Veränderung von Lymphozytensubsets nach intraportalen Inselzelltransplantation und Induktionsimmunsuppression mit polyklonalen Antilymphozytenseren

Inauguraldissertation zur Erlangung des Grades eines Doktors der Medizin des Fachbereiches Medizin der Justus-Liebig-Universität Gießen

Vorgelegt von Gunther Döring aus Fulda

Gießen 2005
Aus dem Medizinischen Zentrum für Innere Medizin
Medizinische Klinik III und Poliklinik
Direktor: Prof. R.G. Bretzel
des Universitätsklinikums Gießen

Gutachter: Prof. Dr. R.G. Bretzel
Gutachter: Prof. Dr. G. Bein

Tag der Disputation: 14.2.2006
INHALTSVERZEICHNIS

1. Einleitung ... 1
 1.1 Diabetes mellitus .. 1

1.2 Pankreastransplantation ... 3

1.3 Inselzelltransplantation ... 4
 1.3.1 Experimentelle Inselzelltransplantation ... 5
 1.3.2 Klinische Inselzelltransplantation ... 6

1.4 Polyklonale Antilymphozytenseren .. 7
 1.4.1 Kurzfristige Wirkungen polyklonaler Antilymphozytenseren 10
 1.4.2 Längerfristige Wirkungen polyklonaler Antilymphozytenseren 10

1.5 Durchflusszytometrische Bestimmung von Lymphozytensubsets
 mit Hilfe monoklonaler Antikörper ... 10
 1.5.1 Durchflusszytometrie .. 10
 1.5.2 Monoklonale Antikörper in der Durchflusszytometrie .. 11

1.6 Immunologisches Monitoring bei Transplantation ... 12
 1.6.1 Immunologisches Monitoring und Lymphozytensubsetbestimmungen 13

1.7 Ziele und Fragestellungen der vorliegenden Arbeit .. 15

2. Material und Methoden ... 15
 2.1 Patientenkollektive .. 15
 2.1.1 Inselzelltransplantierte Patienten .. 15
 2.1.2 Nierentransplantierte Patienten .. 15
 2.1.3 Gesunde Kontrollgruppe .. 16
 2.1.4 Einverständniserklärung und Ethikkommission ... 16
 2.1.5 Gabe von polyklonalen Antilymphozytenseren
 bei Inselzelltransplantation ... 17
2.2 Parameter der Transplantatfunktion .. 17
 2.2.1 Inselzellfunktion .. 17
 2.2.2 Insulinunabhängigkeit .. 17
 2.2.3 Transplantatverlust .. 17
 2.2.4 Zeitpunkt des Transplantatverlustes .. 17

2.3 Indikationen und Kontraindikationen der Inselzelltransplantation 18
 2.3.1 Indikationen .. 18
 2.3.2 Kontraindikationen .. 18

2.4 Empfängerbedingungen .. 18
 2.4.1 Diabetesdauer .. 19
 2.4.2 Insulinbedarf vor Transplantation .. 19
 2.4.3 Histokompatibilität .. 19
 2.4.4 Immunologische Parameter .. 20

2.5 Spenderkriterien .. 20
 2.5.1 Transplantierte Inselmenge .. 20
 2.5.1.1 Inselzelläquivalent .. 20
 2.5.1.2 Inselzellvolumen .. 21
 2.5.1.3 Inselzellzahl .. 21
 2.5.1.4 Inselzellgröße .. 21

2.6 Organkriterien .. 21
 2.6.1 Kalte Ischämiezeit .. 21
 2.6.2 Inselviabilität .. 22
 2.6.3 Inselstimulationsindex .. 22

2.7 Fluoreszenzmarkierung von Blutzellen mit monoklonalen Antikörpern 22
 2.7.1 Materialien .. 22
 2.7.1.1 Fluoreszenzfarbstoffe .. 23
 2.7.1.2 Antikörperprotokoll .. 23
 2.7.2 Probenarten .. 23
 2.7.3 Probengewinnung .. 24
2.7.4 Probenverarbeitung .. 24
 2.7.4.1 Inkubation der Blutprobe mit fluoreszenzmarkierten Antikörpern 24
 2.7.4.2 Lysierung der Erythrozyten .. 25
 2.7.4.3 Waschen der Proben .. 25

2.8 Durchflusszytometrische Analyse ... 25
 2.8.1 Materialien .. 25
 2.8.2 Arbeitschritte ... 25

2.9 Auswertung durchflusszytometrischer Daten .. 26
 2.9.1 Dot-Plot-Darstellung ... 26
 2.9.2 Gaten .. 26
 2.9.3 Backgaten ... 27
 2.9.4 Quadrants ... 27
 2.9.5 Arbeitsschritte ... 27
 2.9.5.1 Bestimmung der unspezifischen Bindung .. 27
 2.9.5.2 Erfassen der Subsets über eine spezifische Fluoreszenz 27
 2.9.5.3 Berechnung absoluter Zellzahlen .. 27

2.10 Statistische Auswertung ... 29
 2.10.1 Deskriptive Statistik ... 29
 2.10.2 Analytische Statistik .. 29

3. Ergebnisse .. 30
 3.1 Transplantatfunktion in der untersuchten Patientengruppe 30

 3.2 Leukozyten und Lymphozytensubsets bei Insellzelltransplantierten 31

 3.3 Lymphozytensubsets bei gesunder Kontrollgruppe 37

 3.4 Lymphozytensubsets bei Nierentransplantierten 39
3.5 Ciclosporinblutspiegel bei Patienten im ersten Jahr nach Inselzelltransplantation .. 43

3.6 Vergleich der Patienten mit Inselzellfunktion gegen Patienten, die ihre Inselzellfunktion im Verlauf des ersten Jahres verloren haben 44

3.7 Vergleich der Inselzelltransplantierten mit gesunder Kontrollgruppe 51

3.8 Vergleich der Inselzelltransplantierten mit Nierentransplantierten 56

3.9 Vergleich von Leukozyten und Lymphozytensubsets bei Inselzelltransplantierten vor und nach Transplantation 61

3.10 Einfluss von Spender-, Empfänger- und Transplantateigenschaften auf das Transplantatüberleben 68
 3.10.1 Histokompatibilität in HLA-A ... 68
 3.10.2 Histokompatibilität in HLA-B ... 69
 3.10.3 Histokompatibilität in HLA-DR .. 70
 3.10.4 Histokompatibilität in HLA-A und HLA-B, und HLA-DR 70
 3.10.5 Insulinverbrauch vor Transplantation ... 71
 3.10.6 Body Mass Index .. 72
 3.10.7 Inselstimulationsindex ... 72
 3.10.8 Inselzellviabilität ... 72
 3.10.9 Kalte Ischämiezeit ... 73
 3.10.10 Inseläquivalent .. 73
 3.10.11 Kombination Kalte Ischämiezeit < 8h und Inseläquivalent > 6000 IEQ 74

4. Diskussion .. 75
 4.1 Welche Veränderungen von Lymphozytensubsets treten nach Inselzelltransplantation und Induktionsimmunsuppression mit polyklonalen Antilymphozytenseren auf? .. 75
 4.1.1 Kurzfristige Effekte .. 75
 4.1.2 Längerfristige Effekte .. 76
4.2 Hat die Ausprägung bestimmter Spender-, Empfänger- und Transplantateigenschaften einen nachweislichen Einfluss auf das Inselzelltransplantatüberleben in der vorliegenden Patientengruppe? 82

4.3 Kann man durch die Bestimmung von Lymphozytensubsets und Inselzell-Autoantikörpern den immunologischen Einfluss auf das Inselzelltransplantatüberleben nachvollziehen? ... 85

4.3.1 Einfluss immunologischer Faktoren auf das Transplantatüberleben allogener Inselzelltransplantate ... 85

4.3.2 Antigenunabhängige Immunprozesse ... 85

4.3.3 Alloimmunität .. 87

4.3.4 Autoimmunität .. 93

4.4 Kann man durch durchflusszytometrische Bestimmung von Lymphozytensubsets eine mögliche immunologische Abstoßung von Inselzelltransplantaten erkennen? ... 94

5. Zusammenfassung .. 98

6. Summary ... 100

7. Literaturverzeichnis .. 101

8. Abkürzungsverzeichnis ... 113

9. Anhang .. 114

9.1 Lebenslauf ... 114

9.2 Danksagung ... 115
1 Einleitung

1.1 Diabetes mellitus

HAUNER wertete 1998 die wichtigsten deutschen Studien und Quellen zur Prävalenz und Inzidenz des Diabetes mellitus in Deutschland aus (Nationales Diabetesregister der DDR, Münchner Diabetes Früherkennung, Daten der AOK Dortmund, Region Württemberg Studie, Region Düsseldorf Eurodiab-ACE-Studie). Als Ergebnis seiner Auswertungen gibt er eine
Gesamtprävalenz des Diabetes mellitus im Jahre 1990 mit etwa 4.5 % der deutschen Bevölkerung, also mit etwa 3.5 bis 4 Millionen Personen, an. Die Gesamtprävalenz der insulinbehandelten Diabetiker beträgt ein Prozent der Bevölkerung, also etwa 800.000 Personen, mindestens 200.000 Menschen in Deutschland sind Typ-1-Diabetiker, die Prävalenz des Typ-1-Diabetes in Deutschland beträgt also 0.2 - 0.3 %. Erst im Alter über 40 Jahren kommt es zu einem raschen Anstieg der Prävalenz des Diabetes. Bei den über 60-Jährigen sind 20 Prozent betroffen. Die Prävalenz bei den unter 20-Jährigen liegt in Deutschland zwischen 0.01 und 0.07 %. Frauen erkranken häufiger an Diabetes mellitus. Das Geschlechtsverhältnis der Gesamtprävalenz m/w liegt bei 1:1.85. In den USA wird die Prävalenz des Diabetes Typ 1 mit 0.3 - 0.4 % angegeben (FOSTER und UNGER, 1998).

Hierbei wurden 1.441 Typ-1-Diabetiker randomisiert nach der intensivierten Insulintherapie oder der konventionellen Insulintherapie behandelt. Die DCCT-Studie konnte dabei zeigen, dass mit der intensivierten Insulintherapie signifikant niedrigere HBA1c-Werte (7.0 %) erreicht werden konnten als im Vergleich zur konventionellen Therapie (8.9 %). Der Ausbruch von diabetischer Retinopathie, Neuropathie und Nephropathie wird verzögert und die Progression durch die intensivierte Diabetestherapie verlangsamt, was jedoch nicht für fortgeschrittene Organläsionen gilt. Eine Normalisierung des HBA1c (Normwert 6.1 %) konnte jedoch auch mit der intensivierten Diabetestherapie nicht erreicht werden, ebenso wenig konnte das Auftreten von Spätkomplikationen verhindert werden. Zusätzlich kam es unter intensivierter Insulintherapie zu einer Zunahme von Hypoglykämien um den Faktor drei.
und zu einer Zunahme des Körpergewichts. Daraus wird geschlossen, dass auch die intensivierte Insulintherapie körpereigene endokrine Regulationsmechanismen nur unzureichend imitieren kann.

Die Inselzelltransplantation und die Pankreastransplantation sind die einzigen Behandlungsmöglichkeiten des Typ-1-Diabetes, die einen konstanten normoglykämischen Zustand und somit eine Verbesserung der Stoffwechsleinstellung im Vergleich zu den bekannten Insulinsubstitutionstherapien ermöglichen (BRETZEL et al., 1992; MOREL et al., 1991).

1.2 Pankreastransplantation

Bis Oktober 2001 wurden weltweit mehr als 17.000 Pankreastransplantationen durchgeführt. Für die Patienten, die von 1997 bis Oktober 2001 in den USA transplantiert wurden, betrug das 1-Jahresüberleben bzw. das 1-Jahres-Transplantatüberleben bei SPK-Patienten (n = 3885) 95 % bzw. 83 %, bei den PAK-Patienten (n = 630) 95 % bzw. 79 %, bei den PTA-Patienten (n = 240) 97 % bzw. 78 %. Bei allen außerhalb der USA transplantierten Patienten (SPK, PAK und PTA; n = 1649) betrug das 1-Jahresüberleben in diesem Zeitraum 94 % (GRUESSNER und SUTHERLAND, 2001).

1.3 Inselzelltransplantation

Mit der Entwicklung der Inselzelltransplantation wurden Hoffnungen verbunden, den Nutzen der Pankreastransplantation ohne die möglichen Komplikationen und Risiken einer Gesamtorgantransplantation zu erhalten. Die intraportale Inselzelltransplantation stellt einen kleinen und risikoarmen Eingriff dar, der prinzipiell wiederholt werden kann. Etwaige Transplantatabstoßungen haben keine schwerwiegende Wirkung auf den Empfänger, des Weiteren eröffnet die Inselzelltransplantation die Möglichkeit in vitro die Immunogenität und Antigenität der Inseln zu verändern, eine Verkapselung der Inseln durchzuführen und sie an immunologisch bevorzugte Orte zu transplantieren. So könnte man in Zukunft das Transplantat vor immunologischen Angriffen des Empfängers schützen bzw. eine

1.3.1 Experimentelle Inselzelltransplantation

Bereits 1890 konnte erstmals von MINKOWSKI durch Pankreatektomie bei Tieren der Zusammenhang zwischen der Entfernung der Bauchspeicheldrüse und dem Diabetes mellitus belegt werden. 1892 wurde dann bereits bei Hunden eine Transplantation von Pankreasanteilen unter die Haut durchgeführt, wobei die Entstehung eines durch Pankreatektomie induzierten Diabetes mellitus verhindert wurde (MINKOWSKI, 1892).

1.3.2 Klinische Inselzelltransplantation

Zwischen 1893 und Dezember 2000 wurden weltweit 493 adulte allogene Inselzelltransplantation durchgeführt, inklusive historischer Fälle. Zur Zeit existieren fünf Transplantationsmodalitäten, die berücksichtigen, bei welchen Patienten Inselzelltransplantationen durchgeführt werden. Dies sind:

- Allogene Inselzelltransplantation nach Nierentransplantation bei Typ-1-Diabetikern (IAK = Islet After Kidney)
- Simultane allogene Nieren-Inselzelltransplantation bei Typ-1-Diabetikern (SIK = Simultaneous Islet Kidney)
- Alleinige allogene Inselzelltransplantation (ITA = Islet Transplant Alone)
 - bei schwerer autonomer Neuropathie
 - bei Brittle Diabetes
 - bei schwerer diabetischer Nephropathie
 - bei unzureichender Hypoglykämiegegenregulation
- Autologe Inselzelltransplantation bei sekundärem Diabetes nach Pankreatektomie wegen chronisch rezidivierender Pankreatitis
- Simultane allogene Leber-Inselzelltransplantation (SIL = Simultaneous Islet Liver) nach abdomineller Exenteration bei malignen Abdominaltumoren

Eine umfangreiche Untersuchung von Einflussfaktoren auf das Transplantatüberleben konnte erst durch die Sammlung und den Vergleich weltweiter Transplantationsdaten durch die Internationale Inselzelltransplantation Registratur (ITR = International Islet Transplant Registry) in größerem Umfang durchgeführt werden. In den Jahren 1990 bis 1999 wurden der Internationalen Inselzelltransplantation Registratur 237 adulte allogene Inselzell-
transplantationen beim Typ-1-Diabetiker mit kompletten Datensätzen gemeldet. In dieser gut dokumentierten Patientengruppe betrug das 1-Jahres-Patientenüberleben 96 % und das 1-Jahres-Transplantatüberleben 41 %. Eine Insulinunabhängigkeit (> 7 Tage) im ersten Jahr nach der Transplantation war in 11 % der Fälle erreicht (BRENDEL et al., 2001).

1.4 Polyklonale Antilymphozytenseren

<table>
<thead>
<tr>
<th>Produktname:</th>
<th>Atgam</th>
<th>M-ALG</th>
<th>Lymphoglobin</th>
<th>Thymoglobin</th>
<th>ATG-Fresenius</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilisierte</td>
<td>Pferd</td>
<td>Pferd</td>
<td>Pferd</td>
<td>Kaninchen</td>
<td>Kaninchen</td>
</tr>
<tr>
<td>Spezies:</td>
<td>Pferd</td>
<td>Pferd</td>
<td>Pferd</td>
<td>Kaninchen</td>
<td>Kaninchen</td>
</tr>
<tr>
<td>Immunogenes</td>
<td>Thymus</td>
<td>Thymus</td>
<td>Thymus</td>
<td>Thymus</td>
<td>Lymphoblasten</td>
</tr>
<tr>
<td>Substrat:</td>
<td>Lymphoblasten</td>
<td></td>
<td></td>
<td>(Jurkat-Zelllinie)</td>
<td></td>
</tr>
<tr>
<td>Empfohlene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dosis (mg/kg/d):</td>
<td>10-30</td>
<td>15-20</td>
<td>10</td>
<td>1.25-2.5</td>
<td>1-5</td>
</tr>
</tbody>
</table>

Tab. 1: Übersicht über in der Transplantationsmedizin verwandte polyklonale Antilymphozytenserien

Am Beispiel des ATG-Fresenius, des weltweit am häufigsten verwandten polyklonalen Antilymphozytenserums (über 100.000 behandelte Patienten), sollen die verschiedenen enthaltenen Antikörper dargestellt werden. ATG-Fresenius wird durch die Sensibilisierung von Kaninchen mit der JURKAT Zelllinien gewonnen, welche humanen aktivierten T-Lymphozyten ähnelt. Die Antigene der JURKAT-Zelllinie und die Häufigkeit ihrer Expression sind in Abb. 1 dargestellt. ATG Fresenius enthält die entsprechenden Antikörper zu den aufgeführten Antigenen.

Bei Untersuchungen der Lymphozytensubsets nach Gabe von polyklonalen Antikörperserien konnten kurzfristige und längerfristige Wirkungen beobachtet werden.

<table>
<thead>
<tr>
<th>Antigen</th>
<th>% der Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD1a</td>
<td>100</td>
</tr>
<tr>
<td>CD2</td>
<td>100</td>
</tr>
<tr>
<td>CD3</td>
<td>100</td>
</tr>
<tr>
<td>CD4</td>
<td>35</td>
</tr>
<tr>
<td>CD5</td>
<td>100</td>
</tr>
<tr>
<td>CD8</td>
<td>80</td>
</tr>
<tr>
<td>CD11a</td>
<td>60</td>
</tr>
<tr>
<td>CD28</td>
<td>100</td>
</tr>
<tr>
<td>CD45RA</td>
<td>60</td>
</tr>
<tr>
<td>CD54</td>
<td>100</td>
</tr>
<tr>
<td>CD56</td>
<td>100</td>
</tr>
<tr>
<td>CD71</td>
<td>100</td>
</tr>
<tr>
<td>CD96</td>
<td>100</td>
</tr>
<tr>
<td>TCR alpha/beta</td>
<td>100</td>
</tr>
</tbody>
</table>
1.4.1 Kurzfristige Wirkungen polyklonaler Antilymphozytenserener

1.4.2 Längerfristige Wirkungen polyklonaler Antilymphozytenserener

1.5 Durchflusszytometrische Bestimmung von Lymphozytensubsets mit Hilfe monoklonaler Antikörper

1.5.1 Durchflusszytometrie

Es besteht die Möglichkeit, über monoklonale Antikörper Fluoreszenzfarbstoffe spezifisch an diejenigen Zellen zu binden, die das korrespondierende Antigen auf ihrer Zelloberfläche tragen. Das Licht des Lasers regt Fluoreszenzfarbstoffe an, die über die monoklonalen Antikörper an Antigene auf der Zelloberfläche gebunden sind. Die so angeregten Farbstoffe strahlen das Licht in einem farbstoffspezifischen Spektralbereich ab. Das abgestrahlte Licht kann hinsichtlich der Wellenlänge und der Intensität gemessen werden. So kann über die Fluoreszenzmessung die Antikörperbindung an die Zellen bestimmt werden.

Für jede Zelle werden Streulicht, spezifisches Lichtspektrum und Lichtintensität bestimmt und mit Hilfe eines Computers aufgezeichnet. So kann jeder Zelle ein Längs- und Querdurchmesser sowie Antikörperbindungen zugeordnet werden (MELAMED, 1994)

1.5.2 Monoklonale Antikörper in der Durchflusszytometrie

Mit der Durchflusszytometrie existiert ein wirkungsvolles Verfahren, um durch monoklonale Antikörper schnell und exakt Lymphozytenpopulationen und Subsets aus dem peripheren Blut zu bestimmen (MELAMED, 1994).
<table>
<thead>
<tr>
<th>Antigene</th>
<th>Korrespondierende Antikörper</th>
<th>Zielzellen</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD3</td>
<td>Leu 4; OKT 3; T3</td>
<td>T-Zellen</td>
</tr>
<tr>
<td>CD4</td>
<td>Leu 3; OKT 4, T4</td>
<td>Helfer-Inducer T-Zellen, Monozyten</td>
</tr>
<tr>
<td>CD14</td>
<td></td>
<td>Monozyten, Makrophagen</td>
</tr>
<tr>
<td>CD16</td>
<td>Leu11, 3G8</td>
<td>Natürliche Killerzellen, Granulozyten (PMN)</td>
</tr>
<tr>
<td>CD19</td>
<td>Leu 12; B4</td>
<td>B-Zellen</td>
</tr>
<tr>
<td>CD45 RO</td>
<td>Leu 18; 2H4</td>
<td>T-Subset</td>
</tr>
<tr>
<td>CD56</td>
<td>Leu 19; NKH-1 antigen; N-CAM isoform</td>
<td>Natürliche Killerzellen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HLA-DR</td>
<td></td>
<td>MHC Klasse II Antigene</td>
</tr>
</tbody>
</table>

Tab. 2: Von der Weltgesundheitsorganisation (WHO) empfohlene Nomenklatur für Humane Leukozyten Differenzierungsantigene (MELAMED, 1994)

1.6 Immunologisches Monitoring bei Transplantation

Ziel des immunologischen Monitorings ist es, Rückschlüsse über den immunologischen Status des Patienten zu gewinnen und so über den gezielteren Einsatz der therapeutischen Optionen die Transplantafunktion zu verbessern und das Transplantatüberleben zu verlängern. Im klinischen Einsatz konzentrieren sich die Untersuchungen auf drei Hauptbereiche (KEOWN, 1992; TSUNODA und AWEeka, 1996):

- Bestimmung des immunologischen Status des Patienten

Methode: Phänotypisierung von Lymphozyten und Bestimmung von Lymphozytensubsets.
• Bestimmung der beteiligten immunologischen Mechanismen
Methode: Identifizierung antigenspezifischer Immunmechanismen (Autoimmunität, Alloimmunität, virale Infektionen) und lokaler antigenunspezifischer Immunmechanismen mittels Biopsie, Antikörperbestimmung.

• Bestimmung der Wirkung der immunsuppressiven Therapie
Methode: Bestimmung der Serumspiegel der Immunsuppressiva und ihrer Metaboliten sowie der intrazellulären DNA-Nukleotide und CD3-Lymphozyten.

1.6.1 Immunologisches Monitoring und Lymphozytensubsetbestimmungen

Die Lymphozytensubsetbestimmungen können im Rahmen des immunologischen Monitoring hinsichtlich verschiedener Fragestellungen bzw. Problemen von Nutzen sein:

• Dosisanpassung von polyklonalen Antikörpern
Im Zusammenhang mit Nierentransplantationen konnte gezeigt werden, dass durch tägliches Immunmonitoring und Dosisanpassungen des ATG, Über- und Unterimmunsuppression vermieden werden kann (CLARK et al., 1993; THERVET et al., 1997). Durch die Bestimmung der CD3+ Zellen als Berechnungsgrundlage von Dosisanpassungen in der Induktionsphase der Immunsuppression konnte, etwa bei der Behandlung steroidresistenter Abstoßungskrisen, die ATG-Dosis und die Anzahl schwerer viraler Infekte signifikant reduziert werden, ohne die Fähigkeit des ATG zu beeinträchtigen, die Abstoßungsreaktionen wirkungsvoll zu bekämpfen.

• Erkennen von Transplantatabstoßung

Bereits 1982 wurden bei Patienten signifikant höhere T4/T8-Verhältnisse während oder bis zu fünf Tagen vor Abstoßung im Vergleich zu Patienten ohne Abstoßungsreaktion beschrieben. Hinsichtlich der absoluten Zellzahlen von CD4+ Zellen und CD8+ Zellen konnte jedoch kein signifikanter Unterschied festgestellt werden (ELLIS at al., 1982). Hohe T-
Lymphozytenzahlen vor Transplantation konnten als Risikofaktor für die Entwicklung akuter Transplantatabstoßungen beobachtet werden. In der Zeit nach Transplantation konnte jedoch kein Zusammenhang zwischen Zellzahlen der CD2+, CD3+, CD4+ und CD8+ Zellen und der Entwicklung von Abstoßungskrisen beschrieben werden (THERVET et al., 1997).

Die Untersuchung pädiatrischer Nierentransplantationspatienten ergab während der Gabe von Antilymphozytenseren durchschnittlich höhere Zellzahlen CD2+ und CD3+ Zellen bei Patienten, die später Abstoßungsreaktionen erlitten, jedoch waren die Unterschiede nicht signifikant (BELL et al., 1997; BRUN et al., 1995).

- Erkennen und Vermeiden anderer möglicher Komplikationen nach Transplantation

1.7 Ziele und Fragestellungen der vorliegenden Arbeit

Mit der vorliegenden Arbeit sollen die Veränderungen von Lymphozytensubsets bei Patienten nach Inselzelltransplantation untersucht werden. Dabei hat sich die Durchflusszytometrie mit Hilfe fluoreszenzmarkierter monoklonaler Antikörper als besonders zuverlässige Methode erwiesen. Im Speziellen sind vier Fragestellungen hinsichtlich der beobachteten Veränderungen von besonderem Interesse:

- Wie verändern sich Lymphozytensubsets nach Inselzelltransplantation und Induktionsimmunsuppression mit polyklonalen Antilymphozytenseren?

- Hat die Ausprägung bestimmter Spender-, Empfänger- und Transplantateigenschaften einen nachweislichen Einfluss auf das Inselzelltransplantatüberleben in der vorliegenden Patientengruppe?

- Kann man durch Bestimmung von Lymphozytensubsets und Inselzell-Autoantikörpern den immunologischen Einfluss auf das Inselzelltransplantatüberleben nachvollziehen?

- Kann man durch durchflusszytometrische Bestimmung von Lymphozytensubsets eine mögliche immunologische Abstoßung von Inselzelltransplantaten erkennen?

2. Material und Methoden

2.1 Patientenkollektive

2.1.1 Inselzelltransplantierte Patienten

Das untersuchte Patientenkollektiv besteht aus 20 Patienten, die vor Transplantation C-Peptid-negativ waren und sich im Zeitraum von Januar 1997 bis August 1998 an der Universitätsklinik in Gießen einer intraportalen Inselzelltransplantation unterzogen. Dabei wurden 14 simultane Insel-Nierentransplantationen (SIK), fünf Inselzelltransplantationen nach Nierentransplantation (IAK) und eine simultane Insel-Lebertransplantation (SIL) durchgeführt.

2.1.2 Nierentransplantierte Patienten

Das Patientenkollektiv der Nierentransplantierten besteht aus zehn terminal niereninsuffizienten Patienten, denen im Zeitraum von Oktober 1998 bis Mai 1999 an der
Universitätsklinik in Gießen eine Niere transplantiert wurde. Keiner der Patienten erhielt polyklonale Antilymphozytenserum.

2.1.3 Gesunde Kontrollgruppe

Die gesunde Kontrollgruppe besteht aus zehn gesunden Nierenspendern, die im Zeitraum Oktober 1998 bis Mai 1999 an der Universitätsklinik in Gießen nephrektomiert wurden. Die Probenentnahme lag zeitlich jeweils vor der Nephrektomie.

<table>
<thead>
<tr>
<th>Inselzelltransplantierte</th>
<th>Nierentransplantierte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patienten (n)</td>
<td>20</td>
</tr>
<tr>
<td>Geschlecht (w/m)</td>
<td>11/9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Median (25 % - 75 % Perzentil)</th>
<th>Median (25 % - 75 % Perzentil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewicht (kg)</td>
<td>61 (58 - 69)</td>
</tr>
<tr>
<td>Alter (Jahre)</td>
<td>38 (35 - 42)</td>
</tr>
<tr>
<td>Dialysedauer (Monate)</td>
<td>17 (4 - 39)</td>
</tr>
</tbody>
</table>

Abb. 2: Charakteristika der Inselzelltransplantationspatienten und Nierentransplantationspatienten der vorliegenden Untersuchung

2.1.4 Einverständniserklärung und Ethikkommission

2.1.5 Gabe von polyklonalen Antilymphozytenseren bei Inselzelltransplantation

Allen 20 Inselzelltransplantationspatienten aus der vorliegenden Untersuchung wurden innerhalb der ersten zehn Tage nach Inselzelltransplantation polyklonale Antilymphozytenseren (ATG) verabreicht. Die mittlere Dosis des ATG betrug dabei 240 ± 39 mg/Patient/Tag (Mittelwert ± Standardabweichung), ATG wurde im Mittel über 9 ± 1.1 Tage (Mittelwert ± Standardabweichung) verabreicht, mindestens aber über sieben Tage. Jeder Patient erhielt ATG in individueller, von den behandelnden Ärzten festgesetzter Dosierung, die im Verlauf der Behandlung nicht verändert wurde.

2.2 Parameter der Transplantatfunktion

2.2.1 Inselzellfunktion

Eine Inselzellfunktion lag in der vorliegenden Untersuchung definitionsgemäß dann vor, wenn an drei aufeinander folgenden Messungen ein C-Peptid > 0.5 ng/ml gemessen werden konnte.

2.2.2 Insulinunabhängigkeit

Insulinunabhängigkeit im ersten Jahr nach Transplantation lag in der vorliegenden Untersuchung definitionsgemäß dann vor, wenn an mehr als sieben Tagen im ersten Jahr nach Transplantation keine Insulinsubstitutionstherapie erfolgen musste.

2.2.3 Transplantatverlust

Der Transplantatverlust lag in der vorliegenden Untersuchung definitionsgemäß dann vor, wenn an drei aufeinander folgenden Messungen ein C-Peptid Wert < 0.5 ng/ml bestimmt wurde, bei vorher bestehender Inselzelltransplantatfunktion.

2.2.4 Zeitpunkt des Transplantatverlustes

Der Zeitpunkt des Transplantatverlustes ist in der vorliegenden Untersuchung definiert als Zeitpunkt zwischen der ersten von minimal drei aufeinander folgenden Messungen, bei denen C-Peptid < 0.5 ng/ml lag, bei vorher bestehender Inselzelltransplantatfunktion.
2.3 Indikationen und Kontraindikationen der Inselzelltransplantation

2.3.1 Indikationen

- Niereninsuffizienz im prä-urämischen Stadium oder Endstadium
- Vorausgegangene (> 6 Monate) Nierentransplantation

2.3.2 Kontraindikationen

- Alter < 18 Jahre oder > 65 Jahre
- Diabetesdauer < 10 Jahre
- Rest-C-Peptid-Sekretion (Plasma-C-Peptid > 0.2 ng/ml gemessen 6 min nach i.v. Gabe von 1 mg Glucagon oder wenn die Basal-Sekretion bei 0.2 - 0.3 ng/ml liegt)
- Kreatininclearance < 45ml/min (trifft nicht beim Vorliegen der Indikation: Alter < 18 Jahre oder > 65 Jahre zu).
- Unbehandelte proliferative Retinopathie
- Unbehandelte koronare Herzerkrankung mit signifikanter Stenose und Linksventrikelversagen, außer erfolgreich behandelt durch Medikation, Bypass-Operation oder Dilatation
- Portaler Hochdruck
- Aktive Infektionen, im speziellen Hepatitis B und C
- Aktive peptische Ulzera
- Psychiatrische Erkrankungen
- Noncompliance
- Substanzmissbrauch
- Krebserkrankungen, außer Heilung ohne Rekurrenz für > 5 Jahre

2.4 Empfängerbedingungen

Folgende Empfängerbedingungen wurden bestimmt und ihr Einfluss auf Transplantatfunktion und Transplantatüberleben überprüft.
2.4.1 Diabetesdauer

Die Dauer des insulinpflichtigen Diabetes mellitus in Jahren.

2.4.2 Insulinbedarf vor Transplantation

Insulinbedarf vor Transplantation pro Tag in internationalen Einheiten (IE), wobei alle Insuline addiert werden.

2.4.3 Histokompatibilität

- Histokompatibilitäts-Score für HLA-A

- Histokompatibilitäts-Score für HLA-B und HLA-DR
 Für die Antigene von HLA-B und HLA-DR wurden korrespondierende Scores nach der oben für HLA-A beschriebenen Methode erstellt.

- Gesamtscore für die Histokompatibilität von HLA-A und HLA-B und HLA-DR
von 5 dem mismatch von einem Antigen und ein Score von 6 dem mismatch von null Antigenen.

2.4.4 Immunologische Parameter

Als immunologische Marker dienten die vom Labor der Universitätsklinik Gießen bestimmten Differentialblutbilder sowie die durchflusszytometrisch gewonnenen Lymphozytensubpopulationen mit Aktivierungsmarkern, angegeben in Zellzahl/µl Blut.

- Leukozytenzahl
- Lymphozytenzahl
- Zellzahl CD3+ Zellen
- Zellzahl CD19+ Zellen
- Zellzahl CD56+ CD3- Zellen
- Zellzahl CD4+ Zellen
- Zellzahl CD4+ HLA-DR+ Zellen
- Zellzahl CD4+ CD122+ Zellen
- Zellzahl CD4+ CD45RO+ Zellen
- Zellzahl TCR alpha/beta+ Zellen
- Zellzahl TCR gamma/delta+ Zellen
- Monozytenzellzahl
- Zellzahl CD14+ HLA-DR+ Zellen

2.5 Spenderkriterien

2.5.1 Transplantierte Inselmenge

Die Menge der transplantierten Inselzellen wird mit dem Inselzelläquivalent (IEQ = Isletequivalent) pro Kilogramm Körpergewicht angegeben. Die Kalkulation erfolgt entsprechend international festgelegten Richtlinien.

2.5.1.1 Inselzelläquivalent

2.5.1.2 Inselzellvolumen

Zur Bestimmung des Inselvolumens wird eine Kugelform angenommen. Mit folgender Formel wird dann aus dem lichtmikroskopisch bestimmten Durchmesser (2r) das Inselvolumen bestimmt: \(\text{Inselvolumen} = \frac{4}{3} \times \pi \times r^3 \)

2.5.1.3 Inselzellzahl

Die Inselanzahl wird unter dem Lichtmikroskop ausgezählt. Dabei werden die ausgezählten Inselzellen nach ihrer Größe klassifiziert.

2.5.1.4 Inselzellgröße

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Durchmesser</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50-100 µm</td>
</tr>
<tr>
<td>2</td>
<td>100-200 µm</td>
</tr>
<tr>
<td>3</td>
<td>200-300 µm</td>
</tr>
<tr>
<td>4</td>
<td>300-400 µm</td>
</tr>
<tr>
<td>5</td>
<td>400-500 µm</td>
</tr>
<tr>
<td>6</td>
<td>>500 µm</td>
</tr>
</tbody>
</table>

Tab. 3: Klassifizierung der Inselgröße

2.6 Organkriterien

2.6.1 Kalte Ischämiezeit

2.6.2 Inselviabilität

Die Viabilität von Inselzellen wird in Anlehnung an die Methoden von LONDON et al. festgestellt. Hierbei werden mittels einer fluoreszenz mikroskopischen Analyse lebende und tote Inselzellen bestimmt.

2.6.3 Inselstimulationsindex

Es wird die Insulinsekretion nach 90 Minuten statischer Inkubation bei 30 bzw. 300 mg/dl Glucosekonzentration bestimmt. Der Inselstimulationsindex errechnet sich aus dem Quotienten der Insulinsekretion bei 300 mg/dl zu der Insulinsekretion bei 30 mg/dl.

2.7 Fluoreszenzmarkierung von Blutzellen mit monoklonale Antikörper

2.7.1 Materialien

- EDTA 5 ml Blutabnahmeröhrchen
- Facs-Probenröhrchen: Falcon 5 ml round bottom tube (Katalog Nr. 352054)
- PBS Puffer
- Facs Lysing Solution 1:10 mit steriles Aqua dest. verdünnt
- Becton&Dickinson Maus IgG1 FITC (Katalog Nr. 349041)
- Becton&Dickinson Maus IgG1 Pe (Katalog Nr. 349043)
- Becton&Dickinson Maus IgG2 FITC (Katalog Nr. 349051)
- Becton&Dickinson Maus IgG2 Pe (Katalog Nr. 349053)
- Becton&Dickinson CD3 FITC (Katalog Nr. 349201)
- Becton&Dickinson CD3 PE (Katalog Nr. 347347)
- Becton&Dickinson CD 4 FITC (Katalog Nr. 3473232)
- Becton&Dickinson CD 14 IgG2b FITC (Katalog Nr. 347493)
- Becton&Dickinson CD 19 IgG1 PE (Katalog Nr. 349209)
- Becton&Dickinson CD45 RO IgG2a PE (Katalog Nr. 347967)
- Becton&Dickinson CD56 PE IgG1 (Katalog Nr. 347747)
- Becton&Dickinson CD 71 FITC IgG1 (Katalog Nr. 347513)
- Becton&Dickinson CD122 PE IgG1 (Katalog Nr. 3402454)
- Becton&Dickinson HLA DR IgG2a PE (Katalog Nr. 346367)
- Becton&Dickinson TCR gamma/delta IgG1 PE (Katalog Nr. 347907)
- Becton&Dickinson TCR alpha/beta IgG1 FITC (Katalog Nr. 347773)
• Zentrifuge: Hettich Rotana
• Vortex Mixer

2.7.1.1 Fluoreszenzfarbstoffe

Es werden zwei unterschiedliche Farbstoffe verwandt.
• FITC-Farbstoff (Fluorescin Isothiocyanate) mit einem Fluoreszenzmaximum im Bereich 520 nm.
• PE-Farbstoff (R-Phycoerythrin) mit einem Fluoreszenzmaximum im Bereich 578 nm.

2.7.1.2 Antikörperprotokoll

• IgG1 FITC und IgG1 Pe
• IgG2 FITC und IgG2 Pe
• CD3 FITC und CD19 Pe
• CD3 FITC und CD56 Pe
• CD4 FITC und CD3 Pe
• CD4 FITC und CD122 PE
• CD4 FITC und CD45RO
• CD4 FITC und HLA-DR PE
• CD71 FITC und CD3 PE
• CD14 FITC und HLA-DR PE
• TCR alpha/beta FITC und TCR gamma/delta PE

2.7.2 Probenarten

• Nativprobe
Hierbei werden der Probe keine Antikörper zugegeben.
• Isotypenkontrolle
Es werden an Mausantikörper gebundene Fluoreszenzfarbstoffe verwendet. Die Mausantikörper weisen keine spezifische Bindungsfähigkeit gegen Epitope der menschlichen Blutzellen auf, es kommt über unspezifische Mechanismen dennoch zu einer Bindung der Mausantikörper an die humanen Blutzellen. Es werden die gleichen Antikörpersubklassen wie im Antikörperprotokoll verwendet (IgG1, IgG2) und die gleichen Fluoreszenzfarbstoffe.
• Doppelfärbung der spezifische Antikörperproben
Es werden bei jeder Probe zwei verschiedene Antikörper, konjugiert an unterschiedliche Fluoreszenzfarbstoffe, verwendet. Die Antikörper sind gegen Oberflächenantigene der Blutzellen gerichtet.

2.7.3 Probengewinnung

2.7.4 Probenverarbeitung
Die Verarbeitung der Blutproben erfolgt in den ersten 24 Stunden nach Probenentnahme. Die Proben werden bei 4°C und Dunkelheit gelagert.
Die Verarbeitung gliedert sich im Wesentlichen in drei Arbeitsschritte: Inkubation der Probe mit monoklonalen Antikörpern, Lysierung der Erythrozyten und Herauswaschen der Erythrozyten.

2.7.4.1 Inkubation der Blutprobe mit fluoreszenzmarkierten Antikörpern
• Pipettieren von 100 µl EDTA-Vollblut in die Facs-Probenröhrchen
• Zugabe von jeweils 10 µl von zwei monoklonalen Antikörpern nach Antikörperprotokoll
• Durchmischen der Lösung für ca. 10 Sekunden bei mittlerer Intensität auf dem Vortex-Mixer
• Inkubation der Proben für 30 Minuten bei 4°C und Dunkelheit
2.7.4.2 Lysierung der Erythrozyten

- Hinzufügen von 1 ml 1:10 verdünnter Facs Lysing Solution
- Durchmischen für ca. 10 Sekunden bei mittlerer Intensität auf einem Vortex-Mixer
- Inkubation für 5 Minuten bei 4° C und Dunkelheit
- Zentrifugieren der Proben für 7 Minuten bei 1600 U/min
- Zügiges Abschütten des Probenröhrchens über dem Abwurf. Der dabei durch Kohäsion und Adhäsion im Röhrchen verbleibende Resttropfen der Lösung wird weiter bearbeitet

2.7.4.3 Waschen der Proben

- Hinzufügen von 1 ml PBS-Puffer und Durchmischen der entstandenen Lösung auf dem Vortex-Mixer für 5 Sekunden bei mittlerer Intensität
- Zentrifugieren der Lösung mit 1600 Umdrehungen/min für insgesamt 5 Minuten.
- Abschütten der Lösung über dem Abwurf wie in 2.7.4.2
- Zweimaliges Wiederholen der ersten beiden Arbeitsschritte von 2.7.4.3. Man erhält so einen Tropfen einer klaren Lösung
- Hinzufügen von 1 ml PBS-Puffer. Die so erhaltene Lösung wird dann im Durchflusszytometer untersucht.

2.8 Durchflusszytometrische Analyse

2.8.1 Materialien

- Durchflusszytometer: Becton & Dickinson Facs-Scan
- Durchflusszytometrielösung: Becton & Dickinson Facs-Flow Lösung (Katalog Nr. 342003)

2.8.2 Arbeitschritte

- Hinzufügen von 1ml Facs-Flow Lösung zu den vorbereiteten Proben
- Befestigen des Probenröhrenchens im Facs-Scan Durchflusszytometer
- Starten des Durchflusszytometers
Es werden pro Probe 100.000 Zellen bearbeitet. Die Daten werden mit dem Hewlett Packard Programm Lysis II auf einem IBM kompatiblen Personal Computer Hewlett Packard 9153C gespeichert.

2.9 Auswertung durchflusszytometrischer Daten

2.9.1 Dot Plot Darstellung

Hierbei werden die Zellen als einzelne Punkte (dots) in ein Koordinatensystem (plot) eingetragen. Die Koordinatenachsen können mit Zellmaßen oder Fluoreszenzintensitäten skaliert werden. Folgenden Arbeitschritte müssen durchgeführt werden:

- Darstellung der Zellen anhand ihrer Größe
 In der Dot-Plot-Darstellungsweise werden die Achsen des Koordinatensystems mit Querdurchmesser (SSC) und Längsdurchmesser (FSC) skaliert. Auf der X-Achse ist die Zelllänge, auf der Y-Achse die Zellbreite dargestellt.

- Darstellung der Fluoreszenz einer Probe
 In der Dot-Plot Darstellungsweise werden die Achsen des Koordinatensystems mit Fluoreszenzintensitäten skaliert. Es werden für die Achsen die spezifischen Spektrumsbereiche der verwandten Fluoreszenzfarbstoffe gewählt.

2.9.2 Gaten

2.9.3 Backgaten

2.9.4 Quadrants

Mit den Quadrants kann man durch ein Gitter das Dot-Plot-Koordinatensystem in vier Quadranten aufteilen, deren Inhalt man quantitativ erfassen kann.

2.9.5 Arbeitsschritte

2.9.5.1 Bestimmung der unspezifischen Bindung

- Dot-Plot-Darstellung der Fluoreszenz der Isotypenkontrolle. Die Fluoreszenzintensität entspricht der Stärke der Antikörperbindung an die Zellen durch unspezifische Bindungsmechanismen. Die Fluoreszenzintensität der Isotypenkontrolle dient als Schwellenwert für die spezifische Bindung.
- Lymphozytengate bestimmen: Färben der Lymphozyten mit dem Panlymphozytenmarker CD45 oder durch die Kombination CD3, CD19 und CD56
- Backgaten der markierten Lymphozyten in das FSC-SSC Dot Plot
- Gaten der markierten Zellen. Mit dem Panlymphozytenmarker CD14 kann man auf die gleiche Weise das Monozytengate erstellen und dadurch das Lymphozytengate kontrollieren

2.9.5.2 Erfassen der Subsets über die spezifische Fluoreszenz

- Setzen des Lymphozytengates.
- DOT-PLOT Darstellung der Fluoreszenz.
- Einsetzen der Quadranten.

2.9.5.3 Berechnung absoluter Zellzahlen

Die in der Durchflusszytometrie erhaltenen Zellzahlen beziehen sich auf 100 000 durchflusszytometrisch bestimmte Zellen und werden mit der folgenden Formel einer Maßeinheit zugeordnet.
a = Zellzahl CD56+ CD3- Zellen in der Durchflusszytometrie
b = Zellzahl CD3+ Zellen in der Durchflusszytometrie
c = Zellzahl CD19+ Zellen in der Durchflusszytometrie
d = Zellzahl des gesuchten Subsets in Durchflusszytometrie
X = Prozentsatz des gesuchten Subsets an der Gesamtlymphozytenzahl
Y = absolute Lymphozytenzahl/µl Vollblut
Z = Zellzahl des gesuchten Lymphozytensubsets/µl Vollblut

\[
\begin{align*}
X &= \frac{d}{a + b + c} \\
Z &= X \times Y
\end{align*}
\]
2.10 Statistische Auswertung

2.10.1 Deskriptive Statistik

2.10.2 Analytische Statistik

\[
\begin{align*}
p & > 0.05 \quad \text{nicht signifikant} \\
0.05 & \geq p \quad \text{signifikant}
\end{align*}
\]

Zur Berechnung der analytischen Statistik wurden das Macintosh Statistikprogramm In-Stat und ein Macintosh Personal Computer verwendet.
3. **Ergebnisse**

3.1 **Transplantatfunktion in der untersuchten Patientengruppe**

Somit ergeben sich drei Patientenkollektive:

- 14 Patienten (70 %) mit Transplantatfunktion im ersten Jahr nach Transplantation.
- Fünf Patienten (25 %), die nach anfänglicher Transplantatfunktion im ersten Monat diese bis zum Ende des ersten Jahres nach Transplantation wieder verloren hatten.
- Ein Patient (5 %), der zu keinem Zeitpunkt nach Transplantation eine Transplantatfunktion hatte.

Der Zeitpunkt des Transplantatverlustes lag bei allen fünf Patienten zwischen dem 27. und 82. Tag nach Inselzelltransplantation (Abb. 3).

Abb. 3: Vorliegen einer Inselzelltransplantatfunktion nach Inselzelltransplantation (ITX), Verlauf über 12 Monate nach ITX bei 19 Patienten.
3.2 Leukozyten und Lymphozytensubsets bei Inselzelltransplantierten

In den Abb. 4 - Abb. 17 sind die Mediane mit 25 % Perzentilen und 75 % Perzentilen der Zellzahlen pro µl Vollblut von Leukozyten und Lymphozytensubsets bei 20 Patienten, über einen Zeitraum von sieben Tagen vor Inselzelltransplantation bis zwölf Monaten nach Inselzelltransplantation, dargestellt.

a) Leukozyten

![Leukozyten Diagramm]

Abb. 4: Mediane mit 25 % Perzentilen und 75 % Perzentilen der Zellzahlen von Leukozyten/µl Blut bei 20 Patienten vor und nach Inselzelltransplantation (ITX). Die Zeit ist in Tagen vor bzw. nach Inselzelltransplantation angegeben, Zeitpunkt der Transplantation ist Tag 0.

b) Monozyten

![Monozyten Diagramm]

Abb. 5: Mediane mit 25 % Perzentilen und 75 % Perzentilen der Zellzahlen von Monozyten/µl Blut bei 20 Patienten vor und nach Inselzelltransplantation (ITX). Die Zeit ist in Tagen vor bzw. nach Inselzelltransplantation angegeben, Zeitpunkt der Transplantation ist Tag 0.
c) Lymphozyten

Abb. 6: Mediane mit 25 % Perzentilen und 75 % Perzentilen der Zellzahlen von Lymphozyten/µl Blut bei 20 Patienten vor und nach Inselzelltransplantation (ITX). Die Zeit ist in Tagen vor bzw. nach Inselzelltransplantation angegeben, Zeitpunkt der Transplantation ist Tag 0.

d) CD3+ Zellen

Abb. 7: Mediane mit 25 % Perzentilen und 75 % Perzentilen der Zellzahlen von CD3+ Zellen/µl Blut bei 20 Patienten vor und nach Inselzelltransplantation (ITX). Die Zeit ist in Tagen vor bzw. nach Inselzelltransplantation angegeben, Zeitpunkt der Transplantation ist Tag 0.
e) CD19+ Zellen

Abb. 8: Mediane mit 25 % Perzentilen und 75 % Perzentilen der Zellzahlen von CD19+ Zellen/µl Blut bei 20 Patienten vor und nach Inselzelltransplantation (ITX). Die Zeit ist in Tagen vor bzw. nach Inselzelltransplantation angegeben, Zeitpunkt der Transplantation ist Tag 0.

f) CD56+ CD3- Zellen

Abb. 9: Mediane mit 25 % Perzentilen und 75 % Perzentilen der Zellzahlen von CD56+ CD3-Zellen/µl Blut bei 20 Patienten vor und nach Inselzelltransplantation (ITX). Die Zeit ist in Tagen vor bzw. nach Inselzelltransplantation angegeben, Zeitpunkt der Transplantation ist Tag 0.
g) CD4+ Zellen

Abb. 10: Mediane mit 25 % Perzentilen und 75 % Perzentilen der Zellzahlen von CD4+ Zellen/µl Blut bei 20 Patienten vor und nach Inselzelltransplantation (ITX). Die Zeit ist in Tagen vor bzw. nach Inselzelltransplantation angegeben, Zeitpunkt der Transplantation ist Tag 0.

h) CD4+ HLA-DR+ Zellen

Abb. 11: Mediane mit 25 % Perzentilen und 75 % Perzentilen der Zellzahlen von CD4+ HLA-DR+ Zellen/µl Blut bei 20 Patienten vor und nach Inselzelltransplantation (ITX). Die Zeit ist in Tagen vor bzw. nach Inselzelltransplantation angegeben, Zeitpunkt der Transplantation ist Tag 0.
i) CD4+ CD45 RO+ Zellen

Abb. 12: Mediane mit 25 % Perzentilen und 75 % Perzentilen der Zellzahlen von CD4+ CD45 RO+ Zellen/µl Blut bei 20 Patienten vor und nach Inselzelltransplantation (ITX). Die Zeit ist in Tagen vor bzw. nach Inselzelltransplantation angegeben, Zeitpunkt der Transplantation ist Tag 0.

j) CD4+ CD122+ Zellen

k) TCR alpha/beta+ Zellen

Abb. 14: Mediane mit 25 % Perzentilen und 75 % Perzentilen der Zellzahlen von TCR alpha/beta+ Zellen/µl Blut bei 20 Patienten vor und nach Inselzelltransplantation (ITX). Die Zeit ist in Tagen vor bzw. nach Inselzelltransplantation angegeben, Zeitpunkt der Transplantation ist Tag 0.

l) TCR gamma/delta+ Zellen

Abb. 15: Mediane mit 25 % Perzentilen und 75 % Perzentilen der Zellzahlen von TCR gamma/delta+ Zellen/µl Blut bei 20 Patienten vor und nach Inselzelltransplantation (ITX). Die Zeit ist in Tagen vor bzw. nach Inselzelltransplantation angegeben, Zeitpunkt der Transplantation ist Tag 0.
m) CD3+ CD71+ Zellen

Abb. 16: Mediane mit 25 % Perzentilen und 75 % Perzentilen der Zellzahlen von CD3+ CD71+ Zellen/µl Blut bei 20 Patienten vor und nach Inselzelltransplantation (ITX). Die Zeit ist in Tagen vor bzw. nach Inselzelltransplantation angegeben, Zeitpunkt der Transplantation ist Tag 0.

3.3 Lymphozytensubsets bei gesunder Kontrollgruppe

<table>
<thead>
<tr>
<th>Lymphozyten Subset</th>
<th>Median</th>
<th>25 % - 75 % Perzentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphozyten</td>
<td>3120</td>
<td>2204-3497</td>
</tr>
<tr>
<td>CD3+</td>
<td>2260</td>
<td>1763-2725</td>
</tr>
<tr>
<td>CD19+</td>
<td>404</td>
<td>265-510</td>
</tr>
<tr>
<td>CD56+ CD3-</td>
<td>224</td>
<td>171-292</td>
</tr>
<tr>
<td>CD4+</td>
<td>1279</td>
<td>839-1528</td>
</tr>
<tr>
<td>CD4+ CD45 RO+</td>
<td>675</td>
<td>367-756</td>
</tr>
<tr>
<td>CD4+ CD122+</td>
<td>0</td>
<td>0-3</td>
</tr>
<tr>
<td>TCR alpha/beta+</td>
<td>3055</td>
<td>2389-3402</td>
</tr>
<tr>
<td>TCR gamma/delta+</td>
<td>139</td>
<td>85-210</td>
</tr>
<tr>
<td>CD3+ CD71+</td>
<td>1</td>
<td>0-5</td>
</tr>
</tbody>
</table>

Tab. 4: Mediane mit 25% Perzentilen und 75% Perzentilen der Zellzahlen/µl Blut von Lymphozyten und Lymphozytensubsets bei zehn Probanden einer gesunden Kontrollgruppe.
Abb. 17: Mediane mit 25 % Perzentilen und 75 % Perzentilen der Zellzahlen/µl Blut von Lymphozyten und Lymphozytensubsets bei zehn Probanden bei einer gesunden Kontrollgruppe.

Abb. 18: Mediane mit 25 % Perzentilen und 75 % Perzentilen der Zellzahlen/µl Blut von Lymphozytensubsets bei zehn Probanden einer gesunden Kontrollgruppe.
3.4 Lymphozytensubsets bei Nierentransplantierten

In den Abb. 19 - Abb. 27 sind die Mediane mit 25 % Perzentilen und 75 % Perzentilen der Zellzahlen/µl Vollblut von Leukozyten und Lymphozytensubsets bei zehn Patienten über einen Zeitraum von sieben Tagen vor Nierentransplantation (NTX) bis sechs Monaten nach NTX dargestellt.

a) Lymphozyten

![Diagramm der Lymphozyten](image1)

Abb. 19: Mediane mit 25 % Perzentilen und 75 % Perzentilen der Zellzahlen von Lymphozyten/µl Blut bei zehn Patienten vor und nach Nierentransplantation (NTX). Die Zeit ist in Tagen vor bzw. nach Transplantation angegeben, Zeitpunkt der Transplantation ist Tag 0.

b) CD3+ Zellen

![Diagramm der CD3+ Zellen](image2)

Abb. 20: Mediane mit 25 % Perzentilen und 75 % Perzentilen der Zellzahlen von CD3+ Zellen/µl Blut bei zehn Patienten vor und nach Nierentransplantation (NTX). Die Zeit ist in Tagen vor bzw. nach Transplantation angegeben, Zeitpunkt der Transplantation ist Tag 0.
c) **CD19+ Zellen**

Abb. 21: Mediane mit 25 % Perzentilen und 75 % Perzentilen der Zellzahlen von CD19+ Zellen/µl Blut bei zehn Patienten vor und nach Nierentransplantation (NTX). Die Zeit ist in Tagen vor bzw. nach Transplantation angegeben, Zeitpunkt der Transplantation ist Tag 0.

d) **CD56+ CD3- Zellen**

Abb. 22: Mediane mit 25 % Perzentilen und 75 % Perzentilen der Zellzahlen von CD56+ CD3- Zellen/µl Blut bei zehn Patienten vor und nach Nierentransplantation (NTX). Die Zeit ist in Tagen vor bzw. nach Transplantation angegeben, Zeitpunkt der Transplantation ist Tag 0.
e) CD4+ Zellen

Abb. 23: Median mit 25 % Perzentilen und 75 % Perzentilen der Zellzahlen von CD4+ Zellen/µl Blut bei zehn Patienten vor und nach Nierentransplantation (NTX). Die Zeit ist in Tagen vor bzw. nach Transplantation angegeben, Zeitpunkt der Transplantation ist Tag 0.

f) CD4+CD45 RO+ Zellen

Abb. 24: Median mit 25 % Perzentilen und 75 % Perzentilen der Zellzahlen von CD4+ CD45 RO+ Zellen/µl Blut bei zehn Patienten vor und nach Nierentransplantation (NTX). Die Zeit ist in Tagen vor bzw. nach Transplantation angegeben, Zeitpunkt der Transplantation ist Tag 0.
g) CD4+ CD122+ Zellen

Abb. 25: Mediane mit 25 % Perzentilen und 75 % Perzentilen der Zellzahlen von CD4+ CD122+ Zellen/µl Blut bei zehn Patienten vor und nach Nierentransplantation (NTX). Die Zeit in Tagen vor bzw. nach Transplantation angegeben, Zeitpunkt der Transplantation ist Tag 0.

h) TCR alpha/beta+ Zellen

Abb. 26: Mediane mit 25 % Perzentilen und 75 % Perzentilen der Zellzahlen von TCR alpha/beta+ Zellen/µl Blut bei zehn Patienten vor und nach Nierentransplantation (NTX). Die Zeit in Tagen vor bzw. nach Transplantation angegeben, Zeitpunkt der Transplantation ist Tag 0.
i) TCR gamma/delta+ Zellen

Abb. 27: Medianen mit 25 % Perzentilen und 75 % Perzentilen der Zellzahlen von TCR gamma/delta+ Zellen/µl Blut bei zehn Patienten vor und nach Nierentransplantation (NTX). Zeit ist in Tagen vor bzw. nach Transplantation angegeben, Zeitpunkt der Transplantation ist Tag 0.

3.5 Ciclosporinblutspiegel bei Patienten im ersten Jahr nach Inselzelltransplantation

Abb. 28: Medianen mit 25 % Perzentilen und 75 % Perzentilen der im Verlauf des ersten Jahres nach ITX gemessenen Ciclosporinblutspiegel (in ng/ml) bei Patienten mit Inselzelltransplantatfunktion ein Jahr nach ITX und Patienten ohne Inselzelltransplantatfunktion ein Jahr nach ITX.

3.6 Vergleich der Patienten mit Inselzellfunktion gegen Patienten, die ihre Inselzellfunktion im Verlauf des ersten Jahres verloren haben

Die Zellzahlen von Leukozyten und Lymphozytensubsets von Patienten, die eine Inselzellfunktion ein Jahr nach Inselzelltransplantation hatten, werden mit den Zellzahlen der Patienten, die die Inselzellfunktion im ersten Jahr nach Inselzelltransplantation verloren hatten, an je einem Zeitpunkt vor Transplantation (Zeit: -1) und je fünf Zeitpunkten nach Transplantation (Zeit: +1; +7; +21; +30; +60) verglichen. Die Zeit ist in Tagen skaliert. Unterschiede zwischen den Patientengruppen werden auf statistische Signifikanz getestet. In den Tabellen 5 - 16 sind die Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen pro µl Vollblut für beide Patientengruppen zu den entsprechenden Zeitpunkten angegeben sowie die P-Werte der statistischen Vergleiche zwischen den beiden Gruppen.

- Gruppe A: Patienten mit Inselzellfunktion ein Jahr nach Transplantation (n = 14)
- Gruppe B: Patienten mit Verlust der Inselzellfunktion im ersten Jahr nach Transplantation (n = 5)
a) Leukozyten

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>-1</th>
<th>+1</th>
<th>+7</th>
<th>+21</th>
<th>+30</th>
<th>+60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>6800 (5400-9022)</td>
<td>7100 (5750-8400)</td>
<td>5300 (4800-7500)</td>
<td>7300 (5300-1000)</td>
<td>5500 (4300-8600)</td>
<td>6750 (5300-9032)</td>
</tr>
<tr>
<td>Gruppe B</td>
<td>7900 (5500-8600)</td>
<td>6650 (5143-8000)</td>
<td>4600 (4150-8750)</td>
<td>6100 (4500-7000)</td>
<td>8600 (6625-10625)</td>
<td>7150 (6350-8950)</td>
</tr>
<tr>
<td>P-Wert</td>
<td>1.0</td>
<td>0.32</td>
<td>0.57</td>
<td>0.39</td>
<td>0.30</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Tab. 5: Vergleich von Patienten mit Inselzellanfunktion ein Jahr nach Transplantation (Gruppe A) vs. Patienten mit Verlust der Inselzellanfunktion im ersten Jahr nach Transplantation (Gruppe B) hinsichtlich der Zellzahl der Leukozyten. Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut für die beiden Patientengruppen sind an einem Zeitpunkt vor Transplantation (Zeit: -1 Tag) und an fünf Zeitpunkten nach Transplantation angegeben (Zeit: +1 bis +60 Tage) und die P-Werte der statistischen Vergleiche zu diesen Zeitpunkten.

b) Monozyten

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>-1</th>
<th>+1</th>
<th>+7</th>
<th>+21</th>
<th>+30</th>
<th>+60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>560 (383-656)</td>
<td>360 (238-458)</td>
<td>490 (220-810)</td>
<td>585 (413-970)</td>
<td>520 (400-656)</td>
<td>780 (380-865)</td>
</tr>
<tr>
<td>Gruppe B</td>
<td>550 (470-560)</td>
<td>375 (285-480)</td>
<td>700 (538-863)</td>
<td>425 (358-560)</td>
<td>680 (508-865)</td>
<td>600 (570-638)</td>
</tr>
<tr>
<td>P-Wert</td>
<td>0.82</td>
<td>0.95</td>
<td>0.23</td>
<td>0.21</td>
<td>0.52</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Tab. 6: Vergleich von Patienten mit Inselzellanfunktion ein Jahr nach Transplantation (Gruppe A) vs. Patienten mit Verlust der Inselzellanfunktion im ersten Jahr nach Transplantation (Gruppe B) hinsichtlich der Zellzahl der Monozyten. Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut der beiden Patientengruppen sind an einem Zeitpunkt vor Transplantation (Zeit: -1 Tag) und an fünf Zeitpunkten nach Transplantation angegeben (Zeit: +1 bis +60 Tage) und die P-Werte der statistischen Vergleiche zu diesen Zeitpunkten.
c) Lymphozyten

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>-1</th>
<th>+1</th>
<th>+7</th>
<th>+21</th>
<th>+30</th>
<th>+60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe A</td>
<td>Median</td>
<td>(25-75%P)</td>
<td>Median</td>
<td>(25-75%P)</td>
<td>Median</td>
<td>(25-75%P)</td>
</tr>
<tr>
<td></td>
<td>1240</td>
<td>(945-1568)</td>
<td>195</td>
<td>(123-260)</td>
<td>420</td>
<td>(353-520)</td>
</tr>
<tr>
<td></td>
<td>+7</td>
<td>525</td>
<td>900</td>
<td>375</td>
<td>376</td>
<td>454</td>
</tr>
<tr>
<td></td>
<td>525</td>
<td>350</td>
<td>350</td>
<td>900</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td></td>
<td>420</td>
<td>195</td>
<td>195</td>
<td>350</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1240</td>
<td>195</td>
<td>420</td>
<td>525</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>Gruppe B</td>
<td>Median</td>
<td>(25-75%P)</td>
<td>Median</td>
<td>(25-75%P)</td>
<td>Median</td>
<td>(25-75%P)</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>(940-1250)</td>
<td>140</td>
<td>(130-190)</td>
<td>190</td>
<td>(185-225)</td>
</tr>
<tr>
<td></td>
<td>190</td>
<td>190</td>
<td>190</td>
<td>190</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td></td>
<td>190</td>
<td>190</td>
<td>190</td>
<td>190</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td></td>
<td>190</td>
<td>190</td>
<td>190</td>
<td>190</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>P-Wert</td>
<td>0.96</td>
<td>0.84</td>
<td>0.05</td>
<td>0.86</td>
<td>0.08</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Tab. 7: Vergleich von Patienten mit Inselzellfunktion ein Jahr nach Transplantation (Gruppe A) vs. Patienten mit Verlust der Inselzellfunktion im ersten Jahr nach Transplantation (Gruppe B) hinsichtlich der Zellzahl der Lymphozyten. Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut der beiden Patientengruppen sind an einem Zeitpunkt vor Transplantation (Zeit: -1) und an fünf Zeitpunkten nach Transplantation angegeben (Zeit: +1 bis +60 Tage) und die P-Werte der statistischen Vergleiche zu diesen Zeitpunkten.

d) CD3+ Zellen

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>-1</th>
<th>+1</th>
<th>+7</th>
<th>+21</th>
<th>+30</th>
<th>+60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe A</td>
<td>Median</td>
<td>(25-75%P)</td>
<td>Median</td>
<td>(25-75%P)</td>
<td>Median</td>
<td>(25-75%P)</td>
</tr>
<tr>
<td></td>
<td>1013</td>
<td>(581-1171)</td>
<td>7</td>
<td>(1-14)</td>
<td>36</td>
<td>(35-92)</td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>(10-123)</td>
<td>155</td>
<td>(124-249)</td>
<td>1035</td>
<td>(537-1060)</td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>(10-123)</td>
<td>155</td>
<td>(124-249)</td>
<td>1035</td>
<td>(537-1060)</td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>(10-123)</td>
<td>155</td>
<td>(124-249)</td>
<td>1035</td>
<td>(537-1060)</td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>(10-123)</td>
<td>155</td>
<td>(124-249)</td>
<td>1035</td>
<td>(537-1060)</td>
</tr>
<tr>
<td>Gruppe B</td>
<td>Median</td>
<td>(25-75%P)</td>
<td>Median</td>
<td>(25-75%P)</td>
<td>Median</td>
<td>(25-75%P)</td>
</tr>
<tr>
<td></td>
<td>1043</td>
<td>(932-1699)</td>
<td>26</td>
<td>(13-41)</td>
<td>52</td>
<td>(10-123)</td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>(10-123)</td>
<td>504</td>
<td>(342-690)</td>
<td>646</td>
<td>(520-709)</td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>(10-123)</td>
<td>504</td>
<td>(342-690)</td>
<td>646</td>
<td>(520-709)</td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>(10-123)</td>
<td>504</td>
<td>(342-690)</td>
<td>646</td>
<td>(520-709)</td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>(10-123)</td>
<td>504</td>
<td>(342-690)</td>
<td>646</td>
<td>(520-709)</td>
</tr>
<tr>
<td>P-Wert</td>
<td>0.68</td>
<td>0.60</td>
<td>0.95</td>
<td>1.0</td>
<td>0.17</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Tab. 8: Vergleich von Patienten mit Inselzellfunktion ein Jahr nach Transplantation (Gruppe A) vs. Patienten mit Verlust der Inselzellfunktion im ersten Jahr nach Transplantation (Gruppe B) hinsichtlich der Zellzahl der CD3+ Zellen. Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut der beiden Patientengruppen sind an einem Zeitpunkt vor Transplantation (Zeit: -1 Tag) und an fünf Zeitpunkten nach Transplantation angegeben (Zeit: +1 bis +60 Tage) und die P-Werte der statistischen Vergleiche zu diesen Zeitpunkten.
e) CD19+ Zellen

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>-1</th>
<th>+1</th>
<th>+7</th>
<th>+21</th>
<th>+30</th>
<th>+60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (25-75%P)</td>
<td>81 (46-123)</td>
<td>143 (105-180)</td>
<td>378 (231-445)</td>
<td>122 (97-178)</td>
<td>54 (26-100)</td>
<td>162 (67-180)</td>
</tr>
<tr>
<td>Gruppe B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (25-75%P)</td>
<td>119 (89-581)</td>
<td>108 (73-114)</td>
<td>132 (72-142)</td>
<td>166 (130-178)</td>
<td>107 (35-240)</td>
<td>122 (88-128)</td>
</tr>
<tr>
<td>P-Wert</td>
<td>0.32</td>
<td>0.14</td>
<td>0.82</td>
<td>0.62</td>
<td>0.26</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Tab. 9: Vergleich von Patienten mit Inselzellfunktion ein Jahr nach Transplantation (Gruppe A) vs. Patienten mit Verlust der Inselzellfunktion im ersten Jahr nach Transplantation (Gruppe B) hinsichtlich der Zellzahl der CD19+ Zellen. Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut der beiden Patientengruppen sind an einem Zeitpunkt vor Transplantation (Zeit: -1) und an fünf Zeitpunkten nach Transplantation angegeben (Zeit: +1 bis +60 Tage) und die P-Werte der statistischen Vergleiche zu diesen Zeitpunkten.

f) CD56+ CD3- Zellen

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>-1</th>
<th>+1</th>
<th>+7</th>
<th>+21</th>
<th>+30</th>
<th>+60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (25-75%P)</td>
<td>82 (50-271)</td>
<td>21 (14-29)</td>
<td>24 (6-31)</td>
<td>40 (10-55)</td>
<td>fehlende Werte</td>
<td>57 (38-98)</td>
</tr>
<tr>
<td>Gruppe B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (25-75%P)</td>
<td>72 (67-74)</td>
<td>21 (14-28)</td>
<td>9 (6-11)</td>
<td>21 (14-29)</td>
<td>fehlende Werte</td>
<td>3 (3-27)</td>
</tr>
<tr>
<td>P-Wert</td>
<td>0.57</td>
<td>0.77</td>
<td>0.38</td>
<td>0.70</td>
<td>0.16</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 10: Vergleich von Patienten mit Inselzellfunktion ein Jahr nach Transplantation (Gruppe A) vs. Patienten mit Verlust der Inselzellfunktion im ersten Jahr nach Transplantation (Gruppe B) hinsichtlich der Zellzahl der CD56+ CD3- Zellen. Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut der beiden Patientengruppen sind an einem Zeitpunkt vor Transplantation (Zeit: -1 Tag) und an fünf Zeitpunkten nach Transplantation angegeben (Zeit: +1 bis +60 Tage) und die P-Werte der statistischen Vergleiche zu diesen Zeitpunkten.
g) CD4+ Zellen

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>-1</th>
<th>+1</th>
<th>+7</th>
<th>+21</th>
<th>+30</th>
<th>+60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe A Median (25-75%P)</td>
<td>437 (239-774)</td>
<td>1 (0-4)</td>
<td>24 (22-200)</td>
<td>115 (41-281)</td>
<td>40 (21-53)</td>
<td>216 (106-337)</td>
</tr>
<tr>
<td>Gruppe B Median (25-75%P)</td>
<td>688 (437-880)</td>
<td>9 (2-24)</td>
<td>32 (21-49)</td>
<td>79 (60-147)</td>
<td>128 (50-505)</td>
<td>477 (415-593)</td>
</tr>
<tr>
<td>P-Wert</td>
<td>0.53</td>
<td>0.17</td>
<td>0.87</td>
<td>1.00</td>
<td>0.35</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Tab. 11: Vergleich von Patienten mit Inselzellfunktion ein Jahr nach Transplantation (Gruppe A) vs. Patienten mit Verlust der Inselzellfunktion im ersten Jahr nach Transplantation (Gruppe B) hinsichtlich der Zellzahl der CD4+ Zellen. Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut der beiden Patientengruppen sind an einem Zeitpunkt vor Transplantation (Zeit: -1 Tag) und an fünf Zeitpunkten nach Transplantation angegeben (Zeit: +1 bis +60 Tage) und die P-Werte der statistischen Vergleiche zu diesen Zeitpunkten.

h) CD4+ HLA-DR+ Zellen

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>-1</th>
<th>+1</th>
<th>+7</th>
<th>+21</th>
<th>+30</th>
<th>+60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe A Median (25-75%P)</td>
<td>56 (13-197)</td>
<td>2 (-3-29)</td>
<td>5 (-27-24)</td>
<td>34 (9-117)</td>
<td>16 (5-44)</td>
<td>39 (21-73)</td>
</tr>
<tr>
<td>Gruppe B Median (25-75%P)</td>
<td>62 (-281-405)</td>
<td>1 (-3-7)</td>
<td>3 (-122-200)</td>
<td>5 (-16-61)</td>
<td>21 (-23-76)</td>
<td>46 (-38-111)</td>
</tr>
<tr>
<td>P-Wert</td>
<td>0.99</td>
<td>0.66</td>
<td>0.77</td>
<td>0.15</td>
<td>0.9</td>
<td>0.78</td>
</tr>
</tbody>
</table>

Tab. 12: Vergleich von Patienten mit Inselzellfunktion ein Jahr nach Transplantation (Gruppe A) vs. Patienten mit Verlust der Inselzellfunktion im ersten Jahr nach Transplantation (Gruppe B) hinsichtlich der Zellzahl der CD4+ HLA-DR+ Zellen. Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut der beiden Patientengruppen sind an einem Zeitpunkt vor Transplantation (Zeit: -1 Tag) und an fünf Zeitpunkten nach Transplantation angegeben (Zeit: +1 bis +60 Tage) und die P-Werte der statistischen Vergleiche zu diesen Zeitpunkten.
i) CD4+ CD45 RO+ Zellen

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>-1</th>
<th>+1</th>
<th>+7</th>
<th>+21</th>
<th>+30</th>
<th>+60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe A</td>
<td>Median</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(25-75%P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>239</td>
<td>(134-496)</td>
<td>6</td>
<td>(1-17)</td>
<td>16</td>
<td>(0-31)</td>
<td>137</td>
</tr>
<tr>
<td>Gruppe B</td>
<td>Median</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(25-75%P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>512</td>
<td>(382-704)</td>
<td>1</td>
<td>(0-1)</td>
<td>20</td>
<td>(15-25)</td>
<td>54</td>
</tr>
<tr>
<td>P-Wert</td>
<td>0.33</td>
<td>0.13</td>
<td>0.84</td>
<td>0.52</td>
<td></td>
<td>1.00</td>
</tr>
</tbody>
</table>

Tab. 13: Vergleich von Patienten mit Inselzellfunktion ein Jahr nach Transplantation (Gruppe A) vs. Patienten mit Verlust der Inselzellfunktion im ersten Jahr nach Transplantation (Gruppe B) hinsichtlich der Zellzahl der CD4+ CD45 RO+ Zellen. Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut der beiden Patientengruppen sind an einem Zeitpunkt vor Transplantation (Zeit: -1 Tag) und an fünf Zeitpunkten nach Transplantation angegeben (Zeit: +1 bis +60 Tage) und die P-Werte der statistischen Vergleiche zu diesen Zeitpunkten.

j) CD4+ CD122+ Zellen

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>-1</th>
<th>+1</th>
<th>+7</th>
<th>+21</th>
<th>+30</th>
<th>+60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe A</td>
<td>Median</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(25-75%P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(0-8)</td>
<td>1</td>
<td>(0-2)</td>
<td>1</td>
<td>(0-7)</td>
<td>1</td>
</tr>
<tr>
<td>Gruppe B</td>
<td>Median</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(25-75%P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(0-1)</td>
<td>1</td>
<td>(0-1)</td>
<td>0</td>
<td>(0-2)</td>
<td>2</td>
</tr>
<tr>
<td>P-Wert</td>
<td>0.33</td>
<td>0.95</td>
<td>0.54</td>
<td>0.68</td>
<td></td>
<td>1.00</td>
</tr>
</tbody>
</table>

Tab. 14: Vergleich von Patienten mit Inselzellfunktion ein Jahr nach Transplantation (Gruppe A) vs. Patienten mit Verlust der Inselzellfunktion im ersten Jahr nach Transplantation (Gruppe B) hinsichtlich der Zellzahl der CD4+ CD122+ Zellen. Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut der beiden Patientengruppen sind an einem Zeitpunkt vor Transplantation (Zeit: -1 Tag) und an fünf Zeitpunkten nach Transplantation angegeben (Zeit: +1 bis +60 Tage) und die P-Werte der statistischen Vergleiche zu diesen Zeitpunkten.
k) TCR alpha/beta+ Zellen

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>-1</th>
<th>+1</th>
<th>+7</th>
<th>+21</th>
<th>+30</th>
<th>+60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>834</td>
<td>16</td>
<td>46</td>
<td>174</td>
<td>fehlende Werte</td>
<td>fehlende Werte</td>
</tr>
<tr>
<td>(25-75%P)</td>
<td>(403-919)</td>
<td>(1-32)</td>
<td>(21-74)</td>
<td>(18-363)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gruppe B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>1028</td>
<td>1</td>
<td>15</td>
<td>268</td>
<td>fehlende Werte</td>
<td>fehlende Werte</td>
</tr>
<tr>
<td>(25-75%P)</td>
<td>(892-1644)</td>
<td>(1-2)</td>
<td>(8-76)</td>
<td>(256-280)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Wert</td>
<td>0.38</td>
<td>0.37</td>
<td>0.63</td>
<td>0.65</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 15: Vergleich von Patienten mit Inselzellfunktion ein Jahr nach Transplantation (Gruppe A) vs. Patienten mit Verlust der Inselzellfunktion im ersten Jahr nach Transplantation (Gruppe B) hinsichtlich der Zellzahl der TCR alpha/beta+ Zellen. Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut der beiden Patientengruppen sind an einem Zeitpunkt vor Transplantation (Zeit: -1 Tag) und an fünf Zeitpunkten nach Transplantation angegeben (Zeit: +1 bis +60 Tage) und die P-Werte der statistischen Vergleiche zu diesen Zeitpunkten.

l) TCR gamma/delta+ Zellen

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>-1</th>
<th>+1</th>
<th>+7</th>
<th>+21</th>
<th>+30</th>
<th>+60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>27</td>
<td>4</td>
<td>7</td>
<td>21</td>
<td>fehlende Werte</td>
<td>fehlende Werte</td>
</tr>
<tr>
<td>(25-75%P)</td>
<td>(10-62)</td>
<td>(0-10)</td>
<td>(0-9)</td>
<td>(10-40)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gruppe B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>65</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>fehlende Werte</td>
<td>fehlende Werte</td>
</tr>
<tr>
<td>(25-75%P)</td>
<td>(40-80)</td>
<td>(1-6)</td>
<td>(0-14)</td>
<td>(1-26)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Wert</td>
<td>0.38</td>
<td>0.86</td>
<td>0.68</td>
<td>0.32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 16: Vergleich von Patienten mit Inselzellfunktion ein Jahr nach Transplantation (Gruppe A) vs. Patienten mit Verlust der Inselzellfunktion im ersten Jahr nach Transplantation (Gruppe B) hinsichtlich der Zellzahl der TCR gamma/delta+ Zellen. Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut der beiden Patientengruppen sind an einem Zeitpunkt vor Transplantation (Zeit: -1 Tag) und an fünf Zeitpunkten nach Transplantation angegeben (Zeit: +1 bis +60 Tage) und die P-Werte der statistischen Vergleiche zu diesen Zeitpunkten.
3.7 Vergleich der Inselzelltransplantierten mit gesunder Kontrollgruppe

- Gruppe A: Inselzelltransplantationspatienten (n = 20)
- Gruppe B: Gesunde Kontrollgruppe (n = 10)

a) Lymphozyten

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>-1</th>
<th>1</th>
<th>7</th>
<th>21</th>
<th>30</th>
<th>60</th>
<th>90</th>
<th>120</th>
<th>150</th>
<th>180</th>
<th>210</th>
<th>240</th>
<th>270</th>
<th>300</th>
<th>330</th>
<th>360</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe A</td>
<td>Median</td>
<td>1190</td>
<td>175</td>
<td>275</td>
<td>550</td>
<td>735</td>
<td>965</td>
<td>860</td>
<td>1000</td>
<td>930</td>
<td>890</td>
<td>1305</td>
<td>1150</td>
<td>1290</td>
<td>1305</td>
<td>1510</td>
</tr>
<tr>
<td>Gruppe B</td>
<td>Median</td>
<td>3120</td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td>(25-75%P)</td>
<td>(2204-3497)</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Tab. 17: Vergleich von Inselzelltransplantationspatienten (Gruppe A) vs. gesunde Kontrollgruppe (Gruppe B) hinsichtlich der Zellzahl der Lymphozyten. Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut sind für Gruppe A zu einem Zeitpunkt vor Inselzelltransplantation (Zeit: -1 Tag) und an 15 Zeitpunkten nach Inselzelltransplantation (Zeit: +1 bis +360 Tage) angegeben und die P-Werte der jeweiligen statistischen Vergleiche zu den Zellzahlen der Kontrollgruppe (Gruppe B).
b) **CD3+ Zellen**

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>-1</th>
<th>1</th>
<th>7</th>
<th>21</th>
<th>30</th>
<th>60</th>
<th>90</th>
<th>120</th>
<th>150</th>
<th>180</th>
<th>210</th>
<th>240</th>
<th>270</th>
<th>300</th>
<th>330</th>
<th>360</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe A Median (25-75%P)</td>
<td>1043 (820-1181)</td>
<td>18 (5-37)</td>
<td>49 (28-124)</td>
<td>288 (217-409)</td>
<td>179 (152-504)</td>
<td>599 (273-767)</td>
<td>794 (293-825)</td>
<td>704 (289-872)</td>
<td>714 (553-797)</td>
<td>574 (471-718)</td>
<td>877 (806-1870)</td>
<td>1155 (839-1724)</td>
<td>1029 (384-2093)</td>
<td>1044 (792-1683)</td>
<td>1082 (995-1355)</td>
<td>1093 (1024-1448)</td>
</tr>
<tr>
<td>Gruppe B Median (25-75%P)</td>
<td>2260 (1763-2725)</td>
<td></td>
</tr>
<tr>
<td>P-Wert</td>
<td>0.00</td>
<td><0.01</td>
<td><0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td><0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.06</td>
<td>0.02</td>
<td>0.04</td>
<td>0.65</td>
<td>0.02</td>
<td>0.008</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 18: Vergleich von Inselzelltransplantationspatienten (Gruppe A) vs. gesunde Kontrollgruppe (Gruppe B) hinsichtlich der Zellzahl der CD3+ Zellen. Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut sind für Gruppe A zu einem Zeitpunkt vor Inselzelltransplantation (Zeit: -1 Tag) und an 15 Zeitpunkten nach Inselzelltransplantation (Zeit: +1 bis +360 Tage) angegeben und die P-Werte der jeweiligen statistischen Vergleiche zu den Zellzahlen der Kontrollgruppe (Gruppe B).

c) **CD19+ Zellen**

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>-1</th>
<th>1</th>
<th>7</th>
<th>21</th>
<th>30</th>
<th>60</th>
<th>90</th>
<th>120</th>
<th>150</th>
<th>180</th>
<th>210</th>
<th>240</th>
<th>270</th>
<th>300</th>
<th>330</th>
<th>360</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe A Median (25-75%P)</td>
<td>90 (47-127)</td>
<td>124 (72-155)</td>
<td>249 (147-443)</td>
<td>110 (23-245)</td>
<td>81 (27-110)</td>
<td>134 (67-180)</td>
<td>123 (110-133)</td>
<td>108 (80-160)</td>
<td>97 (85-150)</td>
<td>123 (84-168)</td>
<td>102 (96-113)</td>
<td>151 (54-256)</td>
<td>167 (89-285)</td>
<td>96 (77-127)</td>
<td>111 (96-117)</td>
<td>95 (69-163)</td>
</tr>
<tr>
<td>Gruppe B Median (25-75%P)</td>
<td>404 (265-510)</td>
<td></td>
</tr>
<tr>
<td>P-Wert</td>
<td><0.01</td>
<td><0.01</td>
<td>0.13</td>
<td><0.01</td>
<td>0.00</td>
<td>0.00</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.22</td>
<td>0.00</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Tab. 19: Vergleich von Inselzelltransplantationspatienten (Gruppe A) vs. gesunde Kontrollgruppe (Gruppe B) hinsichtlich der Zellzahl der CD19+ Zellen. Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut sind für Gruppe A zu einem Zeitpunkt vor Inselzelltransplantation (Zeit: -1 Tag) und an 15 Zeitpunkten nach Inselzelltransplantation (Zeit: +1 bis +360 Tage) angegeben und die P-Werte der jeweiligen statistischen Vergleiche zu den Zellzahlen der Kontrollgruppe (Gruppe B).
d) CD56+ CD3- Zellen

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>-1</th>
<th>1</th>
<th>7</th>
<th>21</th>
<th>30</th>
<th>60</th>
<th>90</th>
<th>120</th>
<th>150</th>
<th>180</th>
<th>210</th>
<th>240</th>
<th>270</th>
<th>300</th>
<th>330</th>
<th>360</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe A Median (25-75%P)</td>
<td>77 (60-264)</td>
<td>21 (9-49)</td>
<td>15 (4-27)</td>
<td>36 (16-67)</td>
<td>30 (16-55)</td>
<td>39 (37-75)</td>
<td>84 (59-150)</td>
<td>97 (43-108)</td>
<td>60 (41-105)</td>
<td>72 (29-209)</td>
<td>264 (209-302)</td>
<td>101 (69-165)</td>
<td>120 (39-301)</td>
<td>91 (65-180)</td>
<td>78 (63-168)</td>
<td>87 (73-218)</td>
</tr>
<tr>
<td>Gruppe B Median (25-75%P)</td>
<td>224 (171-292)</td>
<td></td>
</tr>
<tr>
<td>P-Wert</td>
<td>0.18 <0.0 01</td>
<td><0.0 01</td>
<td><0.0 01</td>
<td>0.00 01</td>
<td>0.00 01</td>
<td>0.00 01</td>
<td>0.04 01</td>
<td>0.03 01</td>
<td>0.33 01</td>
<td>0.83 01</td>
<td>0.09 01</td>
<td>0.19 01</td>
<td>0.27 01</td>
<td>0.28 01</td>
<td>0.36 01</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 20: Vergleich von Inselzelltransplantationspatienten (Gruppe A) vs. gesunde Kontrollgruppe (Gruppe B) hinsichtlich der Zellzahl der CD56+ CD3- Zellen. Mediane mit 25 % Perzentilen und 75 % Perzentilien (25-75%P) der Zellzahlen/µl Blut sind für Gruppe A zu einem Zeitpunkt vor Inselzelltransplantation (Zeit: -1 Tag) und an 15 Zeitpunkten nach Inselzelltransplantation (Zeit: +1 bis +360 Tage) angegeben und die P-Werte der jeweiligen statistischen Vergleiche zu den Zellzahlen der Kontrollgruppe (Gruppe B).

e) CD4+ Zellen

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>-1</th>
<th>1</th>
<th>7</th>
<th>21</th>
<th>30</th>
<th>60</th>
<th>90</th>
<th>120</th>
<th>150</th>
<th>180</th>
<th>210</th>
<th>240</th>
<th>270</th>
<th>300</th>
<th>330</th>
<th>360</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe A Median (25-75%P)</td>
<td>510 (298-823)</td>
<td>5 (0-16)</td>
<td>24 (22-133)</td>
<td>77 (52-224)</td>
<td>58 (26-181)</td>
<td>352 (211-448)</td>
<td>187 (160-249)</td>
<td>135 (114-352)</td>
<td>184 (115-203)</td>
<td>193 (149-232)</td>
<td>372 (156-383)</td>
<td>324 (227-577)</td>
<td>165 (138-294)</td>
<td>487 (256-616)</td>
<td>575 (459-638)</td>
<td>379 (360-499)</td>
</tr>
<tr>
<td>Gruppe B Median (25-75%P)</td>
<td>1279 (839-1528)</td>
<td></td>
</tr>
<tr>
<td>P-Wert</td>
<td>0.02 <0.0 01</td>
<td><0.0 01</td>
<td>0.00 01</td>
<td>0.00 01</td>
<td>0.00 01</td>
<td>0.00 01</td>
<td>0.05 <0.0 01</td>
<td>0.00 01</td>
<td>0.00 01</td>
<td>0.00 01</td>
<td>0.02 01</td>
<td>0.02 01</td>
<td>0.06 01</td>
<td>0.03 01</td>
<td>0.01 01</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 21: Vergleich von Inselzelltransplantationspatienten (Gruppe A) vs. gesunde Kontrollgruppe (Gruppe B) hinsichtlich der Zellzahl der CD4+ Zellen. Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut sind für Gruppe A zu einem Zeitpunkt vor Inselzelltransplantation (Zeit: -1 Tag) und an 15 Zeitpunkten nach Inselzelltransplantation (Zeit: +1 bis +360 Tage) angegeben und die P-Werte der jeweiligen statistischen Vergleiche zu den Zellzahlen der Kontrollgruppe (Gruppe B).
f) CD4+ CD45 RO+ Zellen

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>-1</th>
<th>1</th>
<th>7</th>
<th>21</th>
<th>30</th>
<th>60</th>
<th>90</th>
<th>120</th>
<th>150</th>
<th>180</th>
<th>210</th>
<th>240</th>
<th>270</th>
<th>300</th>
<th>330</th>
<th>360</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe A</td>
<td></td>
</tr>
<tr>
<td>Gruppe B</td>
<td></td>
</tr>
<tr>
<td>Median (25-75%P)</td>
<td>675 (367-756)</td>
<td></td>
</tr>
<tr>
<td>P-Wert</td>
<td>0.03</td>
<td><0.01</td>
<td><0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.07</td>
<td>0.03</td>
<td>0.03</td>
<td>0.09</td>
<td>0.1</td>
<td>0.26</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Tab. 22: Vergleich von Inselzelltransplantationspatienten (Gruppe A) vs. gesunde Kontrollgruppe (Gruppe B) hinsichtlich der Zellzahl der CD4+ CD45 RO+ Zellen. Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut sind für Gruppe A zu einem Zeitpunkt vor Inselzelltransplantation (Zeit: -1 Tag) und an 15 Zeitpunkten nach Inselzelltransplantation (Zeit: +1 bis +360 Tage) angegeben und die P-Werte der jeweiligen statistischen Vergleiche zu den Zellzahlen der Kontrollgruppe (Gruppe B).

g) CD4+ CD122+ Zellen

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>-1</th>
<th>1</th>
<th>7</th>
<th>21</th>
<th>30</th>
<th>60</th>
<th>90</th>
<th>120</th>
<th>150</th>
<th>180</th>
<th>210</th>
<th>240</th>
<th>270</th>
<th>300</th>
<th>330</th>
<th>360</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe A</td>
<td></td>
</tr>
<tr>
<td>Median (25-75%P)</td>
<td>1 (1-8)</td>
<td>1 (0-1)</td>
<td>1 (1-4)</td>
<td>1 (0-8)</td>
<td>3 (2-7)</td>
<td>1 (0-3)</td>
<td>1 (0-6)</td>
<td>3 (2-7)</td>
<td>1 (1-3)</td>
<td>2 (0-3)</td>
<td>2 (1-8)</td>
<td>2 (2-3)</td>
<td>3 (0-8)</td>
<td>5 (4-9)</td>
<td>2 (2-5)</td>
<td>1 (1-1)</td>
</tr>
<tr>
<td>Gruppe B</td>
<td></td>
</tr>
<tr>
<td>Median (25-75%P)</td>
<td>0 (0-3)</td>
<td></td>
</tr>
<tr>
<td>P-Wert</td>
<td>0.12</td>
<td>0.93</td>
<td>0.51</td>
<td>0.37</td>
<td>0.10</td>
<td>0.33</td>
<td>0.44</td>
<td>0.03</td>
<td>0.23</td>
<td>0.41</td>
<td>0.13</td>
<td>0.23</td>
<td>0.46</td>
<td>0.00</td>
<td>0.28</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Tab. 23: Vergleich von Inselzelltransplantationspatienten (Gruppe A) vs. gesunde Kontrollgruppe (Gruppe B) hinsichtlich der Zellzahl der CD4+ CD122+ Zellen. Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut sind für Gruppe A zu einem Zeitpunkt vor Inselzelltransplantation (Zeit: -1 Tag) und an 15 Zeitpunkten nach Inselzelltransplantation (Zeit: +1 bis +360 Tage) angegeben und die P-Werte der jeweiligen statistischen Vergleiche zu den Zellzahlen der Kontrollgruppe (Gruppe B).
h) TCR alpha/beta+ Zellen

Zeit (Tage)	-1	1	7	21	30	60	90	120	150	180	210	240	270	300	330	360	
Gruppe A	Median (25-75%P)	842 (610-1048)	8 (1-31)	34 (2-74)	256 (103-363)	133 (25-256)	264 (0-616)	405 (363-761)	755 (4613-821)	588 (544-635)	551 (462-624)	718 (658-1787)	1140 (876-1951)	523 (273-616)	767 (533-971)	787 (576-924)	1063 (560-1226)
Gruppe B	Median (25-75%P)	3055 (2389-3402)															
P-Wert	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

Tab. 24: Vergleich von Inselzelltransplantationspatienten (Gruppe A) vs. gesunde Kontrollgruppe (Gruppe B) hinsichtlich der Zellzahl der TCR alpha/beta+ Zellen. Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut sind für Gruppe A zu einem Zeitpunkt vor Inselzelltransplantation (Zeit: -1 Tag) und an 15 Zeitpunkten nach Inselzelltransplantation (Zeit: +1 bis +360 Tage) angegeben und die P-Werte der jeweiligen statistischen Vergleiche zu den Zellzahlen der Kontrollgruppe (Gruppe B).

i) TCR gamma/delta+ Zellen

Zeit (Tage)	-1	1	7	21	30	60	90	120	150	180	210	240	270	300	330	360	
Gruppe A	Median (25-75%P)	3 (1-10)	9 (5-25)	7 (0-10)	51 (36-84)	2 (1-13)	42 (0-76)	33 (4-53)	74 (49-119)	60 (22-130)	51 (36-84)	9 (3-38)	140 (135-225)	82 (0-156)	98 (20-198)	151 (123-293)	126 (83-177)
Gruppe B	Median (25-75%P)	139 (85-210)															
P-Wert	0.03	<0.01	<0.01	0.18	<0.01	0.04	<0.01	0.31	0.14	0.17	0.00	0.55	0.35	0.59	0.78	0.95	

Tab. 25: Vergleich von Inselzelltransplantationspatienten (Gruppe A) vs. gesunde Kontrollgruppe (Gruppe B) hinsichtlich der Zellzahl der TCR gamma/delta+ Zellen. Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut sind für Gruppe A zu einem Zeitpunkt vor Inselzelltransplantation (Zeit: -1 Tag) und an 15 Zeitpunkten nach Inselzelltransplantation (Zeit: +1 bis +360 Tage) angegeben und die P-Werte der jeweiligen statistischen Vergleiche zu den Zellzahlen der Kontrollgruppe (Gruppe B).
j) CD3+ CD71+ Zellen

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>-1</th>
<th>1</th>
<th>7</th>
<th>21</th>
<th>30</th>
<th>60</th>
<th>90</th>
<th>120</th>
<th>150</th>
<th>180</th>
<th>210</th>
<th>240</th>
<th>270</th>
<th>300</th>
<th>330</th>
<th>360</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe A Median (25-75%P)</td>
<td>4 (2-13)</td>
<td>0 (0-0)</td>
<td>0 (0-3)</td>
<td>1 (0-4)</td>
<td>1 (0-2)</td>
<td>2 (0-2)</td>
<td>1 (1-1)</td>
<td>2 (1-2)</td>
<td>4 (2-9)</td>
<td>1 (1-6)</td>
<td>2 (1-4)</td>
<td>2 (1-4)</td>
<td>4 (2-5)</td>
<td>5 (2-6)</td>
<td>3 (1-10)</td>
<td>2 (0-4)</td>
</tr>
<tr>
<td>Gruppe B Median (25-75%P)</td>
<td>1 (0-5)</td>
<td>0.5</td>
<td>0.9</td>
<td>0.96</td>
<td>0.83</td>
<td>0.72</td>
<td>0.63</td>
<td>0.13</td>
<td>0.77</td>
<td>0.78</td>
<td>0.66</td>
<td>0.41</td>
<td>0.57</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Wert</td>
<td>0.15</td>
<td>0.19</td>
<td>0.5</td>
<td>0.9</td>
<td>0.96</td>
<td>0.83</td>
<td>0.72</td>
<td>0.63</td>
<td>0.13</td>
<td>0.77</td>
<td>0.78</td>
<td>0.66</td>
<td>0.41</td>
<td>0.57</td>
<td>0.9</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 26: Vergleich von Inselzelltransplantationspatienten (Gruppe A) vs. gesunde Kontrollgruppe (Gruppe B) hinsichtlich der Zellzahl der CD3+ CD71+ Zellen. Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut sind für Gruppe A zu einem Zeitpunkt vor Inselzelltransplantation (Zeit: -1 Tag) und an 15 Zeitpunkten nach Inselzelltransplantation (Zeit: +1 bis +360 Tag) angegeben und die P-Werte der jeweiligen statistischen Vergleiche zu den Zellzahlen der Kontrollgruppe (Gruppe B).

3.8 Vergleich der Inselzelltransplantierten mit Nierentransplantierten

- Gruppe A: Inselzelltransplantationspatienten (n = 20)
- Gruppe B: Nierentransplantationspatienten (n = 10)
a) Lymphozyten

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>-1</th>
<th>+1</th>
<th>+7</th>
<th>+21</th>
<th>+60</th>
<th>+120</th>
<th>+180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>1190</td>
<td>(850-1315)</td>
<td>175</td>
<td>(100-245)</td>
<td>275</td>
<td>(198-435)</td>
<td>550</td>
</tr>
<tr>
<td>25-75%P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gruppe B</td>
<td>1981</td>
<td>(1534-2261)</td>
<td>1005</td>
<td>(936-1381)</td>
<td>1528</td>
<td>(998-1784)</td>
<td>1840</td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeit (Tage)</td>
<td>0.008<0.001<0.001 0.004 0.02 0.001 0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 27: Vergleich von Inselzelltransplantationspatienten (Gruppe A) vs. Nierentransplantationspatienten (Gruppe B) hinsichtlich der Zellzahl der Lymphozyten. Mediane mit 25 % Percentilen und 75 % Percentilen (25-75%P) der Zellzahlen/µl Blut sind an einem Zeitpunkt vor Transplantation (Zeit: -1) und an fünf Zeitpunkten nach Transplantation (Zeit: +1 bis +180) für beide Gruppen angegeben und die P-Werte der statistischen Vergleiche zu diesen Zeitpunkten.

b) CD3+ Zellen

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>-1</th>
<th>+1</th>
<th>+7</th>
<th>+21</th>
<th>+60</th>
<th>+120</th>
<th>+180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>1043</td>
<td>(820-1181)</td>
<td>18</td>
<td>(5-37)</td>
<td>49</td>
<td>(28-124)</td>
<td>288</td>
</tr>
<tr>
<td>25-75%P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gruppe B</td>
<td>1411</td>
<td>(687-725)</td>
<td>665</td>
<td>(543-951)</td>
<td>826</td>
<td>(584-1113)</td>
<td>1243</td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeit (Tage)</td>
<td>0.24<0.001<0.001 0.03 0.001 0.001 0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 28: Vergleich von Inselzelltransplantationspatienten (Gruppe A) vs. Nierentransplantationspatienten (Gruppe B) hinsichtlich der Zellzahl der CD3+ Zellen. Mediane mit 25 % Percentilen und 75 % Percentilen (in Klammern) der Zellzahlen/µl Blut sind an einem Zeitpunkt vor Transplantation (Zeit: -1) und an fünf Zeitpunkten nach Transplantation (Zeit: +1 bis +180) für beide Gruppen angegeben und die P-Werte der statistischen Vergleiche zu diesen Zeitpunkten.
c) CD19+ Zellen

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>-1</th>
<th>+1</th>
<th>+7</th>
<th>+21</th>
<th>+60</th>
<th>+120</th>
<th>+180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe A</td>
<td>Median (25-75%P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>81 (46-125)</td>
<td>132 (101-135)</td>
<td>266 (116-443)</td>
<td>130 (97-177)</td>
<td>122 (58-168)</td>
<td>108 (79-108)</td>
<td>123 (84-167)</td>
</tr>
<tr>
<td>Gruppe B</td>
<td>Median (25-75%P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>224 (142-362)</td>
<td>234 (128-433)</td>
<td>365 (227-694)</td>
<td>283 (166-708)</td>
<td>202 (134-341)</td>
<td>368 (97-168)</td>
<td>153 (47-501)</td>
</tr>
<tr>
<td>Zeit (Tage)</td>
<td>0.005</td>
<td>0.08</td>
<td>0.24</td>
<td>0.009</td>
<td>0.06</td>
<td>0.29</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Tab. 29: Vergleich von Inselzelltransplantationspatienten (Gruppe A) vs. Nierentransplantationspatienten (Gruppe B) hinsichtlich der Zellzahl der CD19+ Zellen. Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut sind an einem Zeitpunkt vor Transplantation (Zeit: -1) und an fünf Zeitpunkten nach Transplantation (Zeit: +1 bis +180) für beide Gruppen angegeben und die P-Werte der statistischen Vergleiche zu diesen Zeitpunkten.

d) CD56+ CD3- Zellen

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>-1</th>
<th>+1</th>
<th>+7</th>
<th>+21</th>
<th>+60</th>
<th>+120</th>
<th>+180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe A</td>
<td>Median (25-75%P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>77 (60-264)</td>
<td>21 (9-49)</td>
<td>15 (4-27)</td>
<td>15 (4-27)</td>
<td>30 (16-55)</td>
<td>97 (43-108)</td>
<td>72 (29-209)</td>
</tr>
<tr>
<td>Gruppe B</td>
<td>Median (25-75%P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>321 (129-610)</td>
<td>258 (129-300)</td>
<td>169 (47-178)</td>
<td>130 (66-193)</td>
<td>125 (85-188)</td>
<td>66 (49-100)</td>
<td>71 (59-97)</td>
</tr>
<tr>
<td>Zeit (Tage)</td>
<td>0.013</td>
<td><0.001</td>
<td>0.002</td>
<td>0.003</td>
<td>0.017</td>
<td>0.66</td>
<td>0.94</td>
</tr>
</tbody>
</table>

Tab. 30: Vergleich von Inselzelltransplantationspatienten (Gruppe A) vs. Nierentransplantationspatienten (Gruppe B) hinsichtlich der Zellzahl der CD56+ CD3- Zellen. Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut sind an einem Zeitpunkt vor Transplantation (Zeit: -1) und an fünf Zeitpunkten nach Transplantation (Zeit: +1 bis +180) für beide Gruppen angegeben und die P-Werte der statistischen Vergleiche zu diesen Zeitpunkten.
e) CD4 + Zellen

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>-1</th>
<th>+1</th>
<th>+7</th>
<th>+21</th>
<th>+60</th>
<th>+120</th>
<th>+180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>510</td>
<td>5</td>
<td>24</td>
<td>77</td>
<td>352</td>
<td>135</td>
<td>193</td>
</tr>
<tr>
<td>(25-75%P)</td>
<td>(298-823)</td>
<td>(0-16)</td>
<td>(22-133)</td>
<td>(52-224)</td>
<td>(211-448)</td>
<td>(114-352)</td>
<td>(149-232)</td>
</tr>
<tr>
<td>Gruppe B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>776</td>
<td>410</td>
<td>440</td>
<td>831</td>
<td>690</td>
<td>682</td>
<td>578</td>
</tr>
</tbody>
</table>

Tab. 31: Vergleich von Inselzelltransplantationspatienten (Gruppe A) vs. Nierentransplantationspatienten (Gruppe B) hinsichtlich der Zellzahl der CD4+ Zellen. Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut sind an einem Zeitpunkt vor Transplantation (Zeit: -1) und an fünf Zeitpunkten nach Transplantation (Zeit: +1 bis +180) für beide Gruppen angegeben und die P-Werte der statistischen Vergleiche zu diesen Zeitpunkten.

f) CD4+ CD45 RO+ Zellen

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>-1</th>
<th>+1</th>
<th>+7</th>
<th>+21</th>
<th>+60</th>
<th>+120</th>
<th>+180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>241</td>
<td>4</td>
<td>18</td>
<td>89</td>
<td>267</td>
<td>121</td>
<td>181</td>
</tr>
<tr>
<td>(25-75%P)</td>
<td>(176-535)</td>
<td>(0-13)</td>
<td>(0-25)</td>
<td>(47-174)</td>
<td>(174-370)</td>
<td>(77-272)</td>
<td>(111-286)</td>
</tr>
<tr>
<td>Gruppe B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>672</td>
<td>234</td>
<td>233</td>
<td>285</td>
<td>497</td>
<td>270</td>
<td>265</td>
</tr>
</tbody>
</table>

Tab. 32: Vergleich von Inselzelltransplantationspatienten (Gruppe A) vs. Nierentransplantationspatienten (Gruppe B) hinsichtlich der Zellzahl der CD4+ CD45 RO+ Zellen. Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut sind an einem Zeitpunkt vor Transplantation (Zeit: -1) und an fünf Zeitpunkten nach Transplantation (Zeit: +1 bis +180) für beide Gruppen angegeben und die P-Werte der statistischen Vergleiche zu diesen Zeitpunkten.
g) CD4+ CD122+ Zellen

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>-1</th>
<th>+1</th>
<th>+7</th>
<th>+21</th>
<th>+60</th>
<th>+120</th>
<th>+180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe A Median (25-75%P)</td>
<td>1 (1-8)</td>
<td>1 (0-1)</td>
<td>1 (1-4)</td>
<td>1 (0-8)</td>
<td>1 (0-3)</td>
<td>3 (2-7)</td>
<td>2 (0-3)</td>
</tr>
<tr>
<td>Gruppe B Median (25-75%P)</td>
<td>1 (0-3)</td>
<td>1 (1-1)</td>
<td>0 (0-2)</td>
<td>0 (0-1)</td>
<td>3 (1-7)</td>
<td>1 (1-1)</td>
<td>0 (0-1)</td>
</tr>
</tbody>
</table>

Tab. 33: Vergleich von Inselzelltransplantationspatienten (Gruppe A) vs. Nierentransplantationspatienten (Gruppe B) hinsichtlich der Zellzahl der CD4+ CD122+ Zellen. Median mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut sind an einem Zeitpunkt vor Transplantation (Zeit: -1) und an fünf Zeitpunkten nach Transplantation (Zeit: +1 bis +180) für beide Gruppen angegeben und die P-Werte der statistischen Vergleiche zu diesen Zeitpunkten.

h) TCR alpha/beta+ Zellen

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>-1</th>
<th>+1</th>
<th>+7</th>
<th>+21</th>
<th>+60</th>
<th>+120</th>
<th>+180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe A Median (25-75%P)</td>
<td>842 (610-1048)</td>
<td>8 (1-31)</td>
<td>34 (2-74)</td>
<td>256 (103-363)</td>
<td>264 (0-616)</td>
<td>755 (4613-821)</td>
<td>551 (462-624)</td>
</tr>
<tr>
<td>Gruppe B Median (25-75%P)</td>
<td>2020 (1419-2486)</td>
<td>946 (812-1318)</td>
<td>1596 (1252-2047)</td>
<td>1831 (958-2873)</td>
<td>1305 (1009-2282)</td>
<td>1771 (1217-2388)</td>
<td>1480 (737-2454)</td>
</tr>
</tbody>
</table>

Tab. 34: Vergleich von Inselzelltransplantationspatienten (Gruppe A) vs. Nierentransplantationspatienten (Gruppe B) hinsichtlich der Zellzahl der TCR alpha/beta+ Zellen. Median mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut sind an einem Zeitpunkt vor Transplantation (Zeit: -1) und an fünf Zeitpunkten nach Transplantation (Zeit: +1 bis +180) für beide Gruppen angegeben und die P-Werte der statistischen Vergleiche zu diesen Zeitpunkten.
i) TCR gamma/delta+ Zellen

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>-1</th>
<th>+1</th>
<th>+7</th>
<th>+21</th>
<th>+60</th>
<th>+120</th>
<th>+180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (25-75%P)</td>
<td>3 (1-10)</td>
<td>9 (5-25)</td>
<td>7 (0-10)</td>
<td>51 (36-84)</td>
<td>42 (0-76)</td>
<td>74 (49-119)</td>
<td>51 (36-84)</td>
</tr>
<tr>
<td>Gruppe B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (25-75%P)</td>
<td>73 (30-125)</td>
<td>38 (11-215)</td>
<td>48 (26-113)</td>
<td>35 (27-92)</td>
<td>38 (32-49)</td>
<td>97 (26-153)</td>
<td>52 (16-132)</td>
</tr>
<tr>
<td>Zeit (Tage)</td>
<td>0.21</td>
<td>0.09</td>
<td><0.001</td>
<td>0.03</td>
<td>0.90</td>
<td>0.72</td>
<td>0.94</td>
</tr>
</tbody>
</table>

Tab. 35: Vergleich von Inselzelltransplantationspatienten (Gruppe A) vs. Nierentransplantationspatienten (Gruppe B) hinsichtlich der Zellzahl der TCR gamma/delta+ Zellen. Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut sind an einem Zeitpunkt vor Transplantation (Zeit: -1) und an fünf Zeitpunkten nach Transplantation (Zeit: +1 bis +180) für beide Gruppen angegeben und die P-Werte der statistischen Vergleiche zu diesen Zeitpunkten.

3.9 Vergleich von Leukozyten und Lymphozytensubsets bei Inselzelltransplantierten vor und nach Transplantation

In den Tabellen 36 - 48 sind die Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen pro µl Vollblut zu den unterschiedlichen Zeitpunkten vor und nach Inselzelltransplantation angegeben sowie die P-Werte der statistischen Vergleiche zwischen den Zellzahlen vor und nach Inselzelltransplantation.
a) Leukozyten

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>Vor TX Median (25-75%)</th>
<th>Nach TX Median (25-75%)</th>
<th>P-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>7300 (5477-10975)</td>
<td>7100 (6250-9715)</td>
<td>0.92</td>
</tr>
<tr>
<td>+7</td>
<td></td>
<td>5950 (4760-8150)</td>
<td>0.13</td>
</tr>
<tr>
<td>+21</td>
<td>7300 (5477-10975)</td>
<td>6400 (5650-7400)</td>
<td>0.56</td>
</tr>
<tr>
<td>+30</td>
<td></td>
<td>6100 (4300-7100)</td>
<td>0.28</td>
</tr>
<tr>
<td>+60</td>
<td>7300 (5477-10975)</td>
<td>7150 (5325-8650)</td>
<td>0.64</td>
</tr>
<tr>
<td>+90</td>
<td></td>
<td>6000 (4300-8100)</td>
<td>0.23</td>
</tr>
<tr>
<td>+120</td>
<td>7300 (5477-10975)</td>
<td>7500 (5375-8000)</td>
<td>0.79</td>
</tr>
<tr>
<td>+150</td>
<td></td>
<td>6300 (4675-7100)</td>
<td>0.16</td>
</tr>
<tr>
<td>+180</td>
<td>7300 (5477-10975)</td>
<td>6200 (4250-8675)</td>
<td>0.32</td>
</tr>
<tr>
<td>+210</td>
<td></td>
<td>6190 (4850-7125)</td>
<td>0.40</td>
</tr>
<tr>
<td>+240</td>
<td>7300 (5477-10975)</td>
<td>7500 (5350-9575)</td>
<td>0.80</td>
</tr>
<tr>
<td>+270</td>
<td></td>
<td>6350 (5350-9575)</td>
<td>0.51</td>
</tr>
<tr>
<td>+300</td>
<td>7300 (5477-10975)</td>
<td>6100 (5100-8425)</td>
<td>0.23</td>
</tr>
<tr>
<td>+330</td>
<td></td>
<td>6350 (5406-8025)</td>
<td>0.30</td>
</tr>
<tr>
<td>+360</td>
<td>7300 (5477-10975)</td>
<td>6050 (5250-9200)</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Tab. 36: Vergleich der Leukozytenzellen von 20 Inselzelltransplantationspatienten vor Inselzelltransplantation (vor TX) mit den Zellzahlen nach Inselzelltransplantation (nach TX). Medianen mit 25 % Perzentilen und 75 % Perzentilen (25-75%) der Zellen/µl Blut sind an einem Zeitpunkt vor TX und an 15 Zeitpunkten nach TX (Zeit: +1 bis +360 Tage) angegeben und die P-Werte der statistischen Vergleiche.

b) Monozyten

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>Vor TX Median (25-75%)</th>
<th>Nach TX Median (25-75%)</th>
<th>P-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>550 (385-685)</td>
<td>370 (245-505)</td>
<td>0.06</td>
</tr>
<tr>
<td>+7</td>
<td></td>
<td>523 (385-833)</td>
<td>0.95</td>
</tr>
<tr>
<td>+21</td>
<td>550 (385-685)</td>
<td>585 (425-970)</td>
<td>0.40</td>
</tr>
<tr>
<td>+30</td>
<td></td>
<td>630 (460-825)</td>
<td>0.34</td>
</tr>
<tr>
<td>+60</td>
<td>550 (385-685)</td>
<td>440 (323-618)</td>
<td>0.45</td>
</tr>
<tr>
<td>+90</td>
<td></td>
<td>680 (460-940)</td>
<td>0.15</td>
</tr>
<tr>
<td>+120</td>
<td>550 (385-685)</td>
<td>590 (434-874)</td>
<td>0.45</td>
</tr>
<tr>
<td>+150</td>
<td></td>
<td>580 (434-874)</td>
<td>0.56</td>
</tr>
<tr>
<td>+180</td>
<td>550 (385-685)</td>
<td>680 (400-910)</td>
<td>0.06</td>
</tr>
<tr>
<td>+210</td>
<td></td>
<td>659 (434-911)</td>
<td>0.09</td>
</tr>
<tr>
<td>+240</td>
<td>550 (385-685)</td>
<td>770 (605-990)</td>
<td>0.06</td>
</tr>
<tr>
<td>+270</td>
<td></td>
<td>655 (393-715)</td>
<td>0.78</td>
</tr>
<tr>
<td>+300</td>
<td>550 (385-685)</td>
<td>585 (495-820)</td>
<td>0.40</td>
</tr>
<tr>
<td>+330</td>
<td></td>
<td>795 (550-855)</td>
<td>0.06</td>
</tr>
<tr>
<td>+360</td>
<td>550 (385-685)</td>
<td>660 (608-763)</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Tab. 37: Vergleich der Monozytenzellen von 20 Inselzelltransplantationspatienten vor Inselzelltransplantation (vor TX) mit den Zellzahlen nach Inselzelltransplantation (nach TX). Medianen mit 25 % Perzentilen und 75 % Perzentilen (25-75%) der Zellen/µl Blut sind an einem Zeitpunkt vor TX und an 15 Zeitpunkten nach TX (Zeit: +1 bis +360 Tage) angegeben und die P-Werte der statistischen Vergleiche.
c) **Lymphozyten**

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>Vor TX Median (25-75%P)</th>
<th>Nach TX Median (25-75%P)</th>
<th>P-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>1190 (850-1315)</td>
<td>175 (100-245)</td>
<td><0.01</td>
</tr>
<tr>
<td>+7</td>
<td>1190 (850-1315)</td>
<td>275 (198-435)</td>
<td>0.00</td>
</tr>
<tr>
<td>+21</td>
<td>1190 (850-1315)</td>
<td>550 (390-800)</td>
<td><0.00</td>
</tr>
<tr>
<td>+30</td>
<td>1190 (850-1315)</td>
<td>530 (260-750)</td>
<td>0.08</td>
</tr>
<tr>
<td>+60</td>
<td>1190 (850-1315)</td>
<td>735 (395-1173)</td>
<td>0.43</td>
</tr>
<tr>
<td>+90</td>
<td>1190 (850-1315)</td>
<td>965 (688-1280)</td>
<td>0.14</td>
</tr>
<tr>
<td>+120</td>
<td>1190 (850-1315)</td>
<td>860 (630-1100)</td>
<td>0.15</td>
</tr>
<tr>
<td>+150</td>
<td>1190 (850-1315)</td>
<td>1000 (915-1130)</td>
<td>0.41</td>
</tr>
<tr>
<td>+180</td>
<td>1190 (850-1315)</td>
<td>930 (780-1103)</td>
<td>0.22</td>
</tr>
<tr>
<td>+210</td>
<td>1190 (850-1315)</td>
<td>890 (740-1133)</td>
<td>1</td>
</tr>
<tr>
<td>+240</td>
<td>1190 (850-1315)</td>
<td>1305 (1220-1700)</td>
<td>0.42</td>
</tr>
<tr>
<td>+270</td>
<td>1190 (850-1315)</td>
<td>1150 (920-1770)</td>
<td>0.29</td>
</tr>
<tr>
<td>+300</td>
<td>1190 (850-1315)</td>
<td>1290 (1095-1650)</td>
<td>0.09</td>
</tr>
<tr>
<td>+330</td>
<td>1190 (850-1315)</td>
<td>1305 (965-2360)</td>
<td>0.08</td>
</tr>
<tr>
<td>+360</td>
<td>1190 (850-1315)</td>
<td>1510 (1265-1740)</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Tab. 38: Vergleich der Lymphozytenzellzahlen von 20 Inselzelltransplantationspatienten vor Inselzelltransplantation (vor TX) mit den Zellzahlen nach Inselzelltransplantation (nach TX). Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut sind an einem Zeitpunkt vor TX und an 15 Zeitpunkten nach TX (Zeit: +1 bis +360 Tage) angegeben und die P-Werte der statistischen Vergleiche.

d) **CD3+ Zellen**

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>Vor TX Median (25-75%P)</th>
<th>Nach TX Median (25-75%P)</th>
<th>P-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>2260 (1763-2725)</td>
<td>18 (5-37)</td>
<td><0.01</td>
</tr>
<tr>
<td>+7</td>
<td>2260 (1763-2725)</td>
<td>49 (28-124)</td>
<td>0.49</td>
</tr>
<tr>
<td>+21</td>
<td>2260 (1763-2725)</td>
<td>288 (217-409)</td>
<td>0.00</td>
</tr>
<tr>
<td>+30</td>
<td>2260 (1763-2725)</td>
<td>179 (152-504)</td>
<td>0.04</td>
</tr>
<tr>
<td>+60</td>
<td>2260 (1763-2725)</td>
<td>599 (273-825)</td>
<td>0.19</td>
</tr>
<tr>
<td>+90</td>
<td>2260 (1763-2725)</td>
<td>794 (293-797)</td>
<td>0.03</td>
</tr>
<tr>
<td>+120</td>
<td>2260 (1763-2725)</td>
<td>704 (289-827)</td>
<td>0.06</td>
</tr>
<tr>
<td>+150</td>
<td>2260 (1763-2725)</td>
<td>714 (553-797)</td>
<td>0.82</td>
</tr>
<tr>
<td>+180</td>
<td>2260 (1763-2725)</td>
<td>574 (471-718)</td>
<td>0.45</td>
</tr>
<tr>
<td>+210</td>
<td>2260 (1763-2725)</td>
<td>877 (806-1870)</td>
<td>0.45</td>
</tr>
<tr>
<td>+240</td>
<td>2260 (1763-2725)</td>
<td>1155 (839-1724)</td>
<td>0.67</td>
</tr>
<tr>
<td>+270</td>
<td>2260 (1763-2725)</td>
<td>1029 (384-2093)</td>
<td>0.76</td>
</tr>
<tr>
<td>+300</td>
<td>2260 (1763-2725)</td>
<td>1044 (384-2093)</td>
<td>0.40</td>
</tr>
<tr>
<td>+330</td>
<td>2260 (1763-2725)</td>
<td>1082 (995-1355)</td>
<td>0.00</td>
</tr>
<tr>
<td>+360</td>
<td>2260 (1763-2725)</td>
<td>1093 (1024-1448)</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Tab. 39: Vergleich der Zellzahlen CD3+ Zellen von 20 Inselzelltransplantationspatienten vor Inselzelltransplantation (vor TX) mit den Zellzahlen nach Inselzelltransplantation (nach TX). Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut sind an einem Zeitpunkt vor TX und an 15 Zeitpunkten nach TX (Zeit: +1 bis +360 Tage) angegeben und die P-Werte der statistischen Vergleiche.
e) CD19+ Zellen

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>Vor TX Median (25-75%P)</th>
<th>Nach TX Median (25-75%P)</th>
<th>P-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>90 (47-127)</td>
<td>124 (72-155)</td>
<td>0.42</td>
</tr>
<tr>
<td>+7</td>
<td>110 (27-110)</td>
<td>249 (147-443)</td>
<td>0.02</td>
</tr>
<tr>
<td>+21</td>
<td>134 (67-180)</td>
<td>81 (23-110)</td>
<td>0.23</td>
</tr>
<tr>
<td>+30</td>
<td>108 (80-160)</td>
<td>110 (27-110)</td>
<td>0.32</td>
</tr>
<tr>
<td>+60</td>
<td>97 (85-150)</td>
<td>123 (110-133)</td>
<td>0.46</td>
</tr>
<tr>
<td>+90</td>
<td>102 (96-113)</td>
<td>123 (110-133)</td>
<td>0.30</td>
</tr>
<tr>
<td>+120</td>
<td>151 (54-256)</td>
<td>108 (80-160)</td>
<td>0.08</td>
</tr>
<tr>
<td>+150</td>
<td>167 (89-285)</td>
<td>97 (85-150)</td>
<td>0.58</td>
</tr>
<tr>
<td>+180</td>
<td>96 (77-127)</td>
<td>102 (96-113)</td>
<td>0.58</td>
</tr>
<tr>
<td>+210</td>
<td>111 (96-117)</td>
<td>123 (110-133)</td>
<td>0.60</td>
</tr>
<tr>
<td>+240</td>
<td>95 (69-163)</td>
<td>108 (80-160)</td>
<td>0.66</td>
</tr>
<tr>
<td>+270</td>
<td>81 (27-110)</td>
<td>102 (96-113)</td>
<td>0.17</td>
</tr>
<tr>
<td>+300</td>
<td>72 (16-55)</td>
<td>108 (80-160)</td>
<td>0.72</td>
</tr>
<tr>
<td>+330</td>
<td>60 (16-55)</td>
<td>102 (96-113)</td>
<td>0.81</td>
</tr>
<tr>
<td>+360</td>
<td>59 (16-55)</td>
<td>102 (96-113)</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Tab. 40: Vergleich der Zellzahlen C19+ Zellen von 20 Inselzelltransplantationspatienten vor Inselzelltransplantation (vor TX) mit den Zellzahlen nach Inselzelltransplantation (nach TX). Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut sind an einem Zeitpunkt vor TX und an 15 Zeitpunkten nach TX (Zeit: +1 bis +360 Tage) angegeben und die P-Werte der statistischen Vergleiche.

f) CD56+ CD3- Zellen

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>Vor TX Median (25-75%P)</th>
<th>Nach TX Median (25-75%P)</th>
<th>P-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>77 (60-264)</td>
<td>21 (9-49)</td>
<td><0.01</td>
</tr>
<tr>
<td>+7</td>
<td>30 (16-55)</td>
<td>15 (4-27)</td>
<td><0.01</td>
</tr>
<tr>
<td>+21</td>
<td>39 (37-75)</td>
<td>3 (16-67)</td>
<td>0.00</td>
</tr>
<tr>
<td>+30</td>
<td>84 (59-150)</td>
<td>15 (4-27)</td>
<td>0.02</td>
</tr>
<tr>
<td>+60</td>
<td>97 (43-108)</td>
<td>39 (37-75)</td>
<td>0.06</td>
</tr>
<tr>
<td>+90</td>
<td>60 (41-105)</td>
<td>84 (59-150)</td>
<td>0.9</td>
</tr>
<tr>
<td>+120</td>
<td>72 (29-209)</td>
<td>97 (43-108)</td>
<td>0.87</td>
</tr>
<tr>
<td>+150</td>
<td>264 (209-302)</td>
<td>60 (41-105)</td>
<td>0.38</td>
</tr>
<tr>
<td>+180</td>
<td>101 (69-165)</td>
<td>72 (29-209)</td>
<td>0.71</td>
</tr>
<tr>
<td>+210</td>
<td>120 (39-301)</td>
<td>101 (69-165)</td>
<td>0.14</td>
</tr>
<tr>
<td>+240</td>
<td>91 (65-180)</td>
<td>120 (39-301)</td>
<td>0.92</td>
</tr>
<tr>
<td>+270</td>
<td>78 (63-168)</td>
<td>91 (65-180)</td>
<td>0.82</td>
</tr>
<tr>
<td>+300</td>
<td>87 (73-218)</td>
<td>78 (63-168)</td>
<td>1</td>
</tr>
<tr>
<td>+330</td>
<td></td>
<td>87 (73-218)</td>
<td>1</td>
</tr>
<tr>
<td>+360</td>
<td></td>
<td></td>
<td>0.8</td>
</tr>
</tbody>
</table>

Tab. 41: Vergleich der Zellzahlen CD56+ CD3- Zellen von 20 Inselzelltransplantationspatienten vor Inselzelltransplantation (vor TX) mit den Zellzahlen nach Inselzelltransplantation (nach TX). Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut sind an einem Zeitpunkt vor TX und an 15 Zeitpunkten nach TX (Zeit: +1 bis +360 Tage) angegeben und die P-Werte der statistischen Vergleiche.
g) CD4+ Zellen

<table>
<thead>
<tr>
<th>Vor TX Median (25-75%P)</th>
<th>510 (298-823)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeit (Tage)</td>
<td>+1</td>
</tr>
<tr>
<td>Nach TX Median (25-75%P)</td>
<td>5 (0-16)</td>
</tr>
<tr>
<td>P-Wert</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Tab. 42: Vergleich der Zellzahlen CD4+ Zellen von 20 Inselzelltransplantationspatienten vor Inselzelltransplantation (vor TX) mit den Zellzahlen nach Inselzelltransplantation (nach TX). Medianen mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut sind an einem Zeitpunkt vor TX und an 15 Zeitpunkten nach TX (Zeit: +1 bis +360 Tage) angegeben und die P-Werte der statistischen Vergleiche.

h) CD4+ CD45 RO+ Zellen

<table>
<thead>
<tr>
<th>Vor TX Median (25-75%P)</th>
<th>241 (176-535)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeit (Tage)</td>
<td>+1</td>
</tr>
<tr>
<td>P-Wert</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Tab. 43: Vergleich der Zellzahlen CD4+ CD45 RO+ Zellen von 20 Inselzelltransplantationspatienten vor Inselzelltransplantation (vor TX) mit den Zellzahlen nach Inselzelltransplantation (nach TX). Medianen mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut sind an einem Zeitpunkt vor TX und an 15 Zeitpunkten nach TX (Zeit: +1 bis +360 Tage) angegeben und die P-Werte der statistischen Vergleiche.
i) CD4+ HLA-DR+ Zellen

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>Vor TX Median (25-75%P)</th>
<th>+1 (0-5)</th>
<th>+7 (1-23)</th>
<th>+21 (7-76)</th>
<th>+30 (10-45)</th>
<th>+60 (20-63)</th>
<th>+90 (25-43)</th>
<th>+120 (18-45)</th>
<th>+150 (18-62)</th>
<th>+180 (35-39)</th>
<th>+210 (36-54)</th>
<th>+240 (66-107)</th>
<th>+270 (32-62)</th>
<th>+300 (86-25)</th>
<th>+330 (72-140)</th>
<th>+360 (63-41-106)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach TX Median (25-75%P)</td>
<td>57 (36-118)</td>
<td></td>
</tr>
</tbody>
</table>

P-Wert

<p>| | | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor TX Median (25-75%P)</td>
<td>0.00</td>
<td>0.01</td>
<td>0.23</td>
<td>0.09</td>
<td>0.29</td>
<td>0.47</td>
<td>0.27</td>
<td>0.47</td>
<td>0.61</td>
<td>0.18</td>
<td>0.65</td>
<td>0.60</td>
<td>< 0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 44: Vergleich der Zellzahlen CD4+ HLA-DR+ Zellen von 20 Inselzelltransplantationspatienten vor Inselzelltransplantation (vor TX) mit den Zellzahlen nach Inselzelltransplantation (nach TX). Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut sind an einem Zeitpunkt vor TX und an 15 Zeitpunkten nach TX (Zeit: +1 bis +360 Tage) angegeben und die P-Werte der statistischen Vergleiche.

j) CD4+ CD122+ Zellen

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>Vor TX Median (25-75%P)</th>
<th>+1 (0-1)</th>
<th>+7 (1-4)</th>
<th>+21 (0-8)</th>
<th>+30 (2-7)</th>
<th>+60 (1-0)</th>
<th>+90 (0-3)</th>
<th>+120 (1-3)</th>
<th>Fehlende Werte</th>
<th>+150 (2-1)</th>
<th>+180 (2-3)</th>
<th>+210 (5-9)</th>
<th>+240 (2-5)</th>
<th>+270 (1-1)</th>
<th>+300 (1-1)</th>
<th>+330 (1-1)</th>
<th>+360 (1-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach TX Median (25-75%P)</td>
<td>1 (1-8)</td>
<td></td>
</tr>
</tbody>
</table>

P-Wert

<p>| | | | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor TX Median (25-75%P)</td>
<td>0.1</td>
<td>0.42</td>
<td>0.6</td>
<td>0.59</td>
<td>0.64</td>
<td>0.87</td>
<td>0.78</td>
<td>0.62</td>
<td>0.5</td>
<td>0.94</td>
<td>0.89</td>
<td>0.26</td>
<td>0.65</td>
<td>0.52</td>
<td>0.42</td>
<td>0.6</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Tab. 45: Vergleich der Zellzahlen CD4+ CD122+ Zellen von 20 Inselzelltransplantationspatienten vor Inselzelltransplantation (vor TX) mit den Zellzahlen nach Inselzelltransplantation (nach TX). Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut sind an einem Zeitpunkt vor TX und an 15 Zeitpunkten nach TX (Zeit: +1 bis +360 Tage) angegeben und die P-Werte der statistischen Vergleiche.
k) TCR alpha/beta+ Zellen

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>+1</th>
<th>+7</th>
<th>+21</th>
<th>+30</th>
<th>+60</th>
<th>+90</th>
<th>+120</th>
<th>+150</th>
<th>+180</th>
<th>+210</th>
<th>+240</th>
<th>+270</th>
<th>+300</th>
<th>+330</th>
<th>+360</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor TX Median (25-75%P)</td>
<td>842 (610-1048)</td>
</tr>
<tr>
<td>Nach TX Median (25-75%P)</td>
<td>8 (1-31)</td>
<td>34 (2-74)</td>
<td>256 (103-363)</td>
<td>133 (25-256)</td>
<td>264 (0-616)</td>
<td>405 (363-761)</td>
<td>755 (461-821)</td>
<td>588 (544-635)</td>
<td>551 (462-624)</td>
<td>718 (658-1787)</td>
<td>1140 (876-1951)</td>
<td>523 (273-616)</td>
<td>767 (533-971)</td>
<td>787 (576-924)</td>
<td>1063 (560-1226)</td>
</tr>
<tr>
<td>P-Wert</td>
<td>0.00</td>
<td>0.00</td>
<td>0.1</td>
<td>0.00</td>
<td>0.64</td>
<td>0.17</td>
<td>0.31</td>
<td>0.41</td>
<td>0.006</td>
<td>0.00</td>
<td>0.24</td>
<td>0.1</td>
<td>0.00</td>
<td>0.02</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 46: Vergleich der Zellzahlen TCR alpha/beta+ Zellen von 20 Inselzelltransplantationspatienten vor Inselzelltransplantation (vor TX) mit den Zellzahlen nach Inselzelltransplantation (nach TX). Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut sind an einem Zeitpunkt vor TX und an 15 Zeitpunkten nach TX (Zeit: +1 bis +360 Tage) angegeben und die P-Werte der statistischen Vergleiche.

l) TCR gamma/delta+ Zellen

<table>
<thead>
<tr>
<th>Zeit (Tage)</th>
<th>+1</th>
<th>+7</th>
<th>+21</th>
<th>+30</th>
<th>+60</th>
<th>+90</th>
<th>+120</th>
<th>+150</th>
<th>+180</th>
<th>+210</th>
<th>+240</th>
<th>+270</th>
<th>+300</th>
<th>+330</th>
<th>+360</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor TX Median (25-75%P)</td>
<td>3 (1-10)</td>
</tr>
<tr>
<td>Nach TX Median (25-75%P)</td>
<td>9 (5-25)</td>
<td>7 (0-10)</td>
<td>51 (36-84)</td>
<td>2 (1-13)</td>
<td>42 (0-76)</td>
<td>33 (4-119)</td>
<td>74 (49-130)</td>
<td>60 (22-84)</td>
<td>51 (36-84)</td>
<td>9 (3-38)</td>
<td>140 (135-225)</td>
<td>82 (0-156)</td>
<td>98 (20-198)</td>
<td>151 (123-293)</td>
<td>126 (83-177)</td>
</tr>
<tr>
<td>P-Wert</td>
<td><0.01</td>
<td><0.01</td>
<td>0.03</td>
<td>0.00</td>
<td>0.03</td>
<td>0.38</td>
<td>0.31</td>
<td>0.13</td>
<td>0.17</td>
<td>0.21</td>
<td>0.26</td>
<td>0.44</td>
<td>0.84</td>
<td>0.75</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Tab. 47: Vergleich der Zellzahlen TCR gamma/delta+ Zellen von 20 Inselzelltransplantationspatienten vor Inselzelltransplantation (vor TX) mit den Zellzahlen nach Inselzelltransplantation (nach TX). Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut sind an einem Zeitpunkt vor TX und an 15 Zeitpunkten nach TX (Zeit: +1 bis +360 Tage) angegeben und die P-Werte der statistischen Vergleiche.
m) CD3+ CD71+ Zellen

<table>
<thead>
<tr>
<th>Vor TX Median (25-75%P)</th>
<th>4 (3-9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeit (Tage)</td>
<td>+1</td>
</tr>
<tr>
<td>Nach TX Median (25-75%P)</td>
<td>0 (0-0)</td>
</tr>
<tr>
<td>P-Wert</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Tab. 48: Vergleich der Zellzahlen CD3+ CD71+ Zellen von 20 Inselzelltransplantations-patienten vor Inselzelltransplantation (vor TX) mit den Zellzahlen nach Inselzelltransplantation (nach TX). Medianen mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Zellzahlen/µl Blut sind an einem Zeitpunkt vor TX und an 15 Zeitpunkten nach TX (Zeit: +1 bis +360 Tage) angegeben und die P-Werte der statistischen Vergleiche.

3.10 Einfluss von Spender-, Empfänger- und Transplantateigenschaften auf das Transplantatüberleben

Zwei Gruppen von Inselzelltransplantationspatienten werden hinsichtlich verschiedener kritischer Parameter auf das Transplantatüberleben statistisch verglichen. Die Parameter waren nicht für alle Patienten vollständig erhoben worden, die minimale Gruppengröße beträgt fünf.

- Patienten mit Inselzellfunktion ein Jahr nach Transplantation (n = 14)
- Patienten ohne Inselzellfunktion ein Jahr nach Transplantation (n = 6)

3.10.1 Histokompatibilität in HLA-A

Tab. 49: Verteilung der Punktzahlen des Histokompatibilitäts-Scores für HLA-A bei 20 Inselzelltransplantationspatienten mit und ohne Transplantatfunktion ein Jahr nach Inselzelltransplantation.

Der statistische Vergleich der Patienten mit Inselfunktion ein Jahr nach Inselzelltransplantation vs. Patienten ohne Inselfunktion ein Jahr nach Inselzelltransplantation, bezüglich des Histokompatibilitäts-Scores für HLA-A, ergab keinen signifikanten Unterschied.

3.10.2 Histokompatibilität in HLA-B

Tab. 50: Verteilung der Punktzahlen des Histokompatibilitäts-Scores für HLA-B bei 19 Inselzelltransplantationspatienten mit und ohne Transplantatfunktion ein Jahr nach Inselzelltransplantation.

Der statistische Vergleich der Patienten mit Inselfunktion ein Jahr nach Inselzelltransplantation vs. Patienten ohne Inselfunktion ein Jahr nach Inselzelltransplantation, bezüglich des Histokompatibilitäts-Scores für HLA-B, ergab keinen signifikanten Unterschied.
3.10.3 Histokompatibilität in HLA-DR

<table>
<thead>
<tr>
<th>Score</th>
<th>Pat. mit Inselfunktion nach einem Jahr (n %)</th>
<th>Pat. ohne Inselfunktion nach 1 Jahr (n %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11 (92 %)</td>
<td>5 (100 %)</td>
</tr>
<tr>
<td>1</td>
<td>1 (8 %)</td>
<td>0 (0 %)</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Tab. 51: Verteilung der Punktzahlen des Histokompatibilitäts-Scores in HLA-DR bei 17 Inselzelltransplantationspatienten mit und ohne Transplantatfunktion ein Jahr nach Inselzelltransplantation.

Der statistische Vergleich der Patienten mit Inselfunktion ein Jahr nach Inselzelltransplantation vs. Patienten ohne Inselfunktion ein Jahr nach Inselzelltransplantation, bezüglich des Histokompatibilitäts-Score für HLA-DR, ergab keinen signifikanten Unterschied.

3.10.4 Histokompatibilität in HLA-A und HLA-B, und HLA-DR

Tab. 52: Mediane und Range der Punktzahlen des Scores der Histokompatibilität für HLA-A, -B, und -DR für 17 Patienten mit und ohne Inselzellfunktion ein Jahr nach Inselzelltransplantation.

Der statistische Vergleich der Patienten mit Inselfunktion ein Jahr nach Inselzelltransplantation vs. Patienten ohne Inselfunktion ein Jahr nach Inselzelltransplantation, bezüglich des Histokompatibilitäts-Scores für HLA-A, -B, und -DR ergab keinen signifikanten Unterschied.

3.10.5 Insulinverbrauch vor Transplantation

Der Insulinverbrauch vor Transplantation wurde für jeden Patienten bestimmt (in IE/Tag) und Inselzelltransplantationspatienten mit und ohne Transplantatfunktion ein Jahr nach Transplantation wurden hinsichtlich des Insulinverbrauchs vor Transplantation verglichen und Unterschiede statistisch auf Signifikanz getestet.

Tab. 53: Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) des Insulinverbrauchs vor Inselzelltransplantation für 19 Patienten mit und ohne Inselzellfunktion ein Jahr nach Inselzelltransplantation.

Der statistische Vergleich der Patienten mit Inselfunktion ein Jahr nach Inselzelltransplantation vs. Patienten ohne Inselfunktion ein Jahr nach Transplantation bezüglich des Insulinverbrauchs vor Inselzelltransplantation ergab keinen signifikanten Unterschied.

3.10.6 Body Mass Index

Der Body Mass Index wurden für jeden Patienten vor Transplantation bestimmt und die Inselzelltransplantationspatienten mit und ohne Transplantatfunktion ein Jahr nach Transplantation wurden hinsichtlich der Verteilung des Body Mass Index verglichen und Unterschiede statistisch auf Signifikanz getestet.
Tab. 54: Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) des Body Mass Index für 20 Patienten mit und ohne Inselzellfunktion ein Jahr nach Inselzelltransplantation.

Der statistische Vergleich der Patienten mit Inselfunktion ein Jahr nach Inselzelltransplantation vs. Patienten ohne Inselfunktion ein Jahr nach Inselzelltransplantation bezüglich des Body Mass Index vor Inselzelltransplantation ergab keinen signifikanten Unterschied.

3.10.7 Inselstimulationsindex

Der Inselstimulationsindex wurde für jedes Transplantat bestimmt und die Inselzelltransplantationspatienten mit und ohne Transplantatfunktion ein Jahr nach Transplantation wurden hinsichtlich der Verteilung des Inselstimulationsindex ihrer Transplantate verglichen. Unterschiede wurden statistisch auf Signifikanz getestet.

Tab. 55: Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) des Inselstimulationsindex für 16 Patienten mit und ohne Inselzellfunktion ein Jahr nach Inselzelltransplantation.

Der statistische Vergleich der Patienten mit Inselfunktion ein Jahr nach Inselzelltransplantation vs. Patienten ohne Inselfunktion ein Jahr nach Inselzelltransplantation, bezüglich des Inselstimulationsindex vor Inselzelltransplantation, ergab keinen signifikanten Unterschied.

3.10.8 Inselzellviabilität

Die Inselzellviabilität wurde für jedes Transplantat bestimmt und die Inselzelltransplantationspatienten mit und ohne Transplantatfunktion ein Jahr nach Transplantation wurden hinsichtlich der Inselzellviabilität ihrer Transplantate verglichen und Unterschiede statistisch auf Signifikanz getestet.
Tab. 56: Mediane mit 25 % Perzentilen und 75 % Perzentilen (25-75%P) der Inselzellviabilität für 20 Patienten mit und ohne Inselfunktion ein Jahr nach Inselzelltransplantation.

Der statistische Vergleich der Patienten mit Inselfunktion ein Jahr nach Inselzelltransplantation vs. Patienten ohne Inselfunktion ein Jahr nach Inselzelltransplantation, bezüglich der Inselzellviabilität, ergab keinen signifikanten Unterschied.

3.10.9 Kalte Ischämiezeit

Die Kalte Ischämiezeit wurde für jedes Transplantat bestimmt und die Inselzelltransplantationspatienten mit und ohne Transplantatfunktion ein Jahr nach Transplantation wurden hinsichtlich der Kalten Ischämiezeit größer acht Stunden oder kleiner acht Stunden ihrer Transplantate verglichen und Unterschiede statistisch auf Signifikanz getestet.

Tab. 57: Verteilung der Kalten Ischämiezeit größer oder kleiner als acht Stunden bei 18 Patienten mit und ohne Transplantatfunktion ein Jahr nach Inselzelltransplantation.

Der statistische Vergleich der Patienten mit Inselfunktion ein Jahr nach Inselzelltransplantation vs. Patienten ohne Inselfunktion ein Jahr nach Inselzelltransplantation, bezüglich der Kalten Ischämiezeit größer oder kleiner als acht Stunden, ergab keinen signifikanten Unterschied zwischen den Gruppen.

3.10.10 Inseläquivalent

Es wurde für jedes Inselzelltransplantat bestimmt, ob die Menge der transplantierten Inselzellen größer oder kleiner als 6.000 IEQ/kg/Körpergewicht ist. Die Patientengruppen mit und ohne Transplantatfunktion ein Jahr nach Transplantation wurden hinsichtlich dieses Parameters statistisch verglichen.

<table>
<thead>
<tr>
<th>Pat. mit Inselfunktion nach einem Jahr</th>
<th>Pat. ohne Inselfunktion nach einem Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>90</td>
</tr>
<tr>
<td>25-75%P</td>
<td>89 - 96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pat. mit Inselfunktion nach einem Jahr (n)</th>
<th>Pat. ohne Inselfunktion nach 1 Jahr (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIT<8h</td>
<td>9 (69 %)</td>
</tr>
<tr>
<td>CIT>8h</td>
<td>4 (31 %)</td>
</tr>
</tbody>
</table>
Tab. 58: Verteilung hinsichtlich der Menge der transplantierten Inselzellen (< oder > 6000 IEQ/kg/Körpergewicht) bei 18 Inselzelltransplantationspatienten mit und ohne Transplantatfunktion ein Jahr nach Inselzelltransplantation.

Der statistische Vergleich der Patienten mit Inselfunktion ein Jahr nach Inselzelltransplantation vs. Patienten ohne Inselfunktion ein Jahr nach Inselzelltransplantation bezüglich Menge der transplantierten Inselzellen größer oder kleiner 6.000 IEQ/kg/Körpergewicht) ergab keinen signifikanten Unterschied zwischen den Gruppen.

3.10.11 **Kombination von Kalter Ischämiezeit <8h und Inseläquivalent >6.000 IEQ/kg/Körpervgewicht**

Es wurde für jeden Patienten bestimmt, ob die Kriterien Kalte Ischämiezeit kleiner acht Stunden und Inseläquivalent größer 6.000/IEQ/kg/Körpergewicht beide erfüllt waren. Die beiden Patientengruppen mit und ohne Transplantatfunktion nach einem Jahr wurden hinsichtlich des Vorhandenseins der Kombination dieser beiden Kriterien verglichen.

Tab. 59: Verteilung hinsichtlich der Kombination Kalte Ischämiezeit < 8h und Inseläquivalent >6.000 IEQ/kg/Körpergewicht bei 18 Inselzelltransplantationspatienten mit und ohne Transplantatfunktion ein Jahr nach Inselzelltransplantation.

Der statistische Vergleich derPatienten mit Inselfunktion ein Jahr nach Inselzelltransplantation vs. Patienten ohne Inselfunktion ein Jahr nach Inselzelltransplantation hinsichtlich der Kombination der beiden Parameter: Kalter Ischämiezeit größer acht Stunden und Inseläquivalent größer 6.000 IEQ/kg/Körpergewicht, ergab keinen signifikanten Unterschied zwischen den Gruppen.
4. Diskussion

4.1 Welche Veränderungen von Lymphozytensubsets treten nach Inselzelltransplantation und Induktionsimmunsuppression mit polyklonalen Antilymphozytenserum auf?

4.1.1 Kurzfristige Effekte

Abb. 30: Mediane der Zellzahlen von Lymphozytensubsets bei 20 Patienten vor Inselzelltransplantation (ITX) und im Verlauf des ersten Monats nach ITX mit Gabe von polyklonalen Antilymphozytenseren. Tag 0 ist Zeitpunkt der ITX, die Gabe der Antilymphozytenseren erfolgt innerhalb der ersten zehn Tage nach Transplantation.

4.1.2 Längerfristige Effekte

In der vorliegenden Untersuchung finden sich im gesamten Untersuchungszeitraum von zwölf Monaten bei Inselzelltransplantationspatienten signifikant niedrigere Zellzahlen für Lymphozyten, CD3+ Zellen, CD4+ Zellen, CD19+ Zellen und TCR alpha/beta+ Zellen als bei

Abb. 31: Mediane mit 25 % Perzentilen und 75 % Perzentilen der Zellzahlen von Lymphozyten- und CD56+CD3- Zellen bei 20 Patienten zwölf Monate nach Inselzelltransplantation (ITX) und bei gesunden Spendern.

Abb. 32: Mediane mit 25 % Perzentilen und 75 % Perzentilen der Zellzahlen von Lymphozyten- und CD56+CD3- Zellen bei 20 Patienten zwölf Monate nach Inselzelltransplantation (ITX) und bei gesunden Spendern.

Der Einsatz polyklonaler Antikörper erfolgte nur in der Patientengruppe der Inselzelltransplantierten und nicht bei den Nierentransplantierten oder der gesunden Kontrollgruppe. Er kann als Ursache für die dauerhafte Depletion der Lymphozytensubsets vermutet werden. Es muss jedoch angenommen werden, dass andere Faktoren ebenfalls Einfluss auf die Leukozytenpopulationen bei Inselzelltransplantation haben, da Inselzelltransplantierte bereits vor Transplantation gegenüber der gesunden Kontrollgruppe signifikant niedrigere Zellzahlen von Lymphozyten, CD3+ Zellen, CD4+ Zellen, CD19+ Zellen und TCR alpha/beta+ Zellen aufweisen. Die beiden Patientenkollektive unterscheiden sich also auch schon vor Transplantation signifikant hinsichtlich wichtiger Lymphozytensubsets. Die Gruppe der Inselzelltransplantationspatienten weist eine Reihe von Besonderheiten auf, die den Immunstatus beeinflussen können:

- Alle Inselzelltransplantationspatienten waren langjährige insulinpflichtige Diabetiker.
- Die SIK Patienten (n = 14) waren vor der SIK-Transplantation dialysepflichtig.
- Die IAK Patienten (n = 5) haben bereits immunsuppressive Medikamente (Steroide und Ciclosporin) im Rahmen der vorausgehenden Nierentransplantation erhalten.

Wie diese Einflussgrößen tatsächlich die Ausprägung der Lymphozytensubsets beeinflussen, kann jedoch nicht anhand der vorliegenden Daten weiter spezifiziert werden. Ein Vergleich der Zellzahlen CD3+ Zellen, CD4+ Zellen und CD8+ Zellen zeigte keine signifikanten Unterschiede bei diabetischen und nicht-diabetischen Nierentransplantationspatienten sowohl vor als auch nach Nierentransplantation (DELMONICO et al., 1983).

Abb. 33: Mediane der Zellzahlen von Lymphozyten und Lymphozytensubsets bei 20 Patienten vor Inselzelltransplantation (ITX) und im Verlauf des ersten Jahres nach ITX mit Induktionsimmunsuppression durch polyklonale Antilymphozytenseren. Tag 0 ist Zeitpunkt der Inselzelltransplantation, die Gabe der Antilymphozytenseren erfolgt innerhalb der ersten zehn Tage nach Transplantation.

In der Gruppe der Inselzelltransplantierten waren die Zellzahlen der CD4+ Zellen, CD56+ CD3- Zellen, CD4+ CD45 RO+ Zellen, CD4+ HLA-DR+ Zellen und der Lymphozyten bis zum 30. Tag nach Transplantation signifikant niedriger im Vergleich zu vor Transplantation; die Zellzahl der CD3+ Zellen war im Vergleich zu vor Transplantation bis zum 60. Tag nach Transplantation signifikant niedriger und bei den TCR alpha/beta+ Zellen bis zum 7. Tag nach Transplantation. Keine signifikanten Unterschiede waren für die Gesamtleukozytenzahl, die Monozytenzahl und die Zahl der CD19+ Zellen nachweisbar.

Es kommt in der Gruppe der Inselzelltransplantierten, in welcher alle Patienten polyklonale Antikörperseren erhielten, zu einem schnellen und ausgeprägten Abfall der Zellzahlen von Lymphozyten, CD4+ Zellen, CD4+ Zellen und CD56+CD3- Zellen (Abb. 33) sowie der CD4+ CD45 RO+ Zellen, CD4+ HLA-DR+ Zellen, TCR alpha/beta+ Zellen und TCR gamma/delta+ Zellen. Nach 7 bis 60 Tagen werden in diesen Lymphozytenpopulationen bei Inselzelltransplantationspatienten wieder Zellzahlen wie vor Transplantation erreicht, die jedoch bereits vor Inselzelltransplantation signifikant niedriger waren, als etwa im Vergleich zu einer gesunden Kontrollgruppe. Noch nach fünf bis sechs Monaten lassen sich signifikant niedrigere Zellzahlen für Lymphozyten, CD3+ Zellen, CD4+ Zellen und TCR alpha/beta+ Zellen bei den Inselzelltransplantationspatienten im Vergleich zu den Nierentransplantationspatienten
nachweisen, die in der vorliegenden Untersuchung keine polyklonalen Antilymphozytenserener erhielten.

Bei 33 Nierentransplantationen, die eine Induktionsimmunsuppression mit ATG (Thymoglobin n = 22, ATG-Fresenius n = 11) erhielten, konnte noch nach 24 Monaten eine Reduktion der CD3+ Zellen auf Zellzahlen < 1000/µl und eine Reduktion CD4+ Zellen auf Zellzahlen < 250/µl nachgewiesen werden (MÜLLER et al., 1997 und 1999).

Die bei Patienten mit Nierentransplantationen nach Gabe von polyklonalen Antilymphozytenserener beschriebenen Veränderungen der Lymphozytensubsets sind also länger anhaltend, als sie bei den Inselzelltransplantationspatienten zu beobachten sind. Wo können die Gründe für diese vergleichsweise länger dauernde Depletion liegen?

THERVET und MÜLLER konnten in zwei unabhängigen Untersuchungen zeigen, dass ein Zusammenhang zwischen ATG-Gesamtdosis und der Geschwindigkeit der Regeneration der Lymphozytensubsets besteht. Eine Ursache für die kürzerfristigen Veränderungen der Lymphozytensubsets nach ATG-Gabe bei den Inselzelltransplantierten der vorliegenden Untersuchung könnte also die tatsächlich niedrigere Dosierung und Verabreichungsdauer des ATG bei diesen Patienten sein (Mittelwerte und Standardabweichung: 240 ± 39 mg/Patient/Tag für 9 ± 1.1 Tage), im Vergleich zu der von Müller untersuchten Gruppe von Nierentransplantationspatienten (271 ± 73 mg/Patient/Tag für 10.7 ± 5.3 Tage).

Unterschiede lagen nicht nur in der Menge der verabreichten Antilymphozytenserener vor, sondern auch hinsichtlich der Dosierungsart. Bei den von MÜLLER untersuchten Nierentransplantationspatienten wurde, nach Verabreichung einer ATG-Startdosis von 2 mg/kg Körpergewicht, die Dosis des ATG auf der Grundlage täglicher Bestimmungen der CD3+ Zellzahl angepasst und nicht, wie bei den Patienten der vorliegenden Untersuchung, in täglich gleichen Dosen verabreicht.

Es konnte in einer anderen Untersuchungen gezeigt werden, dass mit dieser Methode der Dosierungsanpassung gegenüber starren Dosierungen, die Häufigkeit und Schwere der Nebenwirkungen, die Anzahl viraler Infekte und die Gesamtdosis der Antilymphozytenserener bei gleichem Transplantaterfolg signifikant reduziert werden kann (THERVET et al., 1997). Die Wirkung des ATG wird also unter T-Zell-Monitoring und Dosisanpassung optimiert, was sich auch in einer länger dauernden Depletion der CD3+ und CD4+ Zellen mit dieser Dosierungsmethode zeigen könnte.
Ein weiterer Faktor, der für die länger dauernde Depletion verantwortlich sein könnte, ist die unterschiedliche Zytozoixität und Antikörperbindung von verschiedenen polyklonalen Antilymphozytenseren, wie sie von SHENTON et al. 1994 beschrieben wurde.

Es besteht Variabilität hinsichtlich Konzentration und Spezifität von polyklonalen Antilymphozytenseren, sowohl hinsichtlich der verschiedenen kommerziellen Produkte als auch der verschiedenen Chargen eines Produktes (MÜLLER et al., 1999). Ein grundlegendes Problem ist, die tatsächliche biologische Potenz der verschiedenen polyklonalen Lymphozytenseren zu bestimmen und zu standardisieren. Außerdem treten aus unbekannter Ursache große interindividuelle Unterschiede in vivo bei verschiedenen Patienten hinsichtlich der Wirkung polyklonaler Antilymphozytenseren auf. SHENTON et al. konnten diese beiden grundlegenden Beobachtungen durch in vitro Testung von Lymphozyten zweier unterschiedlicher Patientengruppen (gesunde Kontrollgruppe; Patientengruppe mit terminaler Niereninsuffizienz) mit verschiedenen ATG-Produkten nachvollziehen. Dabei wurden folgende Beobachtungen gemacht:

- Signifikante Unterschiede hinsichtlich Zytoxoixität und Bindungsfähigkeit verschiedener kommerzieller ATG-Produkte auf Lymphozyten konnten festgestellt werden.
- Es bestehen Unterschiede bei verschiedenen ATG-Produkten hinsichtlich des Bindungsverhaltens an unterschiedliche CD-Antigene.
- Eine signifikant größere Zytoxoixität und Bindungsfähigkeit aller untersuchten ATG-Produkte auf die Lymphozyten von terminal niereninsuffizienten Patienten im Vergleich zu Lymphozyten einer gesunden Kontrolle konnte beobachtet werden.

vs. 27 ± 26 Monate). Dies könnte auch für eine erhöhte Wirksamkeit der ATG-Medikation im Sinne einer längerduernden Depletion der Lymphozytensubsets, verantwortlich sein.

Die in der vorliegenden Arbeit beobachteten Veränderungen von Lymphozytensubsets, speziell die signifikanten Veränderungen der Zellen die CD3 und CD4 exprimieren, sind am ehesten durch die Gabe von Antilymphozytenseren im Rahmen der Inselzelltransplantation zu erklären. Eine weiterführende Beurteilung der Dauer und Ausprägung der beobachteten Veränderungen ist aber kaum möglich, vor allem aufgrund der Tatsache, dass es bisher keine vergleichbaren Veröffentlichungen zur Beschaffenheit von Lymphozytensubset bei Inselzelltransplantations-patienten gibt oder zur Wirkung von ATG bei Patienten nach Inselzelltransplantation.

4.2 **Hat die Ausprägung bestimmter Spender-, Empfänger- und Transplantateigenschaften einen nachweislichen Einfluss auf das Inselzelltransplantatüberleben in der vorliegenden Patientengruppe?**

Es wurde der Einfluss verschiedener Größen auf das Überleben der Inselzellen in dieser Patientengruppe untersucht. Es konnte anhand statistischer Methoden gezeigt werden, dass die einzelnen Einflussfaktoren:

- Empfängergeschlecht
Empfängeralter
Diabetesdauer > 20 Jahre
Anzahl der Spenderpankreata
transplantierte Inselmenge, IEQ > 6000/kg Körpergewicht (kg/KG)
Inselreinheit (Islet Purity> 90%)

keinen signifikanten Einfluss auf das 1-Jahres-Transplantatüberleben und die Insulinunabhängigkeit der Patienten hatten.

In der Patientengruppe der vorliegenden Untersuchung konnte für die kalte Ischämiezeit von weniger als 8 Stunden und für die Menge transplantierter Inselzellen von mehr als 6000 IEQ/kg
Körpergewicht, sowohl einzeln als auch in Kombination, kein signifikanter Einfluss auf das Transplantatüberleben nachgewiesen werden. Hinsichtlich des Empfängergeschlechts, des Insulinverbrauchs vor Transplantation, des Stimulationsindex, der Inselzellviabilität und der Kompatibilität der HLA-Antigene (HLA- A; B; DR) konnte kein signifikanter Unterschied zwischen Patienten mit und Patienten ohne 1-Jahres-Transplantatüberleben festgestellt werden.

Die unter 4.2 diskutierten Ergebnisse müssen stets vor dem Hintergrund einer relativ geringen Patientenzahl betrachtet werden, die die Aussagekraft der gemachten Beobachtungen statistisch begrenzt. So betrug die Zahl der Patienten mit Transplantatfunktion 14, sechs Patienten hatten keine Transplantatfunktion nach einem Jahr bzw. fünf Patienten hatten eine vorhandene Transplantatfunktion im ersten Jahr nach Transplantation wieder verloren, ein Patient erlangte niemals eine Transplantatfunktion. Ein eventuell tatsächlich vorliegender Einfluss einzelner Parameter auf das Transplantatüberleben kann vorliegen, sich aufgrund der geringen Fallzahl in der statistischen Untersuchung aber als nicht signifikant darstellen.
4.3 Kann man durch Bestimmung von Lymphozytensubsets und Inselzell-Autoantikörpern den immunologischen Einfluss auf das Inselzelltransplantatüberleben nachvollziehen?

4.3.1 Einfluss immunologischer Faktoren auf das Transplantatüberleben allogener Inselzelltransplantate

4.3.2 Antigenunabhängige Immunprozesse

Antioxidantien in der Umgebung von Inselzelltransplantaten erhöht die Verletzlichkeit von transplantierten Inselzellen (LENZEN et al., 1996), deshalb läßt sich durch die Gabe von Radikalfängern (Nikotinamide, Desferroxamine) ebenfalls die Etablierung von Inselzelltransplantaten unterstützen (NOMIKOS et al., 1986 und 1989).

An der Aktivierung und Steuerung antigenunabhängiger Immunprozesse sind hauptsächlich zwei Botenstoffkaskaden, bestehend aus verschiedenen Chemokinen, beteiligt. Chemokine sind heparinbindende Proteine, die die Rekrutierung und Steuerung von Leukozytenpopulationen bei inflammatorischen und immunologischen Reaktionen vermitteln. Es existiert eine frühe Chemokinkaskade (KIC; MP-1-alpha; MP-1-beta; JE), die im Sinne einer unspezifischen Wundreaktion sowohl bei Iso- als auch Allotransplantation vorkommt und die Rekrutierung von Granulozyten (KIC; MP-1alpha) und Makrophagen (JE; MP1-beta) in der Frühphase nach Transplantation vermittelt. Später tritt eine zweite Chemokinkaskade (IP-10; MIG) in Kraft, die alloantigen geprimte T-Zellen aktiviert und in das Transplantat dirigiert (FAIRCHILD et al., 2000).

4.3.3 Alloimmunität

Tierexperimentell konnte gezeigt werden, dass eine APC-Depletion von allogenen Nierentransplantaten eine niedrigere Immunität zur Folge hat und dass eine akute Abstoßung der Nierentransplantate nach Verabreichung von dendritischen Zellen der Spender erfolgt (ROAKE und AUSTYN, 1994).

Das zweite Signal der T-Zell-Aktivierung wird durch die IL-1-Sekretion der Makrophagen ausgelöst. Neben eine Reihe von Effekten auf andere Zellpopulationen triggert IL-1 auch die T-Zell-Proliferation. Die aktivierten T-Zellen sezernieren IL-2 und exprimieren verstärkt IL-2 Rezeptoren, dies wirkt als eine Art von „positiver Feedback Schleife“, um die IL-2-Produktion zu erhöhen. IL-2 verstärkt die Wirkung anderer Chemokine und fördert die Rekrutierung und Proliferation von T-Helferzellen, B-Lymphozyten und zytotoxischen T-Zellen (CANTRELL und SMITH, 1984). IL-2 stimulierte T-Zellen produzieren außerdem die B-Zell-aktivierenden Faktoren IL-4 und IL-6, die die Produktion von antigenspezifischen Antikörpern durch B-Lymphozyten fördern (HOWARD et al., 1983).

33B3.1 ist ein Antikörper gegen den IL-2-Rezeptor und bindet an proliferierende T-Zellen, die diesen Rezeptor exprimieren. Subtherapeutische Dosen von Ciclosporin kombiniert mit 33B3.1 führen zum Verlust von IL-2 und dem IL-2-Rezeptor im Transplantat und konnten im Rattenmodell den Verlust von Herztransplantaten und Inselzelltransplantaten verhindern. (TELLIDES et al., 1988).

Experimentelle Antikörper gegen Zytokine der akuten Abstoßungsreaktion können besonders in der Induktionsimmunsuppression und in der Therapie der akuten Abstoßungsreaktion eingesetzt werden. Für Antikörper gegen TNF und IFN-gamma konnte im Tierexperiment an Ratten bereits eine signifikante Verlängerung des Transplantatüberlebens gezeigt werden (IMAGAWA et al., 1990).

Um den möglichen Zusammenhang von Lymphozytensubsets und dem immunologischen Einfluss auf die Transplantatfunktion bei Inselzelltransplantation zu untersuchen, wurden in der vorliegenden Untersuchung zwei Patientengruppen verglichen:

- Patienten mit 1-Jahres-Transplantatüberleben (n = 14)
- Patienten ohne 1-Jahres-Transplantatüberleben (n = 6).

Dabei konnte vor Transplantation und an 16 Zeitpunkten innerhalb eines Jahres nach Transplantation kein signifikanter Unterschied zwischen den beiden Patientengruppen festgestellt werden, hinsichtlich der untersuchten Parameter:

- Leukozytenzahl
- Lymphozytenzahl
- Monozytenzahl
- Anzahl CD3+ Zellen
- Anzahl CD19+ Zellen
- Anzahl CD56+ CD3- Zellen
- Anzahl CD4+ Zellen
- Anzahl CD4+ CD45 RO+ Zellen
- Anzahl CD4+ HLA-DR+
- Anzahl CD4+ CD122 + Zellen
- Anzahl CD3+ CD71+ Zellen

4.3.4 Autoimmunität

Seit SUTHERLAND et al. 1989 zeigen konnte, dass Transplantatversagen wegen wiederkehrender Autoimmunität bei Pankrestransplantaten von identischen Zwillingsspendern durch Immunsuppressiva (Ciclosporin und Azathioprin) verhindert werden kann, wird angenommen, dass die Autoimmunität keine Rolle für die Transplantatfunktion bei immunsuppressiv behandelten diabetischen Inselzelltransplantierten spielt. Eine Reihe neuerer Erkenntnisse stellt diese Annahme jedoch zunehmend in Frage:

zeigen, dass Autoantikörper trotz Immunsuppression persistieren (GAD 65) und Patienten mit einem niedrige Level von Autoantikörpern (GAD 65) vor Transplantation, ein besseres 1-Jahres-Transplantatüberleben aufweisen, als Patienten mit einem hohem Level von Autoantikörpern.

In der vorliegenden Patientengruppe konnte anhand der bestimmten Inselzell-Autoantikörper kein immunologischer Einfluss auf die Transplantatfunktion nachvollzogen werden. Allerdings ist hinsichtlich der insgesamt geringen Patientenzahl und dem geringen Anteil von Patienten, bei denen Autoantikörper nachgewiesen werden konnten, die Aussagekraft der vorliegenden Untersuchung begrenzt.

4.4 Kann man durch durchflusszytometrische Bestimmung von Lymphozytensubsets eine mögliche immunologische Abstoßung von Inselzelltransplantaten erkennen?

Um den möglichen Zusammenhang von Lymphozytensubsets und Transplantatabstoßung zu untersuchen, wurden zwei Patientengruppen verglichen:

- Patienten mit 1-Jahres-Transplantatüberleben (n = 14)
- Patienten mit Transplantatverlust im ersten Jahr nach Transplantation (n = 5).

Dabei konnte vor Transplantation und an fünf Zeitpunkten innerhalb der ersten 60 Tage nach Transplantation kein signifikanter Unterschied zwischen den beiden Patientengruppen hinsichtlich der untersuchten Parameter gefunden werden. Dieser Zeitraum wurde gewählt, weil
der angenommen Transplantatverlust in der untersuchten Patientengruppe zwischen Tag 28 und Tag 82 liegt. Die untersuchten Parameter waren:

- Leukozytenzahl
- Lymphozytenzahl
- Monozytenzahl
- Anzahl CD3+ Zellen
- Anzahl CD19+ Zellen
- Anzahl CD56+ CD3- Zellen
- Anzahl CD4+ Zellen
- Anzahl CD4+ CD45 RO+ Zellen
- Anzahl CD4+ HLA-DR+
- Anzahl CD4+ CD122+ Zellen
- Anzahl CD3+ CD71+ Zellen.

- Mit den angewandten Methoden kann nicht festgestellt werden, ob es sich bei dem Verlust der Transplantatfunktion in den fünf untersuchten Fällen tatsächlich um eine allogen ausgelöste, spezifische immunologische Abstoßung handelt oder ob andere Ursachen für den Transplantatverlust verantwortlich sind.

Eine Untersuchung bei 300 Patienten in der späten Phase nach Nierentransplantation (>1 Jahr) zeigte, dass ein Immunmonitoring durch durchflusszytometrische Erfassung von

Deshalb sollte die durchflusszytometrische Bestimmung von Lymphozyten-Subsets im Rahmen eines immunologischen Monitorings nach Transplantation bei Insellzelltransplantationspatienten weiter verfolgt werden.
5. Zusammenfassung

In der untersuchten Patientengruppe (n = 20) war das 1-Jahres-Transplantatüberleben mit 70 % außergewöhnlich hoch im Vergleich zu anderen Patientengruppen aus der medizinischen Literatur, die hinsichtlich wichtiger prädiktiver Faktoren für den Transplantaterfolg vergleichbar sind. In dieser Patientengruppe mit hohem Transplantatüberleben wurde überprüft, ob ein statistisch nachweisbarer Zusammenhang zwischen Spender-, Empfänger- und Transplantateigenschaften und dem Überleben der Inselzelltransplantate vorlag. Die Aussagekraft der statistischen Vergleiche zwischen Patienten mit Transplantatfunktion (n = 14)
gegen Patienten ohne Transplantatfunktion (n = 6) hinsichtlich der untersuchten Parameter sollte dabei vor dem Hintergrund der geringen Patientenzahlen betrachtet werden.

Es konnte kein signifikanter Einfluss der untersuchten Faktoren (Kalte Ischämiezeit weniger als 8 Stunden; Menge transplantierter Inseläquivalente mehr als 6.000/kg/Körpergewicht; Histokompatibilität in HLA-A; B; DR, Insulinverbrauch vor Transplantation, Inselstimulationsindex, Inselzellviabilität, Ciclosporinblutspiegel) auf das Überleben der Inselzelltransplantate nachgewiesen werden.

Es konnte kein Zusammenhang zwischen Zellzahlen der Lymphozytensubsets und dem Überleben der Inselzelltransplantate nachgewiesen werden. Es konnte kein autoimmaner Einfluss auf das Transplantatüberleben anhand der Bestimmung von Inselzell-Autoantikörpern nachgewiesen werden, wobei nur bei wenigen Patienten Inselzell-Autoantikörper gefunden wurden.

Eine mögliche immunologische Abstoßung konnte anhand der durchflusszytometrisch bestimmten Lymphozytensubsets nicht erkannt werden. Es wurde keine Korrelation zwischen Zellzahlen der Lymphozytensubsets und einem Transplantatverlust gefunden. Dabei bestehen grundlegende Schwierigkeiten darin, dass nicht zu klären ist, ob es sich im Falle eines Verlustes der Inselzelltransplantatfunktion tatsächlich um einen immunologisch verursachten Transplantatverlust handelt und wann genau der Transplantatverlust stattfindet.
6. Summary

Graft rejection reduces success of allogenic transplantation. Antilymphocyte serum is used for immunosuppression, depleting lymphocytes. The objective was to use flow cytometry to examine changes in lymphocyte subsets after allogenic islet transplantation and inductive immunosuppression with antilymphocyte serum and to examine a possible connection between certain lymphocyte subsets and other donor-, recipient- and graft attributes and success of transplantation.

In patients receiving polyclonal lymphocyte serum a massive and rapid depletion of lymphocytes (CD3+ cells, CD4+ cells, CD4+ CD45 RO+ cells, CD4+ HLA DR+ cells, CD56+ CD3- cells, TCR alpha/beta+ cells und TCR gamma/delta+ cells) can be observed. After 30-60 days a regeneration to levels prior to administration of the antilymphocyte serum was accomplished in these lymphocyte subsets. Monocytes, CD19+ cells and the leucocytes on the other hand were not reduced significantly. Comparing patients after administration of antilymphocyte serum and islet transplantation to a control group showed significantly lower cell counts of lymphocytes and lymphocyte subsets (CD3+ cells, CD4+ cells, CD19, TCR alpha/beta+ cells) over almost the whole observational period of 12 months, the cell count was significantly lower even before transplantation. Comparing the islet transplantation patients receiving antilymphocyte serum to patients after renal transplantation (without antilymphocyte serum) showed a significantly lower cell count in these lymphocyte subsets over the whole observational period of 6 months.

1-year-transplant survival was exceptionally good with 70 % in the examined group (n = 20), compared to patients with similar predictive factors found in the medical literature. In the examined group immunologic parameters and different donor-, recipient- and graft attributes were analysed (cold storage time <8h and transplanted islet equivalents >6.000, HLA matching in HLA-A,B,DR and Ciclosporin blood levels, insulin quantity needed prior to transplantation, islet stimulation index, islet viability) for a possible influence on graft survival. No significant influence of these donor-, recipient- and graft attributes could be found on graft survival nor a correlation between lymphocyte subsets, autoantibodies and functioning of the transplan, while only in a few cases autoantibodies were found.

It was not possible to predict a probable graft rejection by analysing lymphocyte subsets, in spite of a low number of patients in the subgroups (n = 6; n = 14). Another fundamental problem in this context is, that it cannot be clarified, if a loss of transplant function is caused by transplant rejection or other mechanisms.
7. Literaturverzeichnis

AMERICAN DIABETES ASSOCIATION
Pancreas transplantation for patients with diabetes mellitus.

AMERICAN DIABETES ASSOCIATION

BALLINGER WF, LACY PE
Transplantation of intact pancreatic islets in rats.

BARTLETT ST, CHIN T, DIRDEN B, QUERESHI A, HADLEY GA
Inclusion of pancreatic lymph node cells prevents recurrent autoimmune destruction of islet transplants: evidence of donor chimerism.

BARTLETT ST, SCHWEITZER EJ, KUO PC, JOHNSON LB, DELATORRE A, HADLEY GA
Prevention of autoimmune islet allograft destruction by engraftment of donor T cells.

BATCHelor JR, LECHLER RI
Why MHC incompatible grafts induce strong primary alloimmunity.

BELL L, GIARDIN C, SHARMA P, GOODYER P, MAZER
Lymphocyte subsets during and after rabbit anti-thymocyte globin induction in pedeatric renal transplantation: sustained T-cell depletion.
Transplant Proc. 1997; 29 (Suppl 7a); 6-9.

BHAT G, SCHROEDER TJ
Clinical role of immunologic monitoring during OKT3 treatment.

BOCK HA, GALLATI H, ZURCHER RM, BACHOFEN M, MIHATSCH M, LANDMANN J, THIEL G
A randomized prospective trial of prophylactic immunosuppression with ATG-fresenius versus OKT3 after renal transplantation.

BONNEFOY-BERARD N, VINCENT C, REVILLARD J
Antibodies against functional leukocyte surface molecules in polyclonal antilymphocyte and antithymocyte globulins.

BOTTINO R, FERNANDEZ LA RICORDI C, LEHMANN R, TSAN MF, OLIVER R, INVERARDI L
Transplantation of allogenic islets of Langerhans in the rat liver- effects of macrophage depletion on graft survival and microenvironment activation.

BRANDO B, SOLMMARUGA E, CIVATI G, BUSNACH G, BROGGI ML, SEVESO M, MINETTI L
Monitoring of CDF+ CD28- T-helper cells in renal transplant recipients.

BRAUN MY, Mc CORMACK A, WEBB G, BATCHelor RJ
Mediation of acute but non chronic rejection of MHC-incompatible rat kidney grafts by alloreactive CD4 T-cells activated by the direct pathway of sensitization

BRENDEL MD, HERING BJ, SCHULTZ AO, BRETZEL RG (editors)
International Islet Transplant Registry, Newsletter 8, Draft 1999
on the occasion of the 7th World Congress of IPITA, Sydney August 22-25, 1999
International Islet Transplant Registry
Third Medical Department
University Hospital Giessen
Rodthol 6, 35392 Giessen, Germany

BRENDEL MD, HERING BJ, SCHULTZ AO, BRETZEL RG (eds)
International Islet Transplant Registry, Newsletter 9, Vol 8 (No 1), 2001
International Islet Transplant Registry
Third Medical Department
University Hospital Giessen
Rodthol 6, 35392 Giessen, Germany

BRETZEL RG, FEDERLIN K

BRETZEL RG, HERING BJ, STROEDTER D, ZEKORN T, and FEDERLIN F
Experimental islet transplantation in small animals

BRETZEL RG, HERING BJ, FEDERLIN K
Islet transplant registry report 1991
Diab Nutr Metab. 1992; 5 (suppl.1); 177-181.
BRETZEL RG
Insel-und Pankreastransplantation bei Diabetes, Stand 1996.

BRETZEL RG, FEDERLIN K
Pancreas and islands of Langerhans transplantation in diabetes mellitus

BRUN P, STERKENS G, MAISAN A, BENALI K, BAUDOIN V, MACHER M, LOIRAT C
Flow-cytometry monitoring of antilymphocyte globulin therapy in pediatric renal transplantation.

BURTON RC, COSIMI AB, COLVIN RB, RUBIN RH, DELMONICO FL, GOLDSTEIN G, CHANDLER C and RUSSEL PS
Monoclonal antibodies to human T-cell subsets: Use for immunological monitoring and immunosuppression in renal transplantation.

CANTRELL PA, SMITH KA
The interleukin 2 T cell system: a new cell growth model.

CHANDLER C, PASSARO E jr

CHATENOUD L, BACH JF
Therapeutic monoclonal antibodies in transplantation.

CHAUDHARY VK, QUEEN C, JUNGHANS RP, WALDMANN TA, FITZGERALD DJ, PASTAN I
A recombinant immunotoxin consistant of two antibody variable domains fused to Pseudomonas endotoxin.

CLARK KR, FORSYTHE JL, SHENTON BK, LENNARD TW, PROUD G, TAYLOR RM
Administration of ATG acccording to the absolute T-lymphocyte count during therapy for steroid-resistant rejection.

CUTURI MC, BLANCHO G, JOSIEN R, SOULILLOU JP
The biology of allograft rejection.
DAVALLI AM, SCAGLIA L, ZANGEN DH et al.
Vulnerability of islets in the immediate posttransplant period. Dynamic changes in structure and function.
Diabetes. 1996; 45 (9): 1161-7.

DELMONICO FL, COSIMI AB, JAFFERS GJ, Schooley RT, Rubin RH, TOLKOFF- RUBIN N,
FANG LT, RUSSEL PS
Immunological Monitoring of diabetic and nondiabetic recipients of renal allografts.

DEUTSCHE DIABETES GESELLSCHAFT
Evidenzbasiert Diabetes Leitlinie DDG 2000
Deutsche Diabetes-Gesellschaft
Bürkle-de-la-Camp-Platz
44789 Bochum

DIDLAKE RH, KIM E, SHEEAN K, SCHRIEBER RD, KAHAN BD
Effect of combined anti-gamma interferon antibody and cyclosporin therapy on cardiac allograft survival in the rat
Transplantation. 1988; 45; 222-3.

An immune monitoring program for management of immunosuppressive therapy in the early phase after transplantation.

ELLIS TM, BERRY CR, MENDEZ-PICON G, GOLDMAN MH, LOWER RR, LEE HM, MOHANAKUMAR T
Immunological monitoring of renal allograft recipients using monoclonal antibodies to human T lymphocyte subpopulations.

ERREN M
Multiparametrisches Immunmonitoring nach Organtransplantation.

FAIRCHILD RL, KOBAYASHI H, MIURA M
Chemokines and the recruitment of inflammatory infiltrates into allograft.
Graft. 2000; 3 (1); 524-31.

FANSLOW WC, SIMS JE, SASSENFELD H et al.
Regulation of alloreactivity in vivo by a soluble form of interleukin 1 receptor
FOSTER DW, UNGER RH

FRESENIUS
ATG-Fresenius: Substantial Features.
Fresenius AG, Division Immune Therapy (1998)
Am Haag 6, 82166 Gräfelfing, Germany.

GRUESSNER AC, SUTHERLAND DE
Analysis of United States (US) and non-US pancreas transplants as reported to the United Network for Organ Sharing (UNOS) and the International Pancreas Transplant Registry (IPTR) as of October 2001

GUTTMANN RD, CAUDRELIER P, ALBERICI G, TOURaine JL
Pharmacokinetics, foreign protein immune response, cytokine release, and lymphocyte subsets in patients receiving thymoglobuline and immunosuppression.

HALL B
Cells mediating allograft rejection

HALLORAN PF, HOMIK J, GOES N, LUI SL, URMSON J, RAMASSAR V, Cockfield SM.
The “ injury response”; a concept linking nonspecific injury, acute rejection, and long-term transplantation outcomes.

HAUNER H
Verbreitung des Diabetes mellitus in Deutschland

HERING BJ, BRETELZ RG, HOPT UT, BRANDHORST H, BRANDHORST D, BOLLEN CC,
New protocol toward prevention of early human islet allograft failure.

HERING BJ, RICORDI C
Islet transplantation for patients with type 1 diabetes.
Graft 1999; 2: 12-27

HOWARD M, MATIS L, MALEK TR, SHEVACH E, KELL W, COHEN D, NAKANISHI K, PAUL WE
Interleukin 2 induces antigen reactive T cell line to secrete BCGF-1

105

HIBBERD PL, TOLKOFF-RUBIN NE, CONTI D, STUART F, THISTLETHWAITE JR, NEYLAN JF, SNYDMAN DR, FREEMAN R, LORBER MI, RUBIN RH
Preemptive ganciclovir therapy to prevent cytomegalovirus disease in cytomegalovirus antibody-positive renal transplant recipients. A randomized controlled trial.

HYON SH, TRACEY KJ and KAUFMANN DB
Specific inhibition of macrophage-derived proinflammatory cytokine synthesis with a tetravalent guanylhydrazone-CNI1493 accelerates early graft function posttransplant.

IMAGAWA DK, MILLIS JM, OLTHOFF KM, OLTHOFF KM, SEU P, DEMPSEY RA, HART J, TERASAKI PI, BUSUTTIL RW
Anti-tumor necrosis factor antibody enhances allograft survival in rats.

ISOBE M, YAGITA H, OKUMURA K, IHARA A
Specific acceptance of cardiac allograft after treatment with antibodies to ICAM-1 and LFA-1.

JAEGGER C HERING BJ, DYRBERG T, FEDERLIN K, BRETZEL RG
Islet cell antibodies and glutamic acid decarboxylase antibodies in patients with insulin dependent diabetes mellitus undergoing kidney and islet-after-kidney transplantation.

JONES PT, DEAR PH, FOOTE J, NEUBERGER MS, WINTER G
Replacing the complimentary-determining regions in human antibody with those from a mouse.

KEOWN PA
Immunological monitoring in organ transplantation and autoimmune disease.

KRENSKY AM, WEISS A, CRABTREE G, DAVIS MM, PARHAM P
T-Lymphocyte-antigen interactions in transplant rejection.

KRUPIN T, WALTMANN SR, SCHARP DW, OESTRICH C, FELDMANN SD, BECKER B, BALLINGER WF, LACY PE
Ocular fluorophotometry in streptozotocin diabetes mellitus in the rat: effect of pancreatic islet isografts.
LANGERHANS P
Beiträge zur mikroskopischen Anatomie der Bauchspeicheldrüse.
Inauguraldissertation, Medizinische Fakultät der Friedrich Wilhelm Universität; Berlin; 1869.

LECHLER RI BATCHelor RJ
Restoration of immunogenicity to passenger cell depleted kidney allografts by the addition of donor strain dendritic cells

LENZEN D, DRINKGERN J and TIEDGE M
Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues.

LISLEY PS, WALLACE PM, JOHNSON J, GIBSON MG, GREENE JL, LEDBETTER JA, SINGH C, TEPPER MA
Imunsupression in vivo by a soluble form of the CTLA-4 T-cell activation molecule.

LIU Z, SUN YK, XI YP, MAFFEI A, REED E, HARRIS P, SUCIU-FOCA N
Contribution of direct and indirect recognition pathways to cell alloreactivity

LOSEKE C
Quality of life after transplantation.

LONDON NJ, CONTRACTOR H, LAKE SP, AUCOTT GC, BELL PR, JAMES RF
A fluorometric viability assay for single human and rat islets

MAZAHERI R, STILLER CR, KEOWN PA
Clinical leukocyte phenotyping by laser flow cytometry and monoclonal antibodies (immuno-cytometry) in renal transplantation.

MELAMED MR
Analysis of Measurements
In: Melamed M.R Lindmo T. Mendelsohn M.L, editors. Flow Cytometry and Sorting. 2nd ed.
New York: Wiley-Liss, 1994

MENGER MD, VAJKOCZY P, LEIDERER R JAGER S, MESSMER K
Influence of experimental hyperglycemia on microvascular blood perfusion on pancreatic islet isografts.
MICHAELIS D, JUTZI E

MINKOWSKI O
Weitere Mitteilungen über den Diabetes mellitus nach Exstirpation des Pankreas.

MOREL P, GOETZ F, MOUDRY-MUNNS KC FREIER E, SUTHERLAND DE
Long term metabolic control in patients with pancreatic transplants.

MOSKALEWSKI S
Isolation and culture of islets of Langerhans of the guinea-pig.

MULLEN Y, FUJIYA H, MOTOJIMA K, HAGEMEISTER B, TAKASUGI M, BROWN J
Autoimmune destruction of syngenic pancreatic B cells in diabetic NOD mice.

MULLER TF, GREBE SO, RECKZEH B, BORUTTA A, RADSAK K, LANGE H
Short and long term effects of polyclonal antibodies.

MULLER TF, GREBE SO, NEUMANN MC, HEYMANNS J, RADSAK K, SPRENGER H, LANGE H

NAKAI I, OKA T, FIELD JM, PERRY E, NAJARIAN JS, SUTHERLAND DE, BRAYMAN KL
Occurrence and prevention of graft-vs-host disease after pancreaticoduodenal transplant in BB-rat.

NAJARIAN JS, SIMMONS RL, CONDIE RM, TOMPSON EJ, FYRD DS, HOWARD RJ, MATAS AJ, SUTHERLAND DER, FERGUSON RM and SCHMIDKE JR
Seven years' experience with antilymphoblast globin for renal transplantation from cadaver donors.

NAJI A, SILVERS WK, BELLGRAU D BELLGRAU D, BARKER CF

NOMIKOS IN, PROWSE SJ, CAROTENUTO O, LAFFERTY KJ
Combined treatment with nicotinamide and desferroxamine prevents allograft destruction in NOD mice.
NOMIKOS IN, WANG Y, LAFFERTY KJ
Involvement of O2 radicals in 'autoimmune' diabetes.

PETER HH, PICHLER WJ (Hrsg)
In: Klinische Immunologie, 2.Auflage.
München, Urban Schwarzenberg, 1996

RABINOVITCH A, SUAREZ PINZON WL, STRYNADKA K LAKEY JR, RAJOTTE RV
Human pancreatic islet beta-cell destruction by cytokines involves oxygen free radicals and aldehyde production.

REBELLATO LM GROSS U VERBANAC KM THOMAS JM
A comprehensive definition of the major antibody specificities in polyclonal rabbit antithymocyte globin.

REINKE P, VOLK HD
Diagnostic and predictive value of an immune monitoring program for complication after kidney transplantation

RIECHMANN L, CLARK M, WALDMANN H, WINTER G
Reshaping human antibodies for therapy

RICORDI C, LACY PE, FINKE EH, OLACK BJ, SCHARP DW
Automated Method for isolation of human pancreatic islets

RICORDI C, LACY PE, SCHARP DW
Automated islet isolation from human pancreas.

ROAKE JA, AUSTYN JM.
The role of dendritic cells and T cell activation in allograft rejection.

ROBERTSON RP, DAVIS C, LARSEN J, STRATTA R, SUTHERLAND DE, AMERICAN DIABETES ASSOCIATION
Pancreas transplantation for patients with type 1 diabetes

ROSENBERG AS, SINGER A
Cellular basis of skin allograft rejection: An in vivo model of immune mediated tissue destruction.

RUBIN RJ, ALTMAN WM, MENDELSON DN
Health care expenditure for people with Diabetes mellitus, 1992.
J Clin Endocrine Metab. 1994; 78 (4): 809.

RUBIN RH, COSMI AB, HIRSCH MS, HERRIN JT, RUSSEL PS, TOLKOFF-RUBIN NE
Effects of antithymocyte globulin on cytomegalovirus infection in renal transplant recipients.

SCHMIDT RE, PLURAD SB, OLACK BJ, SCHRAP DW
The effect of pancreatic islet transplantation and insulin therapy on experimental diabetic autonomic neuropathy.

SCHWARTZ RH
T-Zell anergy

SESTER U, SESTER M, HEINE G, KAUL H, GIRNDT M, KÖHLER H
Strong depletion of CD14+CD16+ monocytes during haemodialysis treatment
Nephrol Dial Transplant (2001) 16: 1402-1408

SHENTON BK, WHITE MD, BELL AE, CLARK K, RIGG KM, FORSYTHE JL, PROUD G, TAYLOR RM
The paradox of ATG Monitoring in renal transplantation

STEGALL MD, LOBERMANN Z, OSTROWSKA A, COULOMBE M, GILL RG
Autoimmune destruction of islet grafts in the NOD mouse is resistant to 15 deoxyspergualin but sensitive to anti-CD4 antibody.

STROM TB, KELLEY VE
Toward more selective therapies to block undesired immune responses.

SUTHANTHIRAN M
Signaling features of T-cells. Implications for the regulation of the anti-allograft response.
SUTHERLAND DE
Effect of pancreas transplants on secondary complications of diabetes: review of observations at a single institutions.

SUTHERLAND DE, GOETZ FC, SIBLEY RK
Recurrence of disease in pancreas transplants.

SUTHERLAND DE, KENDALL D
Pancreas transplantation-registry report and a commentary.

TELLIDES G, DALLMANN MJ, MORRIS PJ
Synergistic interactions of Ciclosporin A with interleukin 2 receptor monoclonal antibody therapy.

TERRDA M, SALZER M, LENNARTZ K, MULLEN Y
The effect of H-2 compatibility on pancreatic beta cell survival in the nonobese diabetic mouse.

THE DIABETES CONTROL AND COMPLICATION TRIAL RESEARCH GROUP.
The effect of intensive treatment of diabetes and development and progression of long term complications in insulin-dependent diabetes mellitus.

THERVET E, CHATENOUD L, LEGENDRE C, MAMZER-BRUNEEL MF, KREIS H, BACH JF
Clinical significance of T-cell monitoring during antilymphocyte globin induction in renal transplantation.

TSUNODA SM, AWEKA FT
The use of therapeutic drug monitoring to optimise immunosuppressive therapy.

TYDEN G, GROTH CG
Pancreatic transplantation

WARNOCK GL, AO Z, CATTRAL MS
Experimental islet transplantation in large animals
WARNER NL
Human lymphocyte subpopulations: analysis by multiparameter flow cytometry and monoclonal antibodies.

WANG Y, McDUFFIE M, NOMIKOS IN, HAO L, LAFFERTY KJ
Effect of cyclosporin on immunologically mediated diabetes in nonobese diabetic mice
8. Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>ADA</td>
<td>American Diabetes Association</td>
</tr>
<tr>
<td>ATG</td>
<td>Antithymozytenglobulin; polyklonales Antilymphozytenserum</td>
</tr>
<tr>
<td>DDG</td>
<td>Deutsche Diabetes Gesellschaft</td>
</tr>
<tr>
<td>IAK</td>
<td>Islet After Kidney</td>
</tr>
<tr>
<td>IDDM</td>
<td>Insulinabhängiger Diabetes mellitus</td>
</tr>
<tr>
<td>IEQ</td>
<td>Isletequivalent</td>
</tr>
<tr>
<td>ITA</td>
<td>Islet Transplantation Alone</td>
</tr>
<tr>
<td>ITR</td>
<td>International Islet Transplant Registry</td>
</tr>
<tr>
<td>ITX</td>
<td>Inselzelltransplantation</td>
</tr>
<tr>
<td>NIDDM</td>
<td>Nicht Insulinabhängiger Diabetes mellitus</td>
</tr>
<tr>
<td>NTX</td>
<td>Nierentransplantation</td>
</tr>
<tr>
<td>ns</td>
<td>nicht signifikant</td>
</tr>
<tr>
<td>PAK</td>
<td>Pankreas After Kidney</td>
</tr>
<tr>
<td>PTA</td>
<td>Pancreas Transplantation Alone</td>
</tr>
<tr>
<td>s</td>
<td>signifikant</td>
</tr>
<tr>
<td>SIK</td>
<td>Simultaneous Islet Kidney</td>
</tr>
<tr>
<td>SIL</td>
<td>Simultaneous Islet-Liver</td>
</tr>
<tr>
<td>SPK</td>
<td>Simultaneous Pankreas Kidney</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>TCR</td>
<td>T-Zell Rezeptor</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor Nekrose Faktor</td>
</tr>
<tr>
<td>TX</td>
<td>Transplantation</td>
</tr>
<tr>
<td>25-75%P</td>
<td>25% Perzentil und 75% Perzentil</td>
</tr>
</tbody>
</table>
9. **Anhang**

9.1 **Lebenslauf**

Name: Gunther Döring

Geboren am: 22.6.1973

In: Fulda

Eltern: Bruno und Waltraud Döring, geb. Rehberg

1979-1983: Grundschule Bad Soden

5/1992: Abitur

1992-1993: Zivildienst im Rettungsdienst

1993-1999: Studium der Humanmedizin an der Justus Liebig-Universität in Giessen

1999-2000: Studium der Humanmedizin an der Ludwig-Maximilians-Universität in München

5/2000: Ärztliche Prüfung

10/2000: Beginn Tätigkeit als Arzt im Praktikum in der Kinderklinik der Technischen Universität München

5/2001: Approbation als Arzt

Seit 1.5.2001: Tätigkeit als Wissenschaftlicher Angestellter (Arzt) in der Kinderklinik der Technischen Universität München
9.2 Danksagung

Mein Dank gilt Herrn Prof. Dr. R.G. Bretzel, Leiter der Medizinischen Klinik III und Poliklinik am Zentrum für Innere Medizin der Justus Liebig Universität in Giessen für die Überlassung des Themas und die Ermöglichung der Arbeit. Seinem Engagement verdanke ich die Möglichkeit überhaupt diese Arbeit erstellen zu können. Mein besonderer Dank gilt Herrn Dr. Mathias Brendel für die Initiierung und Betreuung der Arbeit.