD-Befund nach Schweizer Punkteschema

<table>
<thead>
<tr>
<th>HD-Befund</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schlechtere Hüfte links</td>
<td>309 (7,38%)</td>
</tr>
<tr>
<td>Schlechtere Hüfte rechts</td>
<td>284 (6,78%)</td>
</tr>
<tr>
<td>Beide Hüften gleich</td>
<td>3547 (84,73%)</td>
</tr>
<tr>
<td>Fehlende Kennzeichnung</td>
<td>46 (1,11%)</td>
</tr>
<tr>
<td>Gesamt</td>
<td>4186 (100%)</td>
</tr>
</tbody>
</table>

Tab. 27: Symmetrie der HD

Tab. 28 stellt den Zusammenhang zwischen der Symmetrie der Hüftgelenke und dem Vorliegen von LÜW her. Die Häufigkeit von asymmetrischen Hüftbefunden liegt in der Gruppe der Tiere ohne LÜW bei 409 (13,89%) und in der Gruppe mit symmetrischen LÜW bei 162 (14,97%). Die linke und rechte Hüfte sind etwa gleichhäufig als schlechteres Gelenk zu benennen. Die geringen Unterschiede in den Häufigkeiten sind ohne statistische Relevanz (p>0,5). 22 (19,30%) der Tiere mit einem asymmetrischen LÜW zeigen einen asymmetrischen Hüftbefund. Beide Hüftgelenke sind auch hier etwa gleich oft betroffen.

<table>
<thead>
<tr>
<th>HD-Befund</th>
<th>Sym. LÜW</th>
<th>Asym. LÜW</th>
<th>Kein LÜW</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schlechtere Hüfte links</td>
<td>84 (7,76%)</td>
<td>12 (10,53%)</td>
<td>213 (7,23%)</td>
<td>309 (7,46%)</td>
</tr>
<tr>
<td>Schlechtere Hüfte rechts</td>
<td>78 (7,21%)</td>
<td>10 (8,77%)</td>
<td>196 (6,66%)</td>
<td>284 (6,86%)</td>
</tr>
<tr>
<td>Beide Hüften gleich</td>
<td>920 (85,03%)</td>
<td>92 (80,70%)</td>
<td>2535 (86,11%)</td>
<td>3547 (85,68%)</td>
</tr>
<tr>
<td>Gesamt</td>
<td>1082 (100%)</td>
<td>114 (100,00%)</td>
<td>2944 (100,%)</td>
<td>4140 (100%)</td>
</tr>
</tbody>
</table>

Tab. 28: Symmetrie der HD-Befunde und LÜW

Bei 80,70% der Hunde mit asymmetrischem LÜW sind beide Hüftgelenke trotz unterschiedlicher Kreuzbeinkontaktflächen des LÜW gleich ausgebildet. In den restlichen Fällen zeichnet sich die Tendenz ab, dass das Hüftgelenk auf der Seite, auf welcher der LÜW die größere Kontaktfläche zum Darmbein hat, einen schlechteren Formationsreiz bekommt. Die Menge der Datensätze ist jedoch nicht groß genug, um dies statistisch abzusichern.

<table>
<thead>
<tr>
<th>HD-Befund</th>
<th>Kontakt links</th>
<th>Kontakt rechts</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schlechtere Hüfte links</td>
<td>8 (13,56%)</td>
<td>4 (7,27%)</td>
<td>12 (10,53%)</td>
</tr>
<tr>
<td>Schlechtere Hüfte rechts</td>
<td>2 (3,39%)</td>
<td>8 (14,55%)</td>
<td>10 (8,77%)</td>
</tr>
<tr>
<td>Beide Hüften gleich</td>
<td>49 (83,05%)</td>
<td>43 (78,18%)</td>
<td>92 (80,70%)</td>
</tr>
<tr>
<td>Gesamt</td>
<td>59 (100%)</td>
<td>55 (100%)</td>
<td>114 (100%)</td>
</tr>
</tbody>
</table>

Tab. 29: Kreuzbeinkontakt der asymmetrischen LÜW und Symmetrie der HD-Befunde

4.8. Heritabilitätsschätzung

Es werden 872 Vatertiere und 2361 Muttermütter zu 4119 der vorliegenden 5000 DSH ermittelt. Die durchschnittliche Gruppengröße liegt bei 4,72 DSH in den Vatertiergruppen bzw. 1,74 DSH in den Muttermüttergruppen (Tab. 30).

<table>
<thead>
<tr>
<th></th>
<th>Vatertiere</th>
<th>Muttermütter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
<td>872</td>
<td>2361</td>
</tr>
<tr>
<td>Ø Gruppengröße</td>
<td>4,72</td>
<td>1,74</td>
</tr>
</tbody>
</table>

Tab. 30: Vatertiere und Muttermütter

Es zeigen sich hoch signifikante (p<0,0001) Unterschiede zwischen den einzelnen Vatertieren (Tab. 31). Der Vergleich mit der Vererblichkeit des HD-Grades (Tab. 32) zeigt einen ähnlich großen F-Wert und lässt auf eine Heritabilität in der Größenordnung der HD von etwa 20-30% schließen. Unter Einbeziehung der einzelnen LÜW-Formen zeigt sich sogar noch eine Steigerung des F-Wertes (Tab. 33).
Tab. 31: Einfaktorielle Varianzanalyse (ANOVA), gruppiert nach Vätern, LÜW ja/nein

<table>
<thead>
<tr>
<th></th>
<th>Quadrate-summe</th>
<th>df</th>
<th>Mittel der Quadrate</th>
<th>F</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zwischen den Gruppen</td>
<td>233,728</td>
<td>872</td>
<td>0,268</td>
<td>1,405</td>
<td><0,0001</td>
</tr>
<tr>
<td>Innerhalb der Gruppen</td>
<td>619,254</td>
<td>3247</td>
<td>0,191</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>852,982</td>
<td>4119</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 32: Einfaktorielle Varianzanalyse (ANOVA), gruppiert nach Vätern, HD-Befunde

<table>
<thead>
<tr>
<th></th>
<th>Quadrate-summe</th>
<th>df</th>
<th>Mittel der Quadrate</th>
<th>F</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zwischen den Gruppen</td>
<td>985,337</td>
<td>872</td>
<td>1,130</td>
<td>1,357</td>
<td><0,0001</td>
</tr>
<tr>
<td>Innerhalb der Gruppen</td>
<td>2704,340</td>
<td>3247</td>
<td>0,833</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>3689,677</td>
<td>4119</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 33: Einfaktorielle Varianzanalyse (ANOVA), gruppiert nach Vätern, LÜW-Formen

<table>
<thead>
<tr>
<th></th>
<th>Quadrate-summe</th>
<th>df</th>
<th>Mittel der Quadrate</th>
<th>F</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zwischen den Gruppen</td>
<td>584,536</td>
<td>872</td>
<td>0,670</td>
<td>1,432</td>
<td><0,0001</td>
</tr>
<tr>
<td>Innerhalb der Gruppen</td>
<td>1520,045</td>
<td>3247</td>
<td>0,468</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>2104,582</td>
<td>4119</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. Diskussion

5.1. Literatur

Der Ursprung zusätzlicher prä sakraler Wirbel oder eine Verminderung der prä sakralen Wirbelanzahl läßt sich beim Hund nicht genau klären. Autoren wie BLUMENSAAT und CLASING (1932) und SCHULTZ und WATSON (1995) geben Übergangswirbel als Ursache an. Im Gegensatz dazu verweisen MORGAN (1968),

STARCK (1979) diskutierte mit dem Nonius-Prinzip und der Verschiebung des Beckenrings in der Embryonalphase noch weitere Möglichkeiten.

In der vorliegenden Arbeit sind mehr SÜW als LÜW aufgetreten, was die Aussage von MORGAN (1968) und BARONE (1976) bestätigt.

Die Wirbelsäule zeigt beim Hund die größte Beweglichkeit im Halsbereich und daher können morphologisch veränderte Wirbel entsprechend stark den Bewegungsablauf stören. Im thorakolumbalen und lumbosakralen Übergang ist die Stabilität deutlich größer bedingt durch starke Bänder, Sehnen und Muskelstränge, die Scherkräfte entgegen wirken können. SÜW dürften ohne klinischen Symptome sein. Der Zuchtausschluss aufgrund einer Knickrute beim Teckel ist nicht mit dem Auftreten von klinischen Symptomen begründet, sondern der Wahrscheinlichkeit weiterer Wirbelsäulenveränderungen.

LARSEN (1977) ordnet die meisten LÜW den Sakralisationen (73%) zu, da dies der häufigste Fall bei vollständig vorliegender Lendenwirbelsäule war. In seiner Arbeit werden jedoch nur HD-Begleitschriften als Material angegeben und so bleibt offen auf welche Röntgenbilder sich diese Aussage bezieht.

WINKLER (1985) übernimmt die Definition für die Sakralisation in seine Untersuchungen, sieht aber die Lumbalisation nicht als Umkehrung der Sakralisation. In seinen Studien findet er immer beide „ventralen Seitenteile“ an den ersten Kreuzbeinwirbeln. Sie waren teilweise sogar vergrößert.

Er stellt eine allgemeinere Definition der Lumbalisation: Annahme von Eigenschaften, die normalerweise den Lendenwirbeln eigen sind. Er findet nach seiner Einteilung 73% Lumbalisationen und 27% Sakralisationen.

So stellt sich die Frage, ob ein zusätzlicher Lendenwirbel von typischer Morphologie vor einem unauffälligen Kreuzbein einer kompletten Lumbalisation des ersten Kreuzbeinwirbels mit gleichzeitiger kompletter Sakralisation des ersten Schwanzwirbels entspricht, oder ob es sich um eine numerische Aberration des Lendenwirbelsegmentes handelt. Da den Übergangswirbeln meist eine Tendenz in Richtung kopf- oder steiβwärts (JUNGHANNS und SCHMORL, 1957) eigen ist, kann man anhand anderer Übergangswirbel, falls vorhanden, eine leichtere Unterscheidung vornehmen.

Nach rein morphologischen Kriterien wäre die Form des isolierten PS S1 am ehesten den Lumbalisationen zuzusprechen. Der Weg zu einer fast kompletten Sakralisation ist weiter, als nur diese geringen Anzeichen der Lumbalisation aufzuweisen. Somit ist eine Lumbalisation wahrscheinlicher.

Das CES ist eine typische Erkrankung von großrahmigen Arbeitshunden, vor allem dem DSH. Als mögliche Ursache eines CES und durch sein überproportional häufiges Auftreten beim DSH wird der LÜW in mehreren Arbeiten untersucht.

OLIVER et al. (1978) sieht in der lumbosakralen Malartikulation und Malformation eine Ursache für das CES, spricht aber nicht explizit den LÜW an. Da jedoch vor allem die asymmetrischen LÜW zu einer Malartikulation und Malformation des LSG führen können, sind sie demnach als eine potentielle Ursache für das CES anzusehen.

Ein LÜW kann zu veränderten kleinen Wirbelgelenken führen und so den physiologischen Bewegungsablauf stark beeinträchtigen.

Der LÜW ist an der Bildung des LSG beteiligt und falls er Kontakt zum Darmbein aufnimmt, beeinflusst er auch die ISG. So ist der LÜW im Zentrum der Kraftübertragung der Hinterhand auf den Rumpf. Besonders asymmetrische LÜW können zu einer einseitig stärkeren Impulsübertragung führen und so die Gelenkanteile dieser Seite überlasten und Ankylosen des Bandapparates nach sich ziehen.

5.2. Material und Methoden

Im Vergleich zur vorliegenden Studie, die nur DSH umfasst, sind die anderen Untersuchungen meist rasseübergreifend. Nur MORGAN et al. (1993 DSH und 1999 Labrador Retriever) beschäftigt sich auch mit einzelnen Rassen.

Diese Auswahl erscheint sehr ungenau, da mehrere Personen mit unterschiedlichen Untersuchungsschwerpunkten die Befundung vorgenommen haben, und der lumbosakrale Übergang für die HD-Diagnostik von untergeordneter Bedeutung ist, und deshalb oft nicht sorgfältig betrachtet wird.

Die Wirbelsäulenpräparate sind gut geeignet, um eine genaue anatomische Beschreibung eines LÜW zu liefern. Für eine genetische Studie sind sie weniger geeignet, da sie sehr aufwendig herzustellen und eine genügend große Anzahl Rassehunde mit Zuchtbuchnummern schwer zu finden sind. Eine in vivo Diagnostik zur späteren Zuchtselektion ist nicht möglich.

CT- und MRT-Untersuchungen geben ebenfalls ein sehr genaues Bild wieder, sind aber für eine breit angelegte Studie zu aufwendig und teuer.

Röntgenbilder sind in großer Anzahl recht einfach zu bekommen und die Kennzeichnungspflicht, vor allem bei HD-Aufnahmen, ermöglicht eine gute Identifikation des Tieres. Da die genetische Komponente ein wichtiger Teil dieser Arbeit ist und die LÜW sehr häufig beim DSH auftreten, wird als Material auf die offiziellen HD-Aufnahmen des SV zurückgegriffen.

In der vorliegenden Arbeit werden drei Formen von Übergangswirbeln unterschieden: die ausgeprägten symmetrischen und asymmetrischen Übergangswirbel und jene die nur einen isolierten PS S1 mit einem erweiterten Abstand zum Proc. spinosus des zweiten Sakralsegmentes zeigen.

MORGAN (1968) teilt die LÜW in unilaterale und bilaterale auf. Diese Begriffe sind wohl weitgehend mit den asymmetrischen bzw. symmetrischen LÜW zu vergleichen. Er führt den isolierten PS S1 jedoch nicht gesondert auf.

In der Arbeit von LARSEN (1977) wurde keine Unterscheidung der morphologischen Formen vorgenommen.

Zusätzlich zum isolierten Dornfortsatz beinhaltet die Definition der Lumbalisation Typ A auch noch eine bogenförmige Linie, welche die Trennung zwischen Proc. articularis cranialis und Proc. transversus andeutet. Dieses zusätzliche Kriterium schließt einige LÜW der Form isolierter PS S1 dieser Arbeit aus.
ZIEGLER (1989) definiert ausgehend von morphologischen Gesichtspunkten insgesamt 23 verschiedene Formen von LÜW. Die Form alleine unterscheidet nicht zwischen Lumbalisatation oder Sakralisation. Die asymmetrischen Übergangswirbel überwiegen (58%).

Der isolierte PS S1, als Sonderform des symmetrischen Übergangswirbels, wird getrennt untersucht, da der Einfluss eines isolierten PS S1 sowohl statisch als auch dynamisch den Bewegungsablauf des Hundes kaum oder gar nicht beeinflussen sollte. Die Form ist sehr häufig und leicht auf dem Röntgenbild zu übersehen.

Eine weitere Einteilung der Formen findet nicht statt, da besonders die asymmetrischen Übergangswirbel bei genauer Betrachtung alle unterschiedlich sind.

Als statistisches Verfahren zur Heritabilitätsschätzung wird eine einfaktorielle Varianzanalyse (ANOVA) durchgeführt. Die durchschnittliche Gruppengröße bei den Muttertieren ist mit 1,74 relativ klein und eine Auswertung findet nur über die Vattertiere statt. Um einen Bezugspunkt zu haben wird als Vergleichswert eine Heritabilitätsschätzung des HD-Grades durchgeführt. Die Differenzierung nach LÜW-Formen soll aufzeigen, ob diese zusätzliche Information eine genauere Schätzung erlaubt.
5.3. Ergebnisse

Die Altersverteilung zeigt einen großen Anteil an Hunden unter 15 Monaten. Dies ist nicht weiter verwunderlich, da die Hunde für ihren weiteren Ausbildungsgang und auch zur Zuchterlaubnis eine offizielle HD-Beurteilung benötigen. Um möglichst schnell mit der Ausbildung und Zucht beginnen zu können, nutzen die meisten Besitzer den frühesten Termin zur HD-Untersuchung (beim DSH im Alter von 12 Monaten).

Die Auswertbarkeit der Röntgenbilder liegt mit 87,72% in der Größenordnung der Untersuchung von WINKLER (84,1%, 1985). Der hohe Anteil von nicht auswertbaren Rüdenaufnahmen lässt sich jedoch schwer erklären. Es gibt zwar einige wenige (11) Überlagerungsprobleme mit dem Penisknochen, aber dies begründet nicht diesen Unterschied. Rüden sind in der Regel größer als Hündinnen, was eine Erklärung für den großen Anteil an Lagerungsmängeln (252) beim Rüden sein kann. Es ist bei der HD-Untersuchung wichtig die Kniegelenke und das Becken abzubilden, was bei sehr großen Rüden nicht immer auf einem 30 cm x 40 cm Röntgenfilm möglich ist. Da die Kniegelenke ein wichtiges Indiz für die Innenrotation und Streckung der Hintergliedmaßen bei der Lagerung der Tiere sind, wird eher ein Stück des Beckens nicht abgebildet, als dass die Kniegelenke nicht vollständig erkennbar sind. Es zeigen auch sehr viele Aufnahmen von Rüden (169) technische Mängel (Fehlbelichtung, Entwicklungsfehler usw.), wogegen bei Hündinnen nur wenige (29) auftraten. Diese Differenz lässt sich nicht durch das unterschiedliche Geschlecht oder Gewicht und Größe begründen. Aus anderen vorangegangenen Studien sind keine Zahlen zur Auswertbarkeit bekannt.

Um diese Vermutung zu bestätigen, benötigt man jedoch Röntgenaufnahmen bzw. Wirbelsäulenpräparate von Hunden, die jünger sind als ein Jahr und Verlaufsstudien.

Der DSH zeigt bei allen Autoren ein überproportional hohes Auftreten von LÜW. Dies alleine erklärt jedoch nicht den großen Unterschied der Ergebnisse.

MORGAN et al. (1993) finden in einer Veröffentlichung bei DSH mit CES einen Anteil von 38% lumbosakraler Übergangswirbel, wogegen bei DSH ohne CES nur in 11% der Fälle ein lumbosakraler Übergangswirbel vorliegt.

Die Arbeit von LARSEN (1977) ist vom Umfang des Datenmaterials mit 24463 untersuchten Röntgenaufnahmen zwar sehr breit angelegt, aber ihm liegen nur die HD-Befundbögen vor, die er mittels Computeranalyse auf Nebenbefunde überprüft. Bei der HD-Untersuchung ist der wichtigste Gesichtspunkt die Form der Hüftgelenke und so achtet nicht jeder Gutachter auf den lumbosakralen Übergang. Veränderungen im Sinne eines isolierten PS S1 sind unter diesen Umständen leicht zu übersehen.

Für den Unterschied zu den anderen Studien gibt es keine eindeutige Erklärung.

Das Datenmaterial stammt aus dem Jahrgang 1976 und liegt somit ca. 15-18 Zuchtdurchläufe vor dem hier verwandten Material, aber ein so starker Anstieg der LÜW ist in der kurzen Zeit nicht zu erwarten.

Bei asymmetrischen Übergangswirbeln werden in dieser Arbeit als Ursache der Asymmetrie etwa zu gleichen Teilen Veränderungen der Querfortsätze (56,2%) und der ventralen Seitenteile (43,8%) gefunden. Vergleichbare Angaben fehlen bei anderen Autoren.

Über ein Drittel (36,64%) der Röntgenbilder zeigt einen SÜW. Der Anteil liegt bei Tieren ohne LÜW bei 28,61% und bei Hunden mit LÜW bei 56,40%.

MORGAN (1999 b) findet in einer Studie bei 60,8% der Tiere mit LÜW gleichzeitig auch einen SÜW.

Der große Anteil an SÜW bestätigt die These, dass die Häufigkeit von Übergangswirbeln nach kaudal zunimmt.

Ohne die gesamte Ansicht der Wirbelsäule lässt sich eine kopf- oder steißwärts gerichtete Tendenz nicht ablesen.

Das häufige gemeinsame Auftreten von LÜW und SÜW zeigt dennoch, dass es sich bei Übergangswirbeln nicht nur um ein auf einen Wirbel lokalisiertes Phänomen handelt, sondern die Übergangswirbel auch als Merkmal einer Verschiebung der einzelnen Wirbelsäulenabschnitte anzusehen sind.

Bei 11,26 % der Wirbelsäulen mit LÜW ist die Anzahl der Kreuzbeinwirbel reduziert (8,5%) oder erhöht (2,76%). Im Vergleich dazu zeigen in der Studie von BREIT und KÜNZEL (1998) 20 Tiere (8,7%) vier Kreuzbeinwirbel und ein Tier (0,4%) zwei Kreuzbeinwirbel. Als zusätzlicher vierter Kreuzbeinwirbel werden in der vorliegenden Arbeit nur jene angesehen, die komplett mit dem Kreuzbein verschmolzen sind.
Sobald die Querfortsätze des ersten Schwanzwirbels isoliert sichtbar sind oder eine Aufhellungslinie die Grenze zwischen den Wirbelkörperrn markiert, werden die Wirbel als allein stehender Übergangswirbel definiert.

Aber auch hier ist ohne Kenntnis der gesamten Wirbelsäule nicht zu unterscheiden, ob ein Lenden- oder ein Schwanzwirbel zum Kreuzbein hinzutreten ist oder sich der erste oder letzte Kreuzbeinwirbel gelöst hat.

In einigen Arbeiten wird untersucht, ob ein Zusammenhang zwischen HD und LÜW besteht (LARSEN, 1977; WINKLER, 1985; ZIEGLER, 1989; TELLHELM und BRASS, 1994).

Die Auswertung wird für Hunde jünger als ein Jahr und älter als ein Jahr getrennt durchgeführt: 73% der Hunde mit LÜW zeigen eine Koxarthrose. Aufgeteilt nach Alter sind es jedoch nur 27% der Hunde unter einem Jahr und 82% der Tiere über einem Jahr. Es ist fraglich, ob sich die Koxarthrosen in diesem Fall auf den LÜW zurückführen lassen oder doch mehr altersbedingt sind. Eine weitere Aufschlüsselung nach symmetrischen und asymmetrischen LÜW zeigt beim jungen Hund ein etwa zweifach höheres Auftreten von Koxarthrosen bei asymmetrischen LÜW. Beim älteren Hund sind die Koxarthrosen bei beiden Formen des LÜW gleich häufig. Bei der symmetrischen Form des LÜW sind die Arthrosen in 71% der Fälle beiderseits gleich stark ausgeprägt, wogegen bei asymmetrischen LÜW die Arthrosegrade in 60% der Fälle in beiden Hüftgelenken unterschiedlich waren. Einen Seitenbezug zwischen asymmetrischem LÜW und Koxarthrose wird nicht genannt.

In der vorliegenden Arbeit werden ebenfalls die HD-Befunde mit ausgewertet und auch bei unterschiedlichen HD-Graden der beiden Hüftgelenke die Seite mit dem schlechteren HD-Grad aufgezeichnet.

Die Unterschiede der einzelnen Untersuchungen im Hinblick auf einen Zusammenhang des LÜW und der HD lassen sich vielleicht dadurch erklären, dass in manchen Studien das Datenmaterial hauptsächlich aus Aufnahmen zur HD-Diagnostik und somit aus Bildern von sehr jungen Tieren besteht und in anderen Studien Tiere jeden Alters gleich vertreten sind. Koxarthrosen durch Fehlbelastung der Hüftgelenke in Folge einer Schrägstellung durch asymmetrische LÜW treten wahrscheinlich erst später im Leben des Hundes auf. Im Wachstum kann er dieselbe Asymmetrie vor allem durch sein leichteres Gewicht und den geschmeidigeren Bänder- und Sehenapparat sowie die gut ausgebildete Muskulatur kompensieren. LÜW beeinflussen direkt weniger die Hüftgelenke als die Kreuzdarmbeingelenke und das Lendenkreuzbeingelenk.

Die durchschnittliche Gruppengröße der Muttertiere ist mit etwa 1,7 Nachkommen sehr klein. Nur sehr wenige Muttertiere haben mehr als drei Welpen. Der weitaus größte Teil hatte sogar nur einen Welpen, was die Information des Muttertieres gleich dem des Welpen stellt. Durch Einbeziehung der Muttertiere findet somit nur scheinbar eine weitere Streuung des Datenmaterials statt. Aus diesem Grund wird auf ein hierarchisches Modell verzichtet.
Bei den Vatertieren ist die durchschnittliche Gruppengröße mit 4,7 Nachkommen weitaus höher und lässt sich besser zu statistischen Analysen heranziehen. Im Vergleich zur Heritabilität des HD-Grades im gleichen Datenmaterial, lässt sich belegen, dass der genotypische Anteil an der Variation LÜW in der Größenordnung von dem der HD liegt (20-30%). Die weitere Aufteilung in die drei LÜW-Formen ergibt sogar noch eine höhere Heritabilität.

6. Zusammenfassung

Thema dieser Arbeit ist es die lumbosakralen Übergangswirbel (LÜW) beim Deutschen Schäferhund (DSH) in Formen einzuteilen und ihre Häufigkeit zu bestimmen. Über die Vatertiere wird die Heritabilität für das Merkmal LÜW geschätzt. Der Literaturteil gibt einen Überblick über die Biomechanik des lumbosakralen Übergangs und das Schrifttum zum LÜW. Besondere Beachtung finden hierbei die Häufigkeit des LÜW bei den einzelnen Rassen, die Untersuchungsmethoden der Autoren und der Einfluß des LÜW auf die Hüftgelenksdysplasie (HD) und das Cauda equina Kompressionssyndrom (CES).

An 5000 HD-Röntgenaufnahmen von DSH mit Zuchtbuchnachweis wird die Häufigkeit von LÜW bestimmt. Das Vorliegen eines LÜW wird in Korrelation zum HD-Grad gebracht, mit besonderer Beachtung der asymmetrischen LÜW. Die Auswertung von HD-Aufnahmen ermöglicht es LÜW beim Hund zu diagnostizieren. Technische, Lagerungs- oder Überlagerungsfehler lassen bei einem Teil der Aufnahmen (12,28%) keine klare Beurteilung der lumbosakralen Region zu. Es wird ein höherer Anteil an LÜW (28,96%) festgestellt als in der Literatur bisher angegeben wurde. Den Großteil der LÜW bildet die Form des isolierten PS S1 (78% der LÜW), ausgeprägte symmetrische (12%) und asymmetrische (10%) LÜW sind etwa gleich häufig vertreten.

Weder Alter noch Geschlecht haben einen Einfluß auf das Auftreten eines LÜW. Das Vorliegen eines LÜW ist keine Prädisposition für HD. Es zeigte sich aber eine Tendenz, dass bei einem asymmetrischen LÜW das Hüftgelenk der Seite mit dem geringeren Kontakt zwischen dem LÜW und dem Becken häufiger das schlechter ist. Statistisch ist die Anzahl der Fälle jedoch zu gering, um eine Signifikanz zu erarbeiten.

Mit Hilfe der Vatertiere konnte eine Heritabilitätsschätzung für das Merkmal LÜW durchgeführt werden. Das Ergebnis wurde mit einer Schätzung des HD-Grades im gleichen Datenmaterial verglichen. Die F-Werte der einfaktoriellen Varianzanalyse (ANOVA) lagen bei beiden Merkmalen etwa gleich (LÜW: 1,405; HD: 1,357), was auf einen Anteil der genotypischen Varianz von etwa 20-30% schließen lässt.

Dieses Ergebnis ermöglicht zuchthygienische Maßnahmen zur Reduzierung von LÜW beim DSH, was vor allem im Hinblick auf eine mögliche Korrelation zwischen LÜW und CES von Bedeutung sein kann. Diese Korrelation muss aber noch durch weitere Untersuchungen abgesichert werden.
7. Summary

The aim of this thesis is the description of different types of lumbosacral transitional vertebral segments (LTVS) and their frequency in German Shepherd Dogs (GSD) whereby the heritability of the criterium LTVS is estimated by referring to the pedigree.

The frequency of LTVS in different breeds, the research methods of other authors and the influence of LTVS on canine hip dysplasia (CHD) and cauda equina syndrome (CES) are reflected.

On 5000 ventrodorsal hip-radiographs of GSD with complete pedigree the frequency of LTVS is determined. The correlation between LTVS and the degree of CHD is taken into special consideration.

It is possible to use hip-radiographs to diagnose LTVS in dogs. Technical and positioning failures or artifacts by faeces make it difficult to judge the lumbosacral region in some radiographs (12,28%).

In this study a greater amount of LTVS (28,96%) is found compared to other authors. The isolated spinous process of the first sacral segment (78%) represents the largest amount of LTVS. The amount of symmetrical (12%) and asymmetrical (10%) LTVS is comparable.

Age and gender have no influence on LTVS.

There is no positive relationship between LTVS and CHD. Nevertheless, looking at dogs with asymmetrical LTVS one can see a tendency for a higher score of CHD on the side of the smaller contact between LTVS and the hip. But the number of cases is to small to have a statistical significance.

The estimation of heritability for the criterium LTVS can be evaluated by using the pedigree (sires). The result is compared to the estimated heritability CHD in the same population.

The one-factor-analysis of variance (anova) shows almost the same numbers for both criteriums (LTVS and CHD). The range of the genotypic variance is between 20%-30%.

The results of this study present a basis for a selected breeding to reduce the frequency of LTVS in GSD. This may be important, if a correlation between LTVS and CES will be approved in further studies.
8. Literaturverzeichnis

Bailey, C.S. (1975)
An embryological approach to the clinical significance of congenital vertebral and spinal cord abnormalities

Diseases of the spinal cord, 2nd edition, 532-607
Textbook of veterinary internal medicine, Ettinger
W.B. Saunders Company, Philadelphia and London

Barone, R. (1976)
Anatomie comparée des Mammifères domestiques
Tomme I: Osteologie Texte et Atlas
Vigor Edition, Paris

Discography and epidurography for evaluation of the lumbosacral junction in dogs with cauda equina syndrome

Blumensaat, C.; Clasing, C. (1932)
Anatomie und Klinik der lumbosakralen Übergangswirbel (Sakralisation und Lumbalisation)
Ergeb. Chir. Orthop. 25,1, 1-59

Handbuch der vergleichenden Anatomie der Wirbeltiere. Vierter Band, 1-144.
A. Asher & Co, Amsterdam
Osteologische Besonderheiten an Wirbelsäulen von Rassehunden: eine röntgenologische und morphologische Studie
Wien. Tierärztl. Mschr. 85, 340-350

Breed specific osteological features of the canine lumbosacral junction

Use of routine ventrodorsal radiographic views of the pelvis to assess inclination of the wings of the sacrum
AVJR 3 (9), 1220-1225

The diameter of the vertebral canal in dogs in cases of lumbosacral transitional vertebrae or numerical vertebral variations
Anat. Embryol. 205, 123-133

The gross radiographic appearance of sacroiliac ankylosis capsularis ossea in the dog.
Res. Vet. Sci. 74, 85-92

Bürger, R.; Lang, J. (1992)
Kinetische Studie über die Lendenwirbelsäule und den lumbosakralen Übergang beim Deutschen Schäferhund
Teil 1: Funktionelle Anatomie und kinetische Grundlagen
Schweiz. Arch. Tierheilk. 134, 411-416
Bürger, R.; Lang, J. (1993)
Kinetische Studie über die Lendenwirbelsäule und den lumbosakralen Übergang
beim Deutschen Schäferhund
Teil 2: Eigene Untersuchungen
Schweiz. Arch. Tierheilk. 135, 35-43

Clara, M. (1966)
Entwicklungsgeschichte des Menschen 6. Aufl.
Thieme, Leipzig, 37

Zur Pathologie der degenerativen Erkrankungen der Wirbelsäule bei Hunden
Kleintierpraxis 26, 467-476

Surgical treatment of degenerative lumbosacral stenosis in dogs
Vet. Surg. 28, 91-98

Kapitel 12: Hals, Rücken und Wirbelsäule der Fleischfresser
Enke Verlag, Stuttgart

Feeney, D.A.; Evers, P.; Fletcher, T.F.; Hardy, R.M.; Wallace, L.J. (1996)
Computed tomography of the normal canine lumbosacral spine: a morphologic perspective
Vet. Radiol. Ultrasound 37, 399-411

Flückiger M. (1993)
Radiologische Kriterien zur HD-Klassifizierung beim Hund, leicht modifiziert, Stand 12/03
Kleintierpraxis 38, 693-702
Frenkel, F. (1873)
Beiträge zur anatomischen Kenntnis des Kreuzbeines der Säugethiere

Gegenbaur, C. (1873)
Zur Bildungsgeschichte lumbosakraler Übergangswirbel

Spondylarthropathia deformans der Kreuzdarmbeingelenke und ihre Beziehung zur
Spondylopathia deformans des Lumbosakralgelenkes
Berl. Münch. Tierärztl. Wschr. 87, 432-437

Therapie der lumbosakralen Malartikulation durch Arthrodese der kleinen Wirbelgelenke
Kleintierpraxis 36, 501-504

Hanna, F.Y. (2001)
Lumbosacral osteochondrosis: radiological features and surgical management in 34 dogs
J. Small Anim. Pract. 42, 272-278

Henninger, W.; Werner, G. (2002 a)
CT-Untersuchung des lumbosakralen Übergangs von Hunden in Extension und Flexion; Teil I: Knochenfenster
Wien. Tierärztl. Mschr. 89, 142-151

Henninger, W.; Werner, G. (2002 b)
CT-Untersuchung des lumbosakralen Übergangs von Hunden in Extension und Flexion; Teil II: Weichteilfenster
Wien. Tierärztl. Mschr. 89, 220-226
Beckenring-Anomalie am kaudalen Ende des Kreuzdarmbeingelenkes (Articulatio sacroiliaca) bei den Rassen Boxer, Berner Sennenhund und Bernhardiner
Inaugural-Dissertation, Gießen

Jaggy, A.; Lang, J.; Schawalder, P. (1987)
Cauda equina-Syndrom beim Hund
Schweiz. Arch. Tierheilk. 129, 171-192

Lumbosacral degenerative stenosis in the dog
Vet. Comp. Orthop. Traumatol. 13, 97-103

Subclinical CT abnormalities in the lumbosacral spine of older large-breed dogs
Vet. Radiol. Ultrasound 41, 19-26

Association between postoperative outcome and results of magnetic resonance imaging and computed tomography in working dogs with degenerative lumbosacral stenosis

Junghanns, H. (1939)
Die Pathologie der Wirbelsäule, 270-279
In: Lubarsch, O. und Henke, F.: Handbuch der speziellen pathologischen Anatomie und Histologie
Springer Verlag, Berlin

Junghanns, H.; Schmorl, G. (1957)
Die gesunde und die kranke Wirbelsäule in Röntgenbild und Klinik
Thieme Verlag, Stuttgart
Kealy, J.K. (1991)
Röntgendiagnostik bei Hund und Katze, 2. Aufl., 435-473
Ferdinand Enke Verlag, Stuttgart

Kim, N.H.; Suk, K.S. (1997)
The role of transitional vertebrae in spondylosis and spondylolytic spondylolisthesis

Anatomie der Haussäugetiere. Lehrbuch und Farbatlas für Studium und Praxis
Band I Bewegungsapparat, 29-98
Schattauer Verlag, Stuttgart und New York

Die lumbosakrale Instabilität: Ein Beitrag zum Cauda equina-Kompressionssyndrom des Hundes
Tierärztl. Prax. 20, 637-645

Kusch, H. (1983)
Das Achsenskelett des Dackels (Dachshundes, Teckels)
Inaugural-Dissertation, München

Lang, B. (1972)
Bewegungsmessungen an der Wirbelsäule von Hund und Katze
Inaugural-Dissertation, Gießen

Lang, J. (1989)
Flexion-extension myelography of the canine cauda equina
Schweiz. Arch. Tierheilk. 131, 287-298

Die Röntgenuntersuchung der Cauda equina des Hundes
Schweiz. Arch. Tierheilk. 131, 299-309
Lang, J. (1993)
Die Kauda equina Kompression des Hundes. Ein Beitrag zur Röntgenuntersuchung
und Pathogenese
Habilitationsschrift, Bern

Tropismus der kleinen Wirbelgelenke beim Deutschen Schäferhund
Vortrag Röntgenfachtagung, Freudenstadt 2003

Larsen, J.S. (1977)
Lumbosacral transitional vertebrae in the dog
J. Am. Vet. Radiol. Soc. 18, 76-79

Lumbosacral stenosis in 29 military working dogs: epidemiologic findings and
outcome after surgical intervention (1990-1999)
Vet Surg. 32, 21-29

Quantitative survey radiographic evaluation of the lumbosacral spine of normal dogs
and dogs with degenerative lumbosacral stenosis
Vet. Radiol. Ultrasound 34, 194-206

Association of cauda equina compression on magnetic resonance images and
clinical signs in dogs with degenerative stenosis

Michel, G. (1983)
Kompendium der Embryologie der Haustiere, 3. Aufl., 274-281
Gustav Fischer Verlag, Stuttgart

Morgan, J.P. (1968)
Congenital anomalies of the vertebral column of the dog: a study of the incidence
and significance based on a radiographic and morphologic study
J. Am. Vet. Radiol. Soc. 9, 21-29
Morgan, J.P.; Bailey, C.S. (1990)
Cauda equina syndrom in the dog: radiographic evaluation
J. Small Anim. Pract. 31, 69-77

Lumbosacral transitional vertebrae as a predisposing cause of cauda equina
syndrom in German Shepherd Dogs: 161 cases (1987-1990)

Morgan, J.P. (1999 a)
Radiology of veterinary orthopedics: features of diagnosis
Chapter IV: Radiographic diagnosis of disease in the spine, second edition, 237-270
Venture Press, Napa, California, USA

Morgan, J.P. (1999 b)
Transitional lumbosacral vertebral anomaly in the dog: a radiographic study
J. Small Anim. Pract. 40, 167-172

Bone dysplasias in the Labrador Retriever: a radiographic study

Hereditary bone and joint diseases in the dog: osteochondrosis, hip dysplasia, elbow
dysplasia
Chapter 6: Lumbosacral disease, 209-229
Schlütersche Verlag, Hannover

Lehrbuch der Anatomie der Haustiere Band I, 6. Auflage
Paul Parey Verlag, Berlin und Hamburg, 28-53, 221-228, 257-260, 555-585
Cauda equina compression from lumbosacral malarticulation and malformation in the dog

Röntgenbildinterpretation für den Kleintierpraktiker, 67-84
Ferdinand Enke Verlag, Stuttgart

A review of imaging techniques for canine cauda equina syndrom

Rosenberg, E. (1907)
Bemerkungen über den Modus des Zustandekommens der Regionen an der Wirbelsäule des Menschen
Morph. Jahrbuch 36, 609-659

Schmid, V.; Lang, J. (1993)
Measurements of the lumbosacral junction in normal dogs and those with cauda equina compression
J. Small Anim. Pract. 34, 437-442

Schnorr, B. (1989)
Embryologie der Haustiere, 2. Auflage, 202-210
Ferdinand Enke Verlag Stuttgart

Lumbosacral transitional vertebra and thoracic limb malformations in a Chihuahua puppy
Numerical vertebral variations and transitional vertebrae in the goat
Anat. Histol. Embryol. 12, 97-103

Sinowatz, F. (1991)
Die Wirbelsäule, 383-385
In: Rüssel, I. und Sinowatz, F.: Lehrbuch der Embryologie der Haustiere
Paul Parey Verlag, Berlin und Hamburg

Slijper, E.J. (1946)
Comparative Biological-Anatomical Investigations on the Vertebral Column and
Spinal Musculature of Mammals
Ver. kon. ned. Anat. Wet. 42/5, 1-128

L7/S1 fixation-fusion for treatment of cauda equina compression in the dog

Starck, D. (1979)
Die Wirbelsäule
In: Vergleichende Anatomie der Wirbeltiere auf evolutionsbiologischer Grundlage.
Das Skelettsystem (2), 44-98
Springer, Berlin

Stieve, H. (1921)
Bilaterale Asymmetrien im Bau des menschlichen Rumpfskelettes
Z. Anat. Entwicklungsgesch. 60, 307-409

Klinische, röntgenologische, operative und postoperative Befunde beim Cauda
equina-Kompressionssyndrom des Hundes
Kleintierpraxis 42, 387-405
Lumbosacral stenosis in dogs
J. Am. Vet. Med. Assoc. 177, 154-159

Fallbeispiele zur HD-Beurteilung-Sakralisation
Kleintierpraxis 39, 281-282

Kapitel 2: Skelett, 4-52
In: Frewein, J. und Vollmerhaus, B.: Anatomie von Hund und Katze
Blackwell Wissenschaftsverlag, Berlin

Walla jun., L. (1986)
Die Kompression der Cauda equina beim Hund
Kleintierpraxis 31, 315-322

Watt, P.R. (1991)
Degenerative lumbosacral stenosis in 18 dogs
J. Small Anim. Pract. 32, 125-134

Lumbosakrale Übergangswirbel beim Hund
Inaugural-Dissertation, Berlin

Winkler, W.; Löffler, K. (1986)
Lumbosakrale Übergangswirbel beim Hund

Wright, J.A. (1980)
Spondylosis deformans of the lumbo-sacral joint in dogs
J. Small. Anim. Pract. 21, 45-58
Assimilationsstörungen im lumbosakralen Übergangsbereich der Wirbelsäule bei Hund und Katze
Inaugural-Dissertation, München

Blockierung des Ileosakralgelenk; Ursachen, Klinik, Diagnose, Therapie
Kleintier Konkret 6, 11-15
Danksagung:

Herrn Prof. Dr. E. Schimke danke ich für die Überlassung des Themas und Unterstützung bei der Anfertigung der Arbeit.

Herrn Prof. Dr. M. Kramer danke ich für die weitere Betreuung und Korrektur der Dissertation.

Mein besonderer Dank gilt Herrn Dr. B. Tellhelm und Frau Dr. S. Schleich für die fachliche Betreuung der Arbeit und Ausbildung im Bereich der Radiologie.

Für die Hilfe bei der Heritabilitätsschätzung bedanke ich mich bei Dr. R. Beuing.

Meiner Frau Anja danke ich für ihr Verständnis und ihre liebevolle Unterstützung und meinen Eltern dafür, dass sie mir dies alles ermöglicht haben.