Spiroergometrie bei Patienten mit pulmonaler Hypertonie infolge einer Lungenfibrose, primärer pulmonaler Hypertonie, chronisch thromboembolischer pulmonaler Hypertonie und cystischer Fibrose

Inaugural-Dissertation
zur Erlangung des Grades eines Doktors der Medizin
des Fachbereiches Humanmedizin
der Justus-Liebig-Universität Gießen

vorgelegt von Christina Elvira Englisch
aus Bad Hersfeld

Gießen 2003
Aus dem Medizinischen Zentrum für Innere Medizin
Medizinische Klinik II
Direktor: Prof. Dr. W. Seeger
Universitätsklinikum Gießen

Gutachter: PD Dr. H. Olschewski
Gutachter: Prof. Dr. H.-J. Woitowitz

Tag der Disputation: 19.03.2004
Für meine Eltern Helmut und Gabriele,
die mir mein Studium und diese Arbeit möglich machten.
Inhaltsverzeichnis

Spiroergometrie bei Patienten mit pulmonaler Hypertonie infolge einer Lungenfibrose, primärer pulmonaler Hypertonie, chronisch thromboembolischer pulmonaler Hypertonie und cystischer Fibrose ... 1

Inhaltsverzeichnis .. 5

Abbildungsverzeichnis ... 10

Tabellenverzeichnis ... 13

Abkürzungsverzeichnis ... 15

1. Einleitung ... 17

1.1. Pulmonale Hypertonie ... 18

1.1.1. Primäre pulmonale Hypertonie (PPH) 19
1.1.2. Chronisch thromboembolische pulmonale Hypertonie (CTEPH) .. 20
1.1.3. Pulmonale Hypertonie bei Lungenfibrose (LF) 20
1.1.4. Cystische Fibrose (CF) .. 21

1.2. Stand der Literatur ... 21

1.2.1. Pulmonale Hypertonie infolge einer Lungenfibrose (LF) 21
1.2.2. Primäre pulmonale Hypertonie (PPH) 22
1.2.3. Chronisch thromboembolische pulmonale Hypertonie (CTEPH) .. 23
1.2.4. Cystische Fibrose (CF) .. 24

1.3. Zielsetzung der Arbeit ... 25

2. Messmethoden ... 27

2.1. Spiroergometrie ... 27

2.2. Blutgasanalyse .. 29

2.3. Elektrokardiographie ... 30

2.4. Blutdruckmessung ... 30

2.5. Lungenfunktionsdiagnostik .. 31

2.6. Rechtsherzkatheteruntersuchung 32

2.7. Aufgezeichnete Messgrößen und berechnete Größen 34
2.7.1. Spiroergometrie ... 34
 2.7.1.1. Leistung (WR= work rate) ... 34
 2.7.1.2. Herzfrequenz (HR) ... 34
 2.7.1.3. Sauerstoffaufnahme (VO_2) ... 34
 2.7.1.4. Atemfrequenz (BF), Atemzeitvolumen (V_E),
 Atemzugvolumen (VT), endexspiratorische CO_2-
 Konzentration (F_ECO_2), CO_2-Anteil der gemischten
 expirierten Luft (F_ECO_2) ... 35
 2.7.1.5. Respiratorischer Quotient (RQ) 37
 2.7.1.6. Atemäquivalente für O_2 (EQO_2) und CO_2 (EQCO_2) 37
 2.7.2. Blutgasanalyse .. 38
 2.7.3. Berechnete Größen aus Spiroergometrie und Blutgasanalyse 38

2.8. Leistungslimitierende Faktoren ... 42

2.9. V/Q Mismatch .. 45
 2.9.1. Situation der inhomogenen Perfusion 45
 2.9.2. Diffusionsstörung ... 47

2.10. Übersicht über die Messparameter, die in die statistische
 Auswertung einbezogen wurden .. 48

2.11. Versuchsdurchführung .. 48

2.12. Patienten .. 51
 2.12.1. Studie I: Pulmonale Hypertonie infolge einer
 Lungenfibrose (LF) ... 52
 2.12.2. Studie II: Vergleich zwischen Patienten mit primärer
 pulmonaler Hypertonie (PH) mit Patienten mit chronisch
 thromboembolischer pulmonaler Hypertonie (CTEPH) 53
 2.12.3. Studie III: Patienten mit cystische Fibrose (CF) 53

2.13. Statistik .. 53

3. Ergebnisse .. 57

3.1. Studie I: Pulmonale Hypertonie infolge einer Lungenfibrose ... 57
 3.1.1. Anthropometrische Daten .. 57
 3.1.2. Ruheparameter .. 57
 3.1.2.1. Lungenfunktion .. 57
 3.1.2.2. Maximale Sauerstoffaufnahme 58
 3.1.2.3. Blutgasanalyse ... 58
 3.1.2.4. Hämodynamik .. 58
 3.1.3. Spiroergometrische Daten .. 59
 3.1.3.1. Hämodynamische und ventilatorische Parameter 59
 3.1.3.2. Arterielle und exspiratorische Sauerstoff- und
 Kohlendioxidpartialdruck .. 63
3.1.3.3. Arterielle und exspiratorische Kohlendioxidkonzentrationen ... 66
3.1.3.4. Funktioneller und effektiver Totraum ... 70
3.1.3.5. Maximale hämodynamische, ventilatorische und metabolische Parameter 73
3.1.3.6. Arterio-exspiratorische Kohlendioxiddifferenzen .. 73
3.1.3.7. Absolute Veränderungen der arteriellen und exspiratorischen Kohlendioxidkonzentrationen bei maximaler Belastung ... 74
3.1.3.8. Veränderungen der arteriellen Blutgase und der Toträume bei maximaler Belastung 76
3.1.4. Korrelationsanalysen .. 78
3.1.4.1. Korrelation von Lungenfunktionsparametern mit der maximalen Sauerstoffaufnahme 78
3.1.4.2. Korrelation von CO₂ Atemäquivalent bei Belastung mit der maximalen Sauerstoffaufnahme 80
3.1.4.3. Korrelation von Hämodynamikwerten mit der maximalen Sauerstoffaufnahme 80

3.2. Studie II: Primäre pulmonale Hypertonie vs. chronisch thromboembolischer pulmonaler Hypertonie ... 82

3.2.1. Anthropometrische Daten ... 82
3.2.2. Ruheparameter .. 82
3.2.2.1. Lungenfunktion .. 82
3.2.2.1. Maximale Sauerstoffaufnahme .. 83
3.2.2.2. Blutgasanalyse .. 83
3.2.2.3. Hämodynamik ... 84
3.2.3. Spiroergometrische Daten ... 84
3.2.3.1. Hämodynamische und ventilatorische Parameter ... 84
3.2.3.2. Arterielle und exspiratorische Sauerstoff- und Kohlendioxidpartialdrucke 88
3.2.3.3. Arterielle und exspiratorische Kohlendioxidkonzentrationen 91
3.2.3.4. Funktioneller und effektiver Totraum .. 95
3.2.3.5. Maximale hämodynamische, ventilatorische und metabolische Parameter 98
3.2.3.6. Arterio-exspiratorische Kohlendioxiddifferenzen .. 98
3.2.3.7. Absolute Veränderungen der arteriellen und exspiratorischen Kohlendioxidkonzentrationen bei maximaler Belastung ... 100
3.2.3.8. Differentialdiagnose zwischen PPH Patienten und CTEPH Patienten 101
3.2.3.9. Veränderungen der arteriellen Blutgase und der Toträume bei maximaler Belastung 102
3.2.4. Korrelationsanalysen ... 104
3.2.4.1. Korrelation von Lungenfunktionsparametern mit der maximalen Sauerstoffaufnahme 104
3.2.4.2. Korrelation von CO₂ Atemäquivalent bei Belastung mit der maximalen Sauerstoffaufnahme 106
3.2.4.3. Korrelation von Hämodynamikwerten mit der maximalen Sauerstoffaufnahme 106

3.3. Studie III: Cystische Fibrose ... 109

3.3.1. Anthropometrische Daten ... 109
3.3.2. Ruheparameter ... 109
 3.3.2.1. Lungenfunktion ... 109
 3.3.2.2. Maximale Sauerstoffaufnahme 110
 3.3.2.3. Blutgasanalyse ... 110
3.3.3. Spiroergometrische Daten .. 111
 3.3.3.1. Hämodynamische und ventilatorische Parameter 111
 3.3.3.2. Arterielle und exspiratorische Sauerstoff- und Kohlendioxidpartialdrucke 114
 3.3.3.3. Arterielle und exspiratorische Kohlendioxidkonzentrationen 116
 3.3.3.4. Funktioneller und effektiver Totraum 120
 3.3.3.5. Maximale häodynamische, ventilatorische und metabolische Parameter .. 124
 3.3.3.6. Arterio-exspiratorische Kohlendioxiddifferenzen 124
 3.3.3.7. Absolute Veränderungen der arteriellen und exspiratorischen Kohlendioxidkonzentrationen bei maximaler Belastung ... 126
 3.3.3.8. Veränderungen der arteriellen Blutgase und der Toträume bei maximaler Belastung 127
3.3.4. Korrelationsanalysen .. 128
 3.3.4.1. Korrelation von Lungenfunktionsparametern mit der maximalen Sauerstoffaufnahme 128
 3.3.4.2. Korrelation von CO₂ Atemäquivalent mit der maximalen Sauerstoffaufnahme 131

4. Diskussion ... 132

4.1. Methodenkritik ... 132
 4.1.1. Patientenauswahl .. 132
 4.1.1.1. Patienten mit einer pulmonalen Hypertonie infolge einer Lungenfibrose 132
 4.1.1.2. Patienten mit primärer pulmonaler Hypertonie 133
 4.1.1.3. Patienten mit chronisch thromboembolischer pulmonaler Hypertonie 133
 4.1.1.4. Patienten mit cystischer Fibrose 135
 4.1.2.1. Ruhephase ... 136
 4.1.2.2. Zwei Minuten Stufen .. 136
 4.1.2.3. Zeitpunkt der Abnahme .. 137

4.2. Leistungslimitierende Faktoren .. 137
 4.2.1. Kontrollpersonen .. 137
 4.2.2. Pulmonale Hypertonie infolge einer Lungenfibrose 139
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.3.</td>
<td>Primäre pulmonale Hypertonie</td>
<td>141</td>
</tr>
<tr>
<td>4.2.4.</td>
<td>Chronisch thromboembolische pulmonale Hypertonie</td>
<td>143</td>
</tr>
<tr>
<td>4.2.5.</td>
<td>Patienten mit cystischer Fibrose</td>
<td>144</td>
</tr>
<tr>
<td>4.3.</td>
<td>Vergleich zwischen Patienten mit pulmonaler Hypertonie infolge einer Lungenfibrose mit Kontrollpersonen</td>
<td>147</td>
</tr>
<tr>
<td>4.4.</td>
<td>Unterschiede zwischen Patienten mit primärer pulmonaler Hypertonie und Patienten mit chronisch thromboembolischer pulmonaler Hypertonie</td>
<td>152</td>
</tr>
<tr>
<td>5.</td>
<td>Zusammenfassung</td>
<td>158</td>
</tr>
<tr>
<td>6.</td>
<td>Conclusion</td>
<td>163</td>
</tr>
<tr>
<td>7.</td>
<td>Literaturverzeichnis</td>
<td>167</td>
</tr>
<tr>
<td>8.</td>
<td>Publikationsverzeichnis in Abstractform</td>
<td>183</td>
</tr>
<tr>
<td>9.</td>
<td>Danksagung</td>
<td>184</td>
</tr>
<tr>
<td>10.</td>
<td>Lebenslauf</td>
<td>185</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

Abbildung 1. Schematische Darstellung der arteriellen und alveolären Kohlendioxidfraktionen. 42

Abbildung 2. Effekt der primären Ventilations- und Perfusionsinhomogenität auf die Ventilations-Perfusionsverteilung. 46

Abbildung 3. Auslöser von intrapulmonalen Gastransportstörungen. 47

Abbildung 4. Spiroergometerplatz in dem Lungenfunktionslabor des Zentrums für Innere Medizin an der Justus-Liebig-Universität Giessen. 49

Abbildung 5. Hämodynamische und ventilatorische Parameter vor, während und nach maximaler Belastung bei Kontrollpersonen und Patienten mit pulmonaler Hypertonie infolge einer Lungenfibrose. 62

Abbildung 6. Arterielle und exspiratorische O₂- und CO₂-Partialdrucke vor, während und nach maximaler Belastung bei Kontrollpersonen und Patienten mit pulmonaler Hypertonie infolge einer Lungenfibrose. 65

Abbildung 7. Arterielle und exspiratorische CO₂-Konzentrationen zur Berechnung der alveolären Ventilation bei Kontrollpersonen und Patienten mit pulmonaler Hypertonie infolge einer Lungenfibrose. 69

Abbildung 8. Funktioneller und effektiver Totraum vor, während und nach maximaler Belastung bei Kontrollpersonen und Patienten mit pulmonaler Hypertonie infolge einer Lungenfibrose. 72

Abbildung 9. Arterio-exspiratorische CO₂-Differenzen bei Ruhe und maximaler Belastung bei Kontrollpersonen und Patienten mit pulmonaler Hypertonie infolge einer Lungenfibrose. 76

Abbildung 10. Prozentuale Veränderungen der arteriellen Blutgase und der Toträume bei maximaler Belastung bei Kontrollpersonen und Patienten mit pulmonaler Hypertonie infolge einer Lungenfibrose. 78

Abbildung 11. Korrelation von Lungenfunktionsparametern mit der maximalen Sauerstoffaufnahme bei Kontrollpersonen und Patienten mit pulmonaler Hypertonie infolge einer Lungenfibrose. 79

Abbildung 12. Korrelation von CO₂ Atemäquivalent bei Belastung mit der maximalen Sauerstoffaufnahme bei Kontrollpersonen und Patienten mit pulmonaler Hypertonie infolge einer Lungenfibrose. 80
Abbildung 13. Korrelation von Hämodynamikwerten mit der maximalen Sauerstoffaufnahme bei Kontrollpersonen und Patienten mit pulmonaler Hypertonie infolge einer Lungenfibrose.......................... 81

Abbildung 14. Hämodynamische und ventilatorische Parameter vor, während und nach maximaler Belastung bei primärer pulmonaler Hypertonie und CTEPH.. 87

Abbildung 15. Arterielle und exspiratorische O₂- und CO₂-
Partialdrucke vor, während und nach maximaler Belastung bei primärer pulmonaler Hypertonie und chronisch thromboembolischer pulmonaler Hypertonie................................. 90

Abbildung 16. Arterielle und exspiratorische CO₂-Konzentrationen zur Berechnung der alveolären Ventilation bei primärer pulmonaler Hypertonie und chronisch thromboembolischer pulmonaler Hypertonie.. 94

Abbildung 17. Funktioneller und effektiver Totraum vor, während und nach maximaler Belastung bei primärer pulmonaler Hypertonie und chronisch thromboembolischer pulmonaler Hypertonie.. 97

Abbildung 18. Arterio-exspiratorische CO₂-Differenzen bei Ruhe und maximaler Belastung bei primärer pulmonaler Hypertonie und chronisch thromboembolischer pulmonaler Hypertonie.100

Abbildung 19. Prozentuale Veränderungen der arteriellen Blutgase und der Toträume bei maximaler Belastung bei primärer pulmonaler Hypertonie und chronisch thromboembolischer pulmonaler Hypertonie. ..104

Abbildung 20. Korrelation von Lungenfunktionsparametern mit der maximalen Sauerstoffaufnahme bei primärer pulmonaler Hypertonie und chronisch thromboembolischer pulmonaler Hypertonie. ..105

Abbildung 21. Korrelation von CO₂ Atemäquivalent bei Belastung mit der maximalen Sauerstoffaufnahme bei primärer pulmonaler Hypertonie und chronisch thromboembolischer pulmonaler Hypertonie. ..106

Abbildung 22. Korrelation von Hämodynamikwerten mit der maximalen Sauerstoffaufnahme bei primärer pulmonaler Hypertonie und chronisch thromboembolischer pulmonaler Hypertonie. ..107
Abbildung 23. Korrelation von Hämodynamikwerten mit der maximalen Sauerstoffaufnahme bei primärer pulmonaler Hypertonie und chronisch thromboembolischer pulmonaler Hypertonie. .. 108

Abbildung 24. Hämodynamische und ventilatorische Parameter vor, während und nach maximaler Belastung bei Kontrollen und cystischer Fibrose .. 113

Abbildung 25. Arterielle und exspiratorische O₂- und CO₂-
Partialdrucke vor, während und nach maximaler Belastung bei Kontrollen und cystischer Fibrose. .. 116

Abbildung 26. Arterielle und exspiratorische CO₂-Konzentration zur Berechnung der alveolären Ventilation bei Kontrollen und cystischer Fibrose .. 119

Abbildung 27. Funktioneller und effektiver Totraum vor, während und nach maximaler Belastung bei Kontrollen und cystischer Fibrose. .. 123

Abbildung 28. Arterio-exspiratorische CO₂-Differenzen bei Ruhe und maximaler Belastung bei Kontrollen und cystischer Fibrose .. 126

Abbildung 29. Prozentuale Veränderungen der arteriellen Blutgase und der Toträume bei maximaler Belastung bei Kontrollen und cystischer Fibrose .. 128

Abbildung 30. Korrelation von Lungenfunktionsparametern mit der maximalen Sauerstoffaufnahme bei Kontrollen und cystischer Fibrose .. 130

Abbildung 31. Korrelation von CO₂ Atemäquivalent bei Belastung mit der maximalen Sauerstoffaufnahme bei Kontrollen und cystischer Fibrose .. 131

Abbildung 32. Altersabhängigkeit des Base Excess-Abfalls bei Ausbelastung. .. 139
Tabellenverzeichnis

Tabelle 1. Übersicht über die Messparameter bei der Spiroergometrie, die in die statistische Auswertung einbezogen wurden.................. 48

Tabelle 2. Anthropometrische Daten bei Kontrollpersonen und Patienten mit pulmonaler Hypertonie infolge einer Lungenfibrose.57

Tabelle 3. Lungenfunktion bei Kontrollpersonen und Patienten mit pulmonaler Hypertonie infolge einer Lungenfibrose................. 58

Tabelle 4. Hämodynamik bei Patienten mit pulmonaler Hypertonie infolge einer Lungenfibrose. .. 59

Tabelle 5. Maximale hämodynamische, ventilatorische und metabolische Parameter bei Kontrollpersonen und Patienten mit pulmonaler Hypertonie infolge einer Lungenfibrose.............. 73

Tabelle 6. Absolute Veränderungen der arteriellen Blutgase und der Toträume bei maximaler Belastung bei Kontrollpersonen und Patienten mit pulmonaler Hypertonie infolge einer Lungenfibrose.77

Tabelle 7. Anthropometrische Daten bei primärer pulmonaler Hypertonie und chronisch thromboembolischer pulmonaler Hypertonie. .. 82

Tabelle 8. Lungenfunktion bei primärer pulmonaler Hypertonie und chronisch thromboembolischer pulmonaler Hypertonie. 83

Tabelle 9. Hämodynamik bei primärer pulmonaler Hypertonie und chronisch thromboembolischer pulmonaler Hypertonie. 84

Tabelle 10. Maximale hämodynamische, ventilatorische und metabolische Parameter bei primärer pulmonaler Hypertonie und chronisch thromboembolischer pulmonaler Hypertonie. 98

Tabelle 11. Differentialdiagnose zwischen PPH Patienten und CTEPH Patienten...102

Tabelle 12. Absolute Veränderungen der arteriellen Blutgase und der Toträume bei maximaler Belastung bei primärer pulmonaler Hypertonie und chronisch thromboembolischer pulmonaler Hypertonie. ..103

Tabelle 13. Anthropometrische Daten bei Kontrollen und cystischer Fibrose. ..109

Tabelle 14. Lungenfunktion bei Kontrollen und cystischer Fibrose...110

Tabelle 15. Maximale hämodynamische, ventilatorische und metabolische Parameter bei Kontrollen und cystischer Fibrose.. 124
Tabelle 16. Absolute Veränderungen der arteriellen Blutgase und der Toträume bei maximaler Belastung bei Kontrollen und cystischer Fibrose. ... 127
Abkürzungsverzeichnis

AaDCO$_2$ Alveolo-arterielle Kohlendioxidendifferenz
AaDO$_2$ Alveolo-arterielle Sauerstoffdifferenz
AvDO$_2$ Arterio-venöse Sauerstoffdifferenz
BE Base Excess
BF Atemfrequenz
BGA Blutgasanalyse
CF cystische Fibrose
cHCO$_3^-$ Plasmabikarbonatkonzentration
CI Cardiac Index
CO Herzzeitvolumen
cO$_2$ Sauerstoffkonzentration des Blutes
CO$_2$ Kohlendioxid
COPD chronisch obstruktive Lungenerkrankung
CTEPH chronisch thromboembolische pulmonale Hypertonie
CVP zentral venöser Druck, zentraler Venendruck
DLCOc Kohlenmonoxid-Diffusionskapazität
EaDCO$_2$ Differenz aus der arteriellen Kohlendioxidkonzentration und dem Kohlendioxidanteil der gemischten exspirierten Luft
eff alv V_E effektiv alveolare Ventilation
eff VD effektiver Totraum
eff VD/fkt VD effektiver Totraum/ funktioneller Totraum
eff VD/VT effektiver Totraum/ Atemzugvolumen
EQCO$_2$ Atemäquivalent für Sauerstoff
EQO$_2$ Atemäquivalent für Kohlendioxid
FaCO$_2$ arterielle CO$_2$-Fraktion
FECO$_2$ Kohlendioxidanteil der gemischten exspirierten Luft
FEtCO$_2$ endexspiratorische Kohlendioxidkonzentration
FEV1 Einsekundenausatmungskapazität
fkt alv V_E funktionell alveolare Ventilation
fkt VD funktioneller Totraum
fkt VD/VT funktioneller Totraum/Atemzugvolumen
HMV Herzminutenvolumen
HR Herzfrequenz
HPV hypoxisch pulmonale Vasokonstriktion
LF Lungenfibrose
mPAP mittlerer pulmonal-arterieller Druck
mSAP mittlerer systemisch arterieller Druck
O2 Sauerstoff
p Irrtumswahrscheinlichkeit
PAP pulmonal-arterieller Druck
PCO2 Kohlendioxidpartialdruck
PETCO2 endexspiratorischer Kohlendioxidpartialdruck
PETO2 endexspiratorischer Sauerstoffpartialdruck
pH der negative dekadische Logarithmus der Wasserstoffionenkonzentration
PO2 Sauerstoffpartialdruck
PPH primäre pulmonale Hypertonie
PVR pulmonal vaskulärer Widerstand
r Regressionskoeffizient
R Atemwegswiderstand
RV Residualvolumen
SaO2 arterielle Sauerstoffsättigung
SO2 Sauerstoffsättigung des Hämoglobins
SvO2 venöse Sauerstoffsättigung
SVR systemisch vaskulärer Widerstand
TLC totale Lungenkapazität
tO2 Sauerstoffgehalt des Blutes
VA alveoläre Ventilation
VC Vitalkapazität
VCO2 Kohlendioxidabgabe
VD Totraumventilation
VE Atemzeitvolumen, Ventilation
VO2 Sauerstoffaufnahme
V/Q Ventilations-Perfusions-Verhältnis
VT Atemzugvolumen
1. Einleitung

Bei den durchgeführten Untersuchungen interessierten uns die für die jeweilige Krankheit verantwortlichen leistungslimitierenden Faktoren. Mittels Spiroergometrie und Blutgasanalyse sollten die kardialen und ventilatorischen Stellreaktionen in Ruhe, bei Arbeit und der Status bei Abbruch der Ausbelastung charakterisiert werden. Dadurch sollten die leistungslimitierenden Faktoren differenziert werden, welche kardial, ventilatorisch oder beispielsweise muskulär bedingt sein können. Es sind aber auch Kombinationen aus diesen Faktoren möglich. Die Objektivierung der körperlichen Ausbelastung durch die spiroergometrische Untersuchung ist eine wichtige diagnostische Maßnahme im Rahmen der Gesamtbewertung lungenkranker Patienten. Die Leistungsfähigkeit kann auf diese Weise besser eingeschätzt werden. Weiterhin dient sie zur Klärung der Pathophysiologie und der Ursachen der Leistungsminderung.

Eine sehr wichtige Frage in diesem Zusammenhang war, ob man die maximale Sauerstoffaufnahme (peak VO₂) der Patienten durch Parameter der Lungenfunktion bzw. der Hämodynamik vorhersagen kann. Um dies zu beantworten, führten wir Korrelationsanalysen mit den einzelnen Parametern der Lungenfunktion bzw. der Hämodynamik mit der peak VO₂ durch.

Weiterhin wollten wir den komplexen Gas austausch der vorliegenden Erkrankungen untersuchen. Bei den Gas austauschstörungen spielen

1.1. Pulmonale Hypertonie

Mit Ausnahme der Patienten mit cystischer Fibrose (CF) sollten in allen anderen Kollektiven Patienten mit pulmonaler Hypertonie eingeschlossen werden. Die pulmonale Hypertonie zeichnet sich durch mechanische Veränderungen der präkapillären Lungengefäße, wie die Querschnittsminderung (Stenosierung), den Gefäßverlust (Rarefikation/Obstruktion) und die Abnahme der Gefäßelastizität aus. Histopathologisch finden sich eine ausgeprägte Mediahypertrophie und Veränderungen der Intima (Intimafibrose). Die pulmonale hypoxische Vasokonstriktion, welche eine autonome Leistung der Lunge darstellt (Euler-Liljestrand-Mechanismus), ist eine Ursache für die pulmonale Hypertonie. Weitere Ursachen können kardialer, inflammatorischer und thrombo-embolischer Genese sein oder bleiben, wie im Falle der primären pulmonalen Hypertonie (PPH), die wahrscheinlich Folge einer genetischen Veränderung ist, weitgehend unbekannt.65,104 Chronische Lebererkrankungen können ebenfalls für die Entstehung eines Lungenhochdrucks verantwortlich sein (portopulmonale Hypertonie). Auch mehrere Ursachen gleichzeitig können Grund für eine pulmonale Hypertonie sein.85

Die Folge einer pulmonalen Hypertonie ist funktionell die Reduktion der pulmonalen Gefäßreserven, anatomisch-pathologisch der Gefäßumbau (vaskuläres Remodeling) und vielfach eine präkapilläre Vasokonstriktion. Hämodynamisch kommt es zu einer Erhöhung der pulmonalen Drucke mit oder ohne Gefäßwiderstandserhöhung. Häufig folgen ein zunehmender Anstieg des pulmonal vaskulären Widerstandes (PVR), eine Abnahme des Herzzeitvolumens und die Ausbildung eines Cor pulmonale mit rechtsventrikulärer Hypertrophie. Die Ein-
schränkung der rechtsventrikulären Pumpfunktion wird durch eine erhöhte Vor- und Nachlast und intrakardiale Drucke gekennzeichnet.

1.1.1. Primäre pulmonale Hypertonie (PPH)

Die primäre pulmonale Hypertonie (PPH) ist eine progressiv fortschreitende Erkrankung, welche durch einen ansteigenden pulmonalarteriellen Druck mit pathologischen Veränderungen in den präkapillären Pulmonalarterien gekennzeichnet ist.\(^{96}\) Die PPH wurde in dem US National Institutes of Health Register als eine Erkrankung definiert, bei der ein mittlerer pulmonal-arterieller Druck von mehr als 25 mmHg in Ruhe, oder 30 mmHg unter Belastung, in Abwesenheit von Herzerkrankungen, chronischen Thromboembolien, Lungenerkrankungen, oder anderen sekundären Gründen nachgewiesen werden muss.\(^{91}\) Die Häufigkeit in der Gesamtbevölkerung wird auf 1-2 Fälle pro 1 Million geschätzt\(^{27}\), wobei zweimal mehr Frauen als Männer betroffen sind\(^{63,64,91}\). Die Erkrankung kann in jedem Lebensalter auftreten. Besonders häufig tritt sie aber bei Frauen in der dritten und bei Männern in der vierten Lebensdekade auf, mit einem mittleren Alter bei Diagnosestellung von 36,4 Jahren.\(^{91}\) Die familiäre Prävalenz schwankt um 6 %\(^{91}\) und höher\(^{20,80}\). Analysen von Großfamilien mit PPH haben eine autosomal dominante Vererbung mit einer Penetranz von 10-20 % und eine genetische Antizipation gezeigt.\(^{63,64,80}\)

Kürzlich wurde eine Mutation in der Kodierungsregion des BMPR2-Genes (Bone morphogenetic protein receptor 2) in Familien mit PPH entdeckt.\(^{18,46}\)

Die PPH ist durch eine Obstruktion der kleinen Pulmonalarterien in Assoziation mit plexiformen Läsionen, medialer Hypertrophie, konzentrisch laminärer Intimafibrose, fibrinoiden Degenerationen und thrombotischen Läsionen charakterisiert.\(^{5,87,107}\) Zur Zeit wird von den meisten Untersuchern die pulmonal vaskuläre Proliferation und das Remodeling für die Pathogenese der PPH verantwortlich gemacht.
1.1.2. Chronisch thromboembolische pulmonale Hypertonie (CTEPH)

Die chronische Lungenembolie ist im Vergleich zur akuten Lungenembolie relativ selten. Nur in etwa 0,5 bis 4 % der Fälle von akuten Lungenembolien entwickelt sich eine schwere chronische pulmonale Hypertonie. Wenn man von 10 000 tödlichen Lungenembolien in Deutschland ausgeht und bedenkt, dass nur jede dritte symptomatische Lungenembolie tödlich ist, bleiben ca. 20 000 nichtletale Embolien jährlich, von denen rein rechnerisch 100 bis 850 Patienten eine pulmonale Hypertonie entwickeln müssten. Am häufigsten entwickelt sich die chronische pulmonale Hypertonie nach chronisch rezidivierenden, meist klinisch stumm verlaufenden Embolien.

Die chronisch thromboembolische pulmonale Hypertonie ist das Ergebnis einer Obstruktion einer Pulmonalarterie durch einen Thrombus.

Eine thromboembolische Obstruktion von größeren Pulmonalarterien ist ein potentiell korrigierbarer Fall einer pulmonalen Hypertonie.

Die Ausdehnung der vaskulären Obstruktion ist ein entscheidender Faktor für die pulmonale Hypertonie. Bei vielen Patienten scheint der hämodynamische Verlauf das pulmonal vaskuläre Remodeling und die Entwicklung einer hypertensiven pulmonalen Arteriopathie zu involvieren, ähnlich wie bei Patienten mit pulmonaler Hypertonie mit anderer Ursache.

1.1.3. Pulmonale Hypertonie bei Lungenfibrose (LF)

Es sollten Patienten mit Lungenfibrose (LF) gemischter Ätiologie eingeschlossen werden, die als Gemeinsamkeit aber bereits zu einem Cor pulmonale mit manifester pulmonaler Hypertonie geführt hatte.

Die Lungenfibrose ist die gemeinsame Endstrecke ganz unterschiedlicher interstitieller Lungenerkrankungen, bei denen es durch eine Einlagerung von Kollagen und Umbau der Feinstruktur der Lunge zu charakteristischen funktionellen und bildgebenden Veränderungen kommt. Im Rahmen der Erkrankung kommt es zu einer Vasokonstriktion und zu einem Remodeling der Pulmonalgefäße, so dass sich
schließlich eine pulmonale Hypertonie entwickelt. Durch die parenchymale Fibrosierung kommt es zu einer herabgesetzten Lungencompliance mit einem progressiven Anstieg der Atemarbeit.66,69 Die Lungenfibrose wird durch das radiologische Ergebnis mit den interstitiellen Infiltraten, besonders der Lungenbasis, und durch die progressive Dyspnoe und die schlechte Lungenfunktion charakterisiert.33

1.1.4. Cystische Fibrose (CF)

Die cystische Fibrose ist eine autosomal rezessive Erkrankung mit pathobiologischen Merkmalen, welche durch Mutationen in dem CFTR (cystic fibrosis transmembrane conductance regulator) Gen hervorgerufen werden.58 Sie ist die häufigste autosomal rezessive Erkrankung in der weißen Bevölkerung, die mit einer Häufigkeit von 1/2500 Lebendgeburten auftritt.89 Die cystische Fibrose wird durch eine Mutation im 230 kb Gen auf Chromosom 7 verursacht, welches ein 1480 aminosäureumfassendes Polypeptid codiert, welches cystic fibrosis transmembrane regulator (CFTR) heißt, und als Chloridkanal in den Epithelzellen funktioniert.11,94,95,122 Mehr als 1000 Mutationen sind in diesem Gen beschrieben worden.100 Die häufigste Mutation \(\Delta F508\) ist eine Deletion des Phenylalaninrestes auf dem Codon 508 des cystic fibrosis transmembrane regulator (CFTR) Proteins.72 Die cystische Fibrose führt zu pathologischen Veränderungen in Organen, die das CFTR Protein exprimieren, wie Sekretionszellen, Kopfsinus, Lunge, Pankreas, Leber und Reproduktionstrakt. Die bemerkenswertesten Veränderungen zeigen sich in den Atemwegen, in denen der genetische Defekt chronische pulmonale Infektionen begünstigt.89 Bei der cystischen Fibrose, wie auch bei anderen obstruktiven Atemwegserkrankungen, stellt die Entwicklung einer pulmonalen Hypertonie einen Marker einer ungünstigen Prognose dar.24

1.2. Stand der Literatur

1.2.1. Pulmonale Hypertonie infolge einer Lungenfibrose (LF)

Hansen et al.36, Agusti et al.1 und Marciniuk et al.67 haben Patienten mit pulmonaler Hypertonie infolge einer Lungenfibrose (LF) spiroer-
gometrisch untersucht. Hier wurde aber bei keiner der genannten Studien eine Kontrollgruppe gegenübergestellt. Wir wollten unsere LF Patienten mit einer alters- und geschlechtsgleichen Kontrollgruppe vergleichen, um so Referenzwerte nicht nur für die maximal zu erwartende Leistung, sondern auch für alle Parameter des Gasausstausches zu generieren.
Für LF Patienten sind uns Studien von Hansen et al.36 und Marciniuk et al.67 bekannt, die sich mit leistungslimitierenden Faktoren bei dieser Erkrankung beschäftigt haben. Jedoch kann hier nicht endgültig geklärt werden, welcher Faktor die Leistung letztendlich limitiert. Marciniuk et al.67 erklärten die Leistungslimitierung rein ventilatorisch. Dagegen beschrieben Hansen et al.36 die Leistungslimitierung neben dem ventilatorischen Faktor durch einen zusätzlichen zirkulatorischen Faktor.
Weiterhin gibt es nur eine Studie von Hansen et al.36, welche eine Korrelationsanalyse zwischen Lungenfunktionsparametern und der peak VO\textsubscript{2} durchführten. Hier wurde eine signifikante Korrelation zwischen der Einsekundenausatmungskapazität (FEV1), der totalen Lungenkapazität (TLC) und der CO Diffusionskapazität (DLCOc) mit der peak VO\textsubscript{2} beschrieben.
Außerdem gibt es nur eine Studie von Weitzenblum et al.114 für LF Patienten, die eine Korrelation zwischen Hämodynamikparametern mit der peak VO\textsubscript{2} analysiert hat. In dieser Studie wurde eine Korrelation zwischen dem Cardiac Index (CI) und der peak VO\textsubscript{2} erwähnt.
Hansen et al.36 und Agusti et al.1 beschäftigten sich mit Gasausstauschstörungen bei LF Patienten. Hier bleibt aber die Frage offen, wie die Diffusionsstörungen und die Ventilations-Perfusions-Verteilungsstörungen den Gasausstausch pathophysiologisch beeinträchtigen.

1.2.2. Primäre pulmonale Hypertonie (PPH)
Sun et al.98, D’Alonzo et al.13 und Riley et al.93 haben Patienten mit primärer pulmonaler Hypertonie spirometrisch untersucht. D’Alonzo et al.13 führen die Leistungslimitierung auf die kardiovaskuläre Funktion zurück und finden keinen Beweis für eine ventilatorische Limitierung, wie sie Sun et al.98 beschrieben haben. Riley et
al.93 begründen die Leistungslimitierung zirkulatorisch. Auch hier bleibt die Frage offen, welche endgültigen Gründe für die Leistungslimitierung bei PPH Patienten verantwortlich sind.

Es ist uns nur die Studie von Sun et al.99 bekannt, die eine Korrelation zwischen Lungenfunktionsparametern mit der peak VO\textsubscript{2} bei PPH Patienten durchführte. Hier wurde eine signifikant Korrelation zwischen der FEV\textsubscript{1} und der DLCOc mit der peak VO\textsubscript{2} beschrieben.

Dagegen gibt es in der Literatur keine Studie, welche sich mit Korrelationen von Hämodynamikparametern mit der peak VO\textsubscript{2} bei PPH Patienten beschäftigt hat. Dieser Sachverhalt sollte anhand unserer Untersuchungsergebnisse geklärt werden. Sun et al.98 haben eine Korrelation zwischen der NYHA Klasse und der peak VO\textsubscript{2} durchgeführt und dabei eine signifikante Korrelation gefunden.

Es gibt zwar Studien von Riley et al.93 und Sun et al.98, die etwas über den Gas austausch bei PPH Patienten berichten, allerdings wollten wir auf diesen Sachverhalt in unserer Untersuchung genauer eingehen. Dantzker et al.17 gehen in ihren Untersuchungen näher auf diesen Sachverhalt ein, hier werden aber PPH und CTEPH Patienten zusammen als gemeinsames Kollektiv untersucht. Dantzker et al.15 haben PPH und CTEPH Patienten zusammen, aber nur unter Ruhebedingungen auf Gas austauschstörungen untersucht.

Da uns in der Literatur keine Veröffentlichung bekannt ist, die PPH Patienten und CTEPH Patienten als getrenntes Kollektiv spiroergometrisch untersucht hat, wollten wir das erste Mal die charakteristischen Unterschiede dieser zwei unterschiedlichen Krankheiten bei Belastung erläutern.

\subsection*{1.2.3. Chronisch thromboembolische pulmonale Hypertonie (CTEPH)}

Iwase et al.48 haben als einzige Gruppe Patienten mit chronisch thromboembolischer pulmonaler Hypertonie (CTEPH) spiroergometrisch untersucht.

Bei dieser Studie wurde nicht auf leistungslimitierende Faktoren eingegangen, so dass wir diesen Sachverhalt neu untersuchen wollten.
Für CTEPH Patienten konnten wir keine Studie finden, die sich mit Korrelationen zwischen Lungenfunktionsparametern und der peak VO\textsubscript{2} befasst hat, so dass auch hier neue Erkenntnisse durch unsere Untersuchung erbracht werden.

Iwase et al.48 haben als einzige Gruppe Korrelationen zwischen Hämostodynamikparametern mit der peak VO\textsubscript{2} beschrieben. Sie stellten signifikante Korrelationen zwischen dem pulmonal vaskulären Widerstand (PVR) und dem mittleren pulmonal-arteriellen Druck (mPAP) mit der peak VO\textsubscript{2} fest. Diesen Sachverhalt wollten wir prüfen. Für CTEPH Patienten gibt es zwar Studien von Kapitan et al.55 und Dantzker et al.16, die sich mit dem Gasausstausch unter Ruhebedingungen bei dieser Erkrankung beschäftigt haben, es ist uns aber keine Studie bekannt, die Gasausstauschstörungen bei maximaler Belastung bei CTEPH Patienten beschrieben hat.

1.2.4. Cystische Fibrose (CF)

Lands et al.60,61, Pouliou et al.88, McConal et al.71 und Nixon et al.81 haben Patienten mit cystischer Fibrose (CF) spiroergometrisch untersucht. Auch hier wurde, ähnlich wie bei den LF Patienten, nie eine alters- und geschlechtsgleiche Kontrollgruppe als Vergleichsgruppe den CF Patienten gegenübergestellt. Deshalb wollten wir dies als erste untersuchen.

Lands et al.60, Marcotte et al.68 und Coates et al.9 beschrieben leistungslimitierende Faktoren bei CF Patienten. Lands et al.60 führten die Leistungslimitierung auf die periphere Muskelfunktion zurück. Dagegen führten Marcotte et al.68 und Coates et al.9 die Leistungslimitierung auf den Ernährungsstand und die Lungenfunktion zurück. Natürlich findet man bei den CF Patienten auch eine Malnutrition9, welche ebenfalls als leistungslimitierender Faktor hinzu kommt. Außerdem weisen CF Patienten eine reduzierte Vitalkapazität und einen erhöhten Atemwegswiderstand in der Lungenfunktion auf, was ebenfalls leistungslimitierend wirkt.

Es gibt nur zwei Studien von Lands et al.60 und Pouliou et al.88, welche sich mit Korrelationsanalysen zwischen Lungenfunktionsparametern mit der peak VO\textsubscript{2} beschäftigt haben. Sowohl Lands et al.60 als
auch Poulou et al. haben eine signifikante Korrelation zwischen der peak VO$_2$ und der FEV1 beschrieben. In unserer Untersuchung korrelierte als bester Parameter der Lungenfunktion die DLCOc (Kohlendioxid-Diffusionskapazität) signifikant mit der peak VO$_2$. Daneben korrelierten aber auch die Resistance (R), die Vitalkapazität (VC) und die FEV1 signifikant mit der peak VO$_2$.
Für CF Patienten sind uns keine Veröffentlichungen bekannt, welche sich mit Gas austausch in Ruhe und unter maximaler Belastung beschäftigt. Wir wollten diesen Sachverhalt als erste untersuchen.

1.3. Zielsetzung der Arbeit

Mittels Spiroergometrie sollten
- die leistungslimitierenden Faktoren,
- die maximale Leistungsfähigkeit,
- der Gas austausch und
- die Atemeffektivität
bei Patienten mit
- pulmonaler Hypertonie infolge einer Lungenfibrose (LF),
- primärer pulmonaler Hypertonie (PPH),
- chronisch thromboembolischer pulmonaler Hypertonie (CTEPH) und
- cystischer Fibrose (CF)
aus unserer Spezialambulanz erfasst werden.

Weiterhin sollte geklärt werden,
• welche Parameter der Lungenfunktion bei Patienten mit
 - pulmonaler Hypertonie infolge einer Lungenfibrose,
 - primärer pulmonaler Hypertonie,
 - chronisch thromboembolischer pulmonaler Hypertonie und
 - cystischer Fibrose und
• welche Parameter der Hämodynamik bei Patienten mit
 - pulmonaler Hypertonie infolge einer Lungenfibrose,
 - primärer pulmonaler Hypertonie und
 - chronisch thromboembolischer pulmonaler Hypertonie
Vorhersagekraft für die maximale Sauerstoffaufnahme (peak VO₂) haben. Dies sollte anhand von Korrelationsanalysen der einzelnen Lungenfunktionsparameter bzw. der Hämodynamikparameter mit der peak VO₂ geklärt werden.

Außerdem sollte geprüft werden, ob sich charakteristische Unterschiede zwischen
- PPH Patienten und
- CTEPH Patienten
identifizieren lassen, die eine Unterscheidung anhand spiroergometrischer Parameter erlauben.

Durch den Vergleich mit einer alters- und geschlechtsgematchten Kontrollgruppe sollte bei Patienten mit
- pulmonaler Hypertonie infolge einer Lungenfibrose und
- cystischer Fibrose
herausgearbeitet werden, welche leistungslimitierenden Faktoren dominieren.
2. Messmethoden

2.1. Spiroergometrie

Anmerkung: In der Physik erscheint auf Formelbezeichnungen ein Punkt immer dann, wenn die erste Ableitung nach der Zeit für diese Größe beschrieben wird. Beispiel: \(V_{O_2} = \frac{dV}{dt} O_2 \) bedeutet das Sauerstoffvolumen pro Zeiteinheit, das vom Organismus aufgenommen wird. Aus schreibtechnischen Gründen werden im Folgenden die Bezeichnungen der Zeitvolumengrößen (\(V_{O_2}, V_{CO_2}, V_E, V_A, V_D \)) ohne den Punkt des Kürzels erscheinen. Gemeint ist jedoch jeweils das Volumen pro Zeiteinheit.

Die Spiroergometrie (spirare (lat.) = atmen, ergon (gr.) = Arbeit, metron (gr.) = Maß), in der Grundlage 1929 von dem deutschen Internisten Wilhelm Knipping eingeführt, ist als eine komplexe Untersuchungsmethode des kardio-respiratorischen Traktes seit langem in der Sportmedizin verbreitet. Mit ihrer Hilfe werden ventilatorische und kardiale Funktionsgrößen in Ruhe und unter dosierter, definierter körperlicher Belastung erfasst, um z.B. die maximale Leistungsfähigkeit des Menschen, das ausschließlich aerobe Leistungsvermögen zu ermitteln, um Frühdiagnosen von beginnenden Herzerkrankungen (z.B. Koronarisuffizienz) oder auch Frühdiagnosen von beginnenden Lungenerkrankungen (z.B. Lungenfibrose) und deren Verläufe zu stellen.

Der spiroergemetriciche Ausbelastungstest dient zur Erfassung der allgemeinen körperlichen Leistungsfähigkeit und lässt Zusammenhänge zwischen der Belastung und der Herzforderleistung, dem Sauerstoffverbrauch und der Ventilation der Lunge erkennen.

Die Sollleistung wurde über eine Steuerleitung des Vmax 2130 V6200 am Fahrradergometer ergo-metrics 900 der Firma ergo-line (72475 Bitz) vorgegeben. Dieses Ergometer erzeugt nach dem Prinzip der Wirbelstrombremse die verlangte Bremsleistung.

Zur Messung der physikalischen Werte enthält das Gerät Messaufnehmer für die O₂- und CO₂-Konzentration (\(F_EO_2\) bzw. \(F_ECO_2\); \(F_E\) = expiratory fraction, mittlere Ausatemkonzentration für Sauerstoff respective Kohlendioxid), das Ausatemvolumen (\(V_E\)), die Atemfrequenz (BF), die Temperatur und den Luftdruck.

Der Proband atmet über ein Y-Ventil Umgebungsluft ein (offene Spirometrie). Die Ausatemluft gelangt über einen ca. 1,5 m langen Faltenschlauch zum Pneumotachographen und weiter zum FE-Mischbeutel. Das über den Pneumotachographen gewonnene Signal wird vom Druckwandler in ein elektrisches Signal umgewandelt. Dieses Signal ist proportional zur Strömungsgeschwindigkeit der exspirierten Luft und wird elektronisch zum Volumen integriert (Ausatemvolumen \(V_E\)).

Messwerte: \(BF = \text{Atemfrequenz}\)
\(V_E = \text{Atemminutenvolumen}\)

Die im halboffenen FE-Mischbeutel gesammelte Ausatemluft wird in den getrennten Messgeräten für Sauerstoff (O₂) und Kohlendioxid (CO₂) kontinuierlich analysiert.

Messwerte: \(F_EO_2 = \text{O}_2\)-Anteil der gemischten exspirierten Luft
\(F_ECO_2 = \text{CO}_2\)-Anteil der gemischten exspirierten Luft
Ein Subsystem ermöglicht die automatische Erfassung der endexspiratorischen CO₂-Konzentration ($F_{ET}CO_2$: fraction end tidal CO₂). Aus den genannten Messdaten werden weitere Parameter errechnet: Atemzugvolumen (V_T), Sauerstoffaufnahme (VO_2), CO₂-Abgabe (VCO_2), endexspiratorischer O₂-Partialdruck (P_{ETO_2}).

2.2. Blutgasanalyse

Die Blutgasanalyse (BGA) ist ein Verfahren zur Bestimmung grundlegender Kenngrößen des Säuren-Basen-Gleichgewichtes und des Gas austausches. Der Gesamteffekt der Atmung kommt in der jeweiligen Höhe der arteriellen O_2- und CO₂-Partialdrucke (pO_2, pCO_2) zum Ausdruck. Diese Werte liefern einen globalen Maßstab für die Beurteilung der Lungenfunktion.\(^{102}\)

Folgende Größen werden simultan gemessen:

- $pH = \text{der negative dekadische Logarithmus der}$
 - Wasserstoffionenkonzentration;
- $pCO_2 = \text{der Partialdruck des Kohlendioxids};$
- $pO_2 = \text{der Partialdruck des Sauerstoffs}.$

Aus pH und pCO_2 werden $cHCO_3^-$, die Plasmabikarbonatkonzentration, BE, die Basenabweichung (base excess) der Extrazellularflüssigkeit, und das Standardbikarbonat errechnet.

Aus pH und pO_2 können die Sauerstoffsättigung des Hämoglobins (sO_2) und bei bekanntem Hb-Wert cO_2, die Sauerstoffkonzentration des Blutes, ermittelt werden. Das hier verwendete Blutgasanalysegerät (Mikroblutgasanalysator ABL 510, Fa. Radiometer Copenhagen, Radiometer A/S, Emdrupvej 72, DK-2400 Copenhagen NV, Dänemark) erlaubte die direkte Messung der sO_2 und der Hämoglobinkonzentration und somit die unmittelbare Bestimmung des Sauerstoffgehaltes des Blutes (tO_2).

Da eine Arterienpunktion mit Komplikationen behaftet ist, wurden Blutgasanalysen (BGA) aus hyperämisiertem Kapillarblut des Ohrläppchens gewonnen\(^{44}\) und in einem automatischen Mikroblutgasana-
lysator (ABL 510 der Firma Radiometer Copenhagen, Radiometer A/S, Emdrupvej 72, DK-2400 Kopenhagen NV, Dänemark) bestimmt, der täglich mit Pufferlösung und Kalibrierungsgasen von geschultem Personal geeicht wurde. Bei sorgfältiger, kunstgerechter Abnahmetechnik im hyperämisierten Gebiet entspricht der pO$_2$ aus arterialisiertem Kapillarblut etwa dem arteriellen pO$_2$.44

In unserer Untersuchungsreihe wurden sofort nach Entnahme des Kapillarblutes aus dem mit FinalgonR-Salbe (Boehringer Ingelheim Pharma KG, Ingelheim am Rhein) hyperämisierten Ohrläppchen mit einer heparinisierten Mikrokapillare (Hämacont) das Kapillarblut im Mikroblutgasanalytator ABL 510 (Fa. Radiometer Copenhagen, Radiometer A/S, Emdrupvej 72, DK-2400 Kopenhagen NV, Dänemark) analysiert und das Ergebnis mit Hilfe eines eingebauten Druckers dokumentiert.

2.3. Elektrokardiographie
In allen Phasen des Versuchablaufes wurden mit einem 6-Kanal-EKG-Gerät, Cardioscript Universal CU 12-N (Madaeus Schwarzer Medizintechnik GmbH & CO.KG, Bärmannstr. 38, 81207 München), die Extremitätenableitungen nach Einthoven (I, II, III) und die Brustwandableitungen V$_2$, V$_4$ und V$_6$ registriert. Das kontinuierlich mitgeschriebene EKG gab Auskunft über die Herzfrequenz, Rhythmusstörungen und Kammerendteilveränderungen.

2.4. Blutdruckmessung
Die Messung des Blutdruckes erfolgte sphygmomanometrisch nichtinvasiv nach der indirekten Methode von Riva-Rocci (Stauungsmanschette) und Korotkoff (Arteriengeräusch).121 Die ca. 12 cm breite Manschette wurde am Oberarm in Herzhöhe am halbliegenden Patienten angelegt. Die Messergebnisse wurden in der Einheit mmHg angegeben.
Statistisch ausgewertet wurden die Blutdruckwerte in Ruhe, bei maximaler Belastung, 3 Minuten und 8 Minuten nach maximaler Belastung.

2.5. Lungenfunktionsdiagnostik

Folgende Parameter wurden erhoben:

FEV₁: Einsekundenausatmungskapazität, Tiffeneau-Test – Volumen, das nach maximaler Inspiration in 1 Sekunde maximal ausgetatmet werden kann

VC: Vitalkapazität – Volumen, das nach maximaler Inspiration maximal ausgetatmet werden kann

TLC: totale Lungenkapazität – intrapulmonales Luftvolumen nach maximaler Inspiration

RV: Residualvolumen: intrapulmonales Luftvolumen nach maximaler Expiration

R: Atemwegswiderstand

DLCOc: CO Transferfaktor, korrigiert auf die aktuelle Hb-Kon-
zentration. Bei der Bestimmung des Transferfaktors wird die Menge eines Gases gemessen, die pro Minute aus den Alveolen in das Blut gelangt und chemisch an das Hämoglobin gebunden wird.²²

2.6. Rechtsherzkatheteruntersuchung

Die Patienten wurden vor jeder Katheteruntersuchung über den Ablauf und die Risiken aufgeklärt und gaben ihr schriftliches Einverständnis ab. Standen die Patienten unter einer antikoagulativen Therapie mit Marcumar® wurde diese mindestens 4 Tage vor der Testung abgesetzt.

Damit war es einerseits möglich, mittels der Thermodilutionstechnik, das Herzzeitvolumen (CO)¹⁹ zu bestimmen, andererseits konnte mit Hilfe der „online“-Registrierung des pulmonalen Druckes (PAP) und der Bestimmung des pulmonalarteriellen Verschlußdruckes („Wedge“-Druck, PAWP) der pulmonale Gefäßwiderstand (PVR) berechnet werden. Die Thermodilutionstechnik wurde mittels wiederholter manuel-

Falls die Patienten in der Blutgasanalyse eine schwere arterielle Hypoxie aufwiesen (arterieller pO₂ ≤ 65 mmHg), wurde ausreichend viel Sauerstoff während der kompletten Testung zugeführt, um den pO₂ möglichst über 65 mmHg zu halten.

Weitere Berechnungen und die Auswertung der Ergebnisse wurden im Anschluß an die Untersuchung durchgeführt.

Folgende Größen wurden mittels des Rechtsherzkatheters bestimmt:

mPAP: mittlerer pulmonal-arterieller Druck in mmHg
HMV: Herzminutenvolumen in l/min
CVP: zentral venöser Druck in mmHg
mSAP: mittlerer systemisch arterieller Druck in mmHg
SVR: systemisch vaskulärer Widerstand in dyn*s*cm⁻⁵
SaO₂: arterielle Sauerstoffsättigung in %
SvO2: venöse Sauerstoffsättigung in %
CI: Cardiac Index in l/min/m²

Der PVR wurde folgendermaßen berechnet:

\[PVR = \frac{(mPAP-PAWP)}{HMV*80} \text{ in dyn} \]

2.7. Aufgezeichnete Messgrößen und berechnete Größen

2.7.1. Spiroergometrie

Folgende Indizes an den einzelnen Parametern wurden festgelegt:

\[r_u = \text{Index für Ruhewerte} \]
\[m_\text{ax} = \text{Index für Maximalwerte bei maximaler Belastung} \]
\[3_\text{min} = \text{Index für Werte 3 Minuten nach maximaler Belastung} \]
\[8_\text{min} = \text{Index für Werte 8 Minuten nach maximaler Belastung} \]

2.7.1.1. Leistung (WR= work rate)

Die in gleichbleibend großen Stufen gesteigerte Arbeit auf dem Fahrradergometer wurde in Watt (W) angegeben. Die maximal erreichte Leistung eines Patienten bei Abbruch der Ausbelastung war WR\text{max}.

2.7.1.2. Herzfrequenz (HR)

Die Herzfrequenz wurde in Puls/min angegeben. Statistisch ausgewertet wurden HR in Ruhe, bei maximaler Belastung, 3min und 8 min nach Belastung.

2.7.1.3. Sauerstoffaufnahme (VO₂)

Die kontinuierlich aufgezeichnete Sauerstoffaufnahme wurde in der Einheit l/min angegeben. Statistisch ausgewertet wurden VO₂ in Ruhe, bei maximaler Belastung, 3 min und 8 min nach Belastung.
2.7.1.4. Atemfrequenz (BF), Atemzeitvolumen (VE), Atemzugvolumen (VT), endexspiratorische CO₂-Konzentration (FET, CO₂), CO₂-Anteil der gemischten exspirierten Luft (FE, CO₂)

Die Atmungsregulation dient in erster Linie der Anpassung der Atmung an die Stoffwechselbedürfnisse des Körpers. Bei erhöhtem Sauerstoffbedarf steigt das Atemzeitvolumen (VE) an. Die Sauerstoffaufnahme (VO₂) kann dabei von ca. 300 ml/min in Ruhe auf 3-6 l/min anwachsen.¹⁰²

Allgemein gilt, dass sich die ventilatorischen Messparameter auf die Ausatemphase beziehen.

Die Belüftung der Lunge ist abhängig von der Atemfrequenz (BF) und dem Atemzugvolumen (VT), definiert als Produkt

\[V_E = BF \times VT \]

Üblicherweise wird eine Ruhe-VE von ca. 7,5 l/min als „normal“ angesehen.¹⁰³ Die beiden Größen BF und VT können in Abhängigkeit von der äußeren körperlichen Belastung in weiten Grenzen variieren. Entscheidend für die Atmungseffektivität ist allerdings nicht die Gesamtventilation, sondern der Anteil der eingeatmeten Luft, der in die Alveolen gelangt, bzw. aus den Alveolen ausgeatmet wird: alveolare Ventilation (VA). Der Anteil der VE, der nicht aus den Alveolen stammt, wird als Totraumventilation (VD) bezeichnet. Es gilt die Beziehung:

\[V_E = V_A + V_D \]

Bei gesunden Personen beträgt der Anteil der VA in Ruhe ca. 70 %, der Anteil der VD ca. 30 % der VE.⁷,¹⁰²

Die Totraumventilation (VD) kann nach der Bohr’schen Formel bestimmt werden.
Der so berechnete Totraum wird als funktioneller Totraum bezeichnet und übersteigt den anatomischen Totraum, der ca. 150-200 ml beträgt, um alveoläre Areale mit unvollständigem Gasaus tausch.102

\(F_{ETCO_2}, \text{ die alveoläre CO}_2\text{-Konzentration der exspirierten Atemluft,}
\)

steht gemäß folgender Beziehung mit pCO\(_2\) in Zusammenhang:

\[
pCO_2 = \frac{F_{ETCO_2}}{pB-pH_2O}
\]

Daraus erfolgt durch Umformung

\[
pCO_2 = F_{ETCO_2} \times (pB-pH_2O)
\]

Dabei beträgt der mittlere Barometerdruck auf Meereshöhe (pB) 760 mmHg. Die Wasserdampfsättigung bei 37\(^\circ\)C (pH\(_2\)O) beträgt unter BTPS-Bedingungen 47 mmHg.102

\(F_{ETCO_2} \) ist abhängig von den stoffwechselabhängigen Werten für die CO\(_2\)-Abgabe (VCO\(_2\)) und vom Ausmaß der alveolären Ventilation (VA) nach der Gleichung

\[
VCO_2
\]

\[
F_{ETCO_2} = \frac{-------}{VA}
\]

\(F_{ETCO_2} \) liegt in Ruhe unter STPD-Bedingungen bei 0,056 oder 5,6 Vol. \%50
Das Atemzugvolumen (VT) setzt sich aus einem Totraumvolumen (V_D) und einem alveolären Volumen (V_A) zusammen. Normalerweise wird ein Ruhe-Atemzugvolumen von ca. 0,5 l als „normal“ angesehen. Ein unzureichender Anstieg von VT unter Belastung weist auf eine respiratorische Störung (Restriktion) oder auf eine gestörte Atemregulation hin. Es resultiert ein relativer Anstieg der Totraumventilation. Bei Arbeit wird primär das Atemzugvolumen, erst nachrangig die Atemfrequenz erhöht.

Die Atemfrequenz (BF) ist ein gutes Maß für die Ausbelastung des kardio-pulmonalen Systems und die Ausnutzung der respiratorischen Reserve. Die normale Variationsbreite der Atemfrequenz liegt in Ruhe bei 10-18/min. So steigern Lungenkranke je nach Ausmaß der Erkrankung schon in Ruhe die Atemfrequenz, die unter Belastung sogar Werte von > 60/min annehmen kann.

2.7.1.5. Respiratorischer Quotient (RQ)

Der RQ ist definiert als Verhältnis von CO₂-Abgabe (VCO₂) zu O₂-Aufnahme (VO₂), experimentell außerhalb des Körpers und unter physikalischen Standardbedingungen (STPD-standard temperature, pressure, dry) bestimmt.

Es gilt:

\[\text{RQ} = \frac{\text{VCO}_2}{\text{VO}_2} \]

2.7.1.6. Atemäquivalente für O₂ (EQO₂) und CO₂ (EQCO₂)

Die Atemäquivalente beschreiben, wieviel Liter ventiliert werden müssen, um einen Liter O₂ aufzunehmen bzw. einen Liter CO₂ abzugeben.
2.7.2. Blutgasanalyse

Statistisch ausgewertet wurden der \(pO_2 \), \(pCO_2 \) und BE in Ruhe, die entsprechenden Parameter bei maximaler Belastung sowie 3 Minuten und 8 Minuten nach maximaler Belastung. Für \(pO_2 \) und \(pCO_2 \) wurden die jeweiligen Differenzen zwischen Ruhe und maximaler Belastung ausgewertet.

Der arterielle Sauerstoffpartialdruck und der arterielle Kohlendioxidpartialdruck spiegeln den Gesamteffekt der Atmung wieder. Wie viele biologische Größen, weisen auch die arteriellen Blutgase Variationen auf. Es findet sich eine systematische Abhängigkeit vom Lebensalter. Während der arterielle \(O_2 \)-Partialdruck bei gesunden Jugendlichen im Mittel 90 mmHg beträgt, findet man bei 40-jährigen Werte 80 mmHg und bei 70-jährigen 70 mmHg. Diese Abnahme des \(O_2 \)-Partialdruckes ist wahrscheinlich auf die im Alter zunehmende Verteilungsungleichmäßigkeiten in der Lunge zurückzuführen. Der arterielle \(CO_2 \)-Partialdruck, der bei Jugendlichen etwa 40 mmHg beträgt, verändert sich dagegen mit dem Alter nur wenig.\(^{103}\)

Die Alveolo-arterielle Sauerstoffdifferenz ist oft sehr nützlich, um den Grad des Ventilation-Perfusions-Missverhältnisses bzw. einer sonstigen Gas austauschstörung zu bestimmen. Dieser Parameter hat den Vorteil, dass er weniger sensitiv auf Veränderungen der Ventilation des Patienten reagiert als der arterielle \(pO_2 \) alleine.\(^{118}\)

2.7.3. Berechnete Größen aus Spiroergometrie und Blutgasanalyse

Arterielle \(CO_2 \)-Fraktion:

\[
 FaCO_2 = 100 \times \frac{pCO_2 [\text{mmHg}]}{\text{Luftdruck [mmHg]-47 mmHg}}
\]
wobei im Nenner der Gesamtdruck der im Blut gelösten Gase erscheint, der Luftdruck abzüglich des Wasserdampfdruckes in den Alveolen (47mmHg).

Funktionell alveoläre Ventilation:

\[
\text{F} \text{E} \text{CO}_2 \\
\text{fkt alv } V_E = \frac{\text{F} \text{E} \text{CO}_2}{\text{F} \text{ET} \text{CO}_2} * V_E
\]

Dieser Formel liegt die Überlegung zugrunde, dass das exspiratorische VCO\(_2\) ausschließlich aus dem alveolären Teil der Atemwege stammt mit \(\text{VCO}_2 = \text{V}_E \text{F} \text{E} \text{CO}_2 = \text{V}_A \text{F} \text{A} \text{CO}_2\), wobei \(\text{F} \text{A} \text{CO}_2\) = alveolare CO\(_2\)-Fraktion. Wenn diese mit der endexspiratorischen CO\(_2\)-Fraktion (\(\text{F} \text{ET} \text{CO}_2\)) gleichgesetzt wird, dann wird \(\text{V}_A\) als „funktionelle alveoläre Ventilation“ bezeichnet.

Effektiv alveoläre Ventilation:

\[
\text{F} \text{E} \text{CO}_2 \\
\text{eff alv } V_E = \frac{\text{F} \text{E} \text{CO}_2}{\text{F} \text{a} \text{CO}_2} * V_E
\]

Hier wird die alveolare CO\(_2\)-Fraktion mit der systemisch arteriellen CO\(_2\)-Fraktion gleichgesetzt. Die so errechnete \(\text{V}_A\) wird als „effektive alveoläre Ventilation“ bezeichnet.

Funktioneller Totraum:

\[
\text{F} \text{E} \text{CO}_2 \\
\text{fkt VD} = \text{VT} * (1- \frac{\text{F} \text{E} \text{CO}_2}{\text{F} \text{ET} \text{CO}_2})
\]
Dieser Zusammenhang ergibt sich aus VT = VD + VA mit VT = Atemzugvolumen, VD = Totraum, VA = Alveolarraum. Wird zur Berechnung von VA die endexspiratorische CO2-Fraktion verwendet (FET-CO2), so errechnet sich der „funktionelle Totraum“.

Effektiver Totraum:

\[\text{eff } VD = VT \times (1 - \frac{F_{ET-CO2}}{FaCO2}) \]

Es gelten die gleichen Überlegungen wie bei der vorausgehenden Formel. Für die Berechnung von VA wird allerdings die arterielle CO2-Fraktion verwendet. Entsprechend errechnet sich der „effektive Totraum“.

Funktioneller Totraum/VT:

\[\text{fkt } VD \]
\[\text{fkt } VD/VT = \frac{\text{---------}}{VT} \times 100 \]

Effektiver Totraum/VT:

\[\text{eff } VD \]
\[\text{eff } VD/VT = \frac{\text{---------}}{VT} \times 100 \]

Alveolo-arterielle Sauerstoffdifferenz:

\[AaDO2 = P_{ETO2} - pO2 \]
$P_{ET}O_2$ entspricht dem spiroergometrisch ermittelten endexspiratorischen Sauerstoffpartialdruck und pO_2 dem arteriellen Sauerstoffpartialdruck aus der Blutgasanalyse.

Effektiver Totraum/Funktioneller Totraum:

$$\text{eff VD/fkt VD}$$

Für folgende Parameter wurde die Differenz zwischen maximaler Belastung und Ruhe bestimmt:

F_ECO_2: CO$_2$-Anteil der gemischten exspirierten Luft

$F_{ET}CO_2$: endexspiratorische CO$_2$-Konzentration

$FaCO_2$: arterielle CO$_2$-Konzentration

$FaCO_2-F_ECO_2$: arterielle CO$_2$-Konzentration - CO$_2$-Anteil der gemischten exspirierten Luft

$FaCO_2 - F_{ET}CO_2$: arterielle CO$_2$-Konzentration - endexspiratorische CO$_2$-Konzentration

Außerdem wurden für den arteriellen Sauerstoffpartialdruck, pO_2, den arteriellen Kohlendioxidpartialdruck, pCO_2, den funktionellen Totraum, fkt VD, den effektiven Totraum, eff VD und für den Quotienten aus effektiven Totraum/funktionellen Totraum, eff VD/fkt VD die prozentualen Veränderungen (delta %) bei maximaler Belastung statistisch ausgewertet.
2.8. Leistungslimitierende Faktoren

Leistungslimitierende Faktoren können kardialer, ventilatorischer, metabolischer und kardiorespiratorischer Art sein. Auch Kombinationen aus diesen Arten sind möglich.

Die maximale Sauerstoffaufnahme ist ein Maßstab für die Belastbarkeit des Herz-Kreislaufs systems und der Muskulatur. Die maximale Sauerstoffaufnahme bei gesunden Kontrollpersonen ist abhängig von Alter, Geschlecht, Körpergröße, Stand der Aktivität und Art der Belastung.\(^{113}\)

Die höchste kurzfristig erreichte Sauerstoffaufnahme bei maximaler Belastung bezeichnete Hill (1924)\(^{39}\) als VO₂max. VO₂max ist das zuverlässigste Kriterium zur Beurteilung der aeroben Leistungsfähigkeit von Herz, Kreislauf, Atmung und Stoffwechsel.\(^{45}\)
Die VO₂ max kann nach strengen Kriterien nur auf Meereshöhe bestimmt werden. Hill misst die maximale Sauerstoffaufnahme, nachdem die Patienten eine Plateauphase (levelling off) erreicht haben bei der die VO₂ nicht weiter steigt, obwohl die Leistung ansteigt. In unserer Untersuchung wurde bei keinem Patienten ein „levelling off“ beobachtet. Deshalb wurde die maximale Sauerstoffaufnahme, die unsere Patienten erreichten, als peak VO₂ bezeichnet.
Eine peak VO₂ von > 85 % wird als normal angesehen.
Eine Einschränkung der peak VO₂ kann verschiedene Ursachen haben (s.o.).

Wie ist nun eine kardiale Leistungslimitierung zu erkennen?
Der Parameter, der eine kardiale Leistungslimitierung erkennbar macht, ist die Herzfrequenz. Die maximale Herzfrequenz ist bei Männern und Frauen gleichen Alters praktisch gleich, sie ist vom Lebensalter (A) abhängig (nach Hollmann: stetige Abnahme von frühestem Jugend bis zum Greisenalter) und beträgt bei gesunden Personen modifiziert nach Astrand: HRmax = 186,2 – 0,36 * A.
Bei einer fehlenden kardialen Ausbelastung würde die maximale Herzfrequenz deutlich unter diesem Wert liegen. Die Patienten würden weniger als 85 % dieses Wertes erreichen.

Wie ist eine ventilatorische Leistungslimitierung zu erkennen?
Eine ventilatorische Leistungslimitierung kann an der Atemfrequenz, der Ventilation, dem Atemzugvolumen und an den arteriellen Blutgasen zu erkennen sein.

Lungen- bzw. Atemwegserkrankungen, die vorwiegend das Belüftungs-Durchblutungs-Verhältnis (Distribution), die Diffusion oder die Perfusion (Rechts-Links-Shunt) beeinträchtigen, führen vorwiegend zu einer Abnahme von pO₂ ohne begleitende Zunahme von pCO₂ (Partialinsuffizienz der Lunge). Erkrankungen mit alveolärer Hypoventilation (Obstruktion, späte Stadien der Restriktion) weisen neben der pO₂-Erniedrigung eine pCO₂-Zunahme auf (Globalinsuffizienz).

Eine metabolische Leistungslimitierung kann anhand des Base Excess erkannt werden. Die Basenabweichung gibt im Wesentlichen die Änderungen der metabolischen Komponente des Säuren-Basen-Gleichgewichts im Blut wieder. Unter extremer körperlicher Belastung wird die Basenabweichung hauptsächlich durch das in der arbei-
tenden Muskulatur gebildete und in die Zirkulation abgegebene Laktat bestimmt.
Der Referenzbereich in Ruhe nach Tietz105, Müller-Plathe77 und Siggard-Andersen97 für den Base Excess beträgt -2 bis 3 mmol/l. Ein massiver Anstieg des Base Excess unter Belastung würde auf eine metabolische Leistungslimitierung einen Hinweis geben.

2.9. V/Q Mismatch

2.9.1. Situation der inhomogenen Perfusion

Bereits unter physiologischen Bedingungen ist bei der Perfusion eine Inhomogenität vorhanden. Dies hat unter anderem mit den Schwerkrafteinflüssen zu tun, welche dazu führen, dass die apikalen Lungenabschnitte weniger stark durchblutet werden, als die basalen Lungenabschnitte2,3,42,43.

Hinzu kommt, dass sich die lokale Perfusion unter physiologischen Bedingungen sehr genau an die lokale Ventilation anpasst. Der zugrunde liegende Mechanismus ist die Hypoxische Pulmonale Vaskonstriktion (HPV), die zu einer Unterdrückung der Perfusion schlecht ventilierter Lungenareale führt und damit auch bei schweren Ventilationsinhomogenitäten normale arterielle Blutgase ermöglicht. Andererseits führt dieser Mechanismus zu Perfusionsinhomogenitäten, die sich normalerweise nicht nachteilig auswirken, aber im Falle eines strukturell veränderten pulmonalen Strombahngebietes (z.B. Emphysem oder Lungenembolien) eine pulmonale Hypertonie auslösen oder verstärken können. Wenn nun auch noch Inhomogenitäten in der Perfusion auftreten, welche auch nicht durch eine inhomogene Ventilation erklärt werden können, so sind sie meist auf Lungenembolien zurück zu führen. Hierbei entstehen Areale in der Lunge, die nicht mehr perfundiert und andere, die überperfundiert werden. Daraus entsteht nun eine Ventilations-Perfusions-Verteilungsstörung, bei der in Arealen mit unterbrochener Durchblutung überventilierte Alveolen, sogenannte „high V/Q-Areale“ bzw. alveoläre Toträume auftreten und in den verbliebenen Perfusionsgebieten eine Überperfusion („low-V/Q“) vorliegt. (siehe Abb. 2)
Abbildung 2. Effekt der primären Ventilations- und Perfusionsinhomogenität auf die Ventilations-Perfusionsverteilung. Die primäre Ventilationsinhomogenität (oben) ist symbolisiert durch den Keil in einem der Atemwege. Im betroffenen Lungenabschnitt wird ein Shuntblutfluß auftreten, oder, bei erhaltener Restventilation, ein erniedrigtes V/Q-Verhältnis (low-V/Q). Auf der Gegenseite tritt eine gesteigerte Ventilation bei normaler Perfusion auf (high-V/Q). Die primäre Perfusionsinhomogenität (Lungenembolie, unten) zeigt auf der betroffenen Seite ein erhöhtes V/Q-Verhältnis oder sogar eine Totraumventilation und auf der Gegenseite ein erniedrigtes V/Q-Verhältnis, weil das Herzminutenvolumen mit stark erhöhter Flussgeschwindigkeit durch die verbliebenen Perfusionsareale strömt. (nach Olschewski et al.*).

2.9.2. Diffusionsstörung

2.10. Übersicht über die Messparameter, die in die statistische Auswertung einbezogen wurden

<table>
<thead>
<tr>
<th></th>
<th>Ruhe</th>
<th>max</th>
<th>3min</th>
<th>8min</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>EKG</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>RR</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>BGA</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>VD</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Tabelle 1. Übersicht über die Messparameter bei der Spiroergometrie, die in die statistische Auswertung einbezogen wurden. SE, spiroergometrische Daten, EKG, Elektrokardiogramm, RR, Blutdruck, BGA, Blutgasanalyse, VD, Toträume.

2.11. Versuchsdurchführung

Die Patienten wurden auf dem Fahrradergometer (ergo-metrics 900 der Firma ergo-line) in halbliegender Position (45°) belastet. Der Oberkörper war für die Anlage der EKG-Elektroden frei. Während des gesamten Versuchablaufes waren die Patienten an ein 6-Kanal-EKG-Gerät (Cardioscript Universal CU-12-N der Firma Madaeus Schwarzer-Medizintechnik GmbH & CO.KG) zur kontinuierlichen EKG-Registrierung angeschlossen. Die Drehzahl auf dem Ergometer war bei vorgegebener Leistung prinzipiell frei wählbar. Die für die Patienten angenehmste Drehzahl lag zwischen 50 und 60 U/min.

Vorbereitung

1. \(\text{O}_2 \) 26\%, \(\text{N}_2 \) 74\%

2. \(\text{CO}_2 \) 4\%, \(\text{O}_2 \) 16\%, \(\text{N}_2 \) 80\%

Phase 0

Nach ihrer Ankunft im Lungenfunktionslabor wurden die persönlichen Daten der Patienten aufgenommen (Name, Geburtsdatum, Ge-
schlecht, Größe, Gewicht). Anschließend wurden die Patienten über den Versuchsablauf und seine möglichen Komplikationen informiert. Dann setzten sich die Patienten mit freiem Oberkörper auf das Ergometer, die EKG-Elektroden wurden angelegt, das Ohrläppchen wurde mit FinalgonR-Salbe (Boehringer Ingelheim Pharma KG, Ingelheim am Rhein) eingerieben und das Mundstück des Spiroergometerschlauches eingesetzt.

Phase 1

Da es im Rahmen einer Bereitstellungsreaktion am Beginn eines Leistungsstestes häufig zu einer adrenergen Reaktion mit Herzfrequenzanstieg und primär durch Steigerung des Atemzugvolumens zu einer erhöhten Atemtätigkeit kommt (,,Vorstartzustand")106, sollten die Patienten zunächst ruhig auf dem Fahrradergometer sitzen, bis die Mehratmung abklängt. Es folgten Blutdruckmessung am Oberarm nach der Methode von Riva-Rocci, Blutgasanalyse vom hyperämisierten Ohrläppchen und eine EKG-Registrierung (50 mm/s Papiergeschwindigkeit) zur Bestimmung der Ruhewerte.

Phase 2

Die Testphase endete mit dem Abbruch der Arbeit. Die Patienten teilten durch vorher verabredete Zeichen mit, ob sie sich wohlfühlten, Angina pectoris, Dyspnoe oder Erschöpfung der Muskulatur bemerk-
ten. Der Abbruch der Ausbelastung erfolgte nach zuvor festgelegten und im Folgenden aufgeführten Kriterien entweder durch den Patienten selbst (subjektive Kriterien) oder bei Auftreten eines der ergometrischen, objektiven Abbruchkriterien.

Abbruchkriterien

objektiver Art: 1. Blutdruckanstieg über 230 mmHg systolisch und/oder 115 mmHg diastolisch
2. signifikante Ischämiezeichen im EKG
3. komplexe Herzrhythmusstörungen

und

subjektiver Art: 4. allgemeine und/oder periphere Erschöpfung
5. Bein-, Muskel- und Gelenkschmerzen
6. Dyspnoe
7. Angina pectoris
8. Beschwerden durch das Mundstück
9. Beschwerden durch unbequemes Sitzen auf dem Fahrradergometer
10. Angst

Phase 3

Sobald eines der Abbruchkriterien erreicht wurde, gab der Patient ein vorher vereinbartes Handzeichen und setzte die Belastung solange fort, bis die erforderliche Blutmenge am Ohrläppchen entnommen werden konnte, der Blutdruck gemessen und eine EKG-Registrierung durchgeführt werden konnte. Nach 3 und 8 Minuten wurden wieder eine Blutgasanalyse, eine Blutdruckmessung und eine EKG-Registrierung durchgeführt. Im Anschluss an die Untersuchung wurden die Gründe für den Abbruch protokolliert.

2.12. Patienten

Im Lungenfunktionslabor des Zentrums für Innere Medizin der Justus-Liebig Universität Giessen wurden im Rahmen von Kontroll-,

2.12.1. Studie I: Pulmonale Hypertonie infolge einer Lungenfibrose (LF)

2.12.2. Studie II: Vergleich zwischen Patienten mit primärer pulmonaler Hypertonie (PPH) mit Patienten mit chronisch thromboembolischer pulmonaler Hypertonie (CTEPH)

2.12.3. Studie III: Patienten mit cystische Fibrose (CF)

2.13. Statistik

Anamnestische Daten und Messergebnisse der Untersuchungen wurden mit Hilfe von Microsoft Excel jeweils der Fragestellung ange-
passten statistischen Testverfahren der deskriptiven Statistik, dem ungepaarten Student t-Test, dem gepaarten Student t-Test (matched pairs) und der linearen Regressionsanalyse unterzogen.

Der Student t-Test geht von einer Normalverteilung und Gleichheit der Varianzen der Stichprobe aus. Für alle untersuchten Parameter kann von einer Normalverteilung ausgegangen werden.

Der gepaarte Student t-Test wurde für Studie I durchgeführt.

Der ungepaarte Student t-Test wurde für Studie II und Studie III angewandt.

Die erhobenen Parameter der Spiroergometrie in Ruhe, bei maximaler Belastung, 3 min und 8 min nach Belastung sowie Differenzen zwischen Ruhe und maximaler Belastung wurden statistisch auf Unterschiede zwischen den Gruppen untersucht. Für die Parameter der Spiroergometrie, Blutgasanalyse, Lungenfunktion und Hämodynamik siehe Messmethoden.

Ebenso wurden die Parameter der anthropometrischen Daten (Alter, Körpergewicht und Körpergröße) mit dem Student t-Test analysiert, um die einzelnen Vergleichsgruppen zu charakterisieren und Differenzen zwischen den Gruppen auf Signifikanz zu prüfen.

Die Nullhypothesen waren entsprechend formuliert als:

\[H_0: \text{Kein Unterschied zwischen den Gruppen (kein Unterschied zwischen den Patientengruppen bzw. kein Unterschied zwischen Patienten und Kontrollpersonen)} \]

\[H_1: \text{Es besteht ein Unterschied zwischen den Gruppen} \]

(Unterschied zwischen den Patientengruppen bzw. Unterschied zwischen Patienten und Kontrollpersonen)

Die Ergebnisse des gepaarten und ungepaarten Student t-Test wurden in Form der Irrtumswahrscheinlichkeit \(p \) für die Ablehnung der entsprechenden Nullhypothesen angegeben. Als Signifikanzgrenze wurde \(p < 0,05 \) angenommen.
Die Symbolisierung der Irrtumswahrscheinlichkeiten erfolgte in allen Fällen mit Sternchen:

* : p < 0,05, ** : p < 0,01, *** : p < 0,001.

Eine lineare Regressionsanalyse wurde auf die Parameter der Lungenfunktionsprüfung (die Einsekundenausatmungskapazität, FEV1, die Vitalkapazität, VC, die totale Lungenkapazität, TLC, das Residualvolumen, RV, der Atemwegswiderstand, R und der CO Transferfaktor, korrigiert auf die aktuelle Hb-Konzentration, DLCOc, der Sauerstoffpartialdruck, pO2) und auf die Parameter der Hämodynamik (der mittlere pulmonalarterielle Druck, mPAP, das Herzminutenvolumen, HMV, der pulmonal vaskuläre Widerstand, PVR, der zentrale Venendruck, CVP, der mittlere systemisch arterielle Druck, mSAP, der systemisch vaskuläre Widerstand, SVR, die arterielle Sauerstoffsättigung, SaO2, die zentralvenöse Sauerstoffsättigung, SvO2 und der Cardiac Index, CI) jeweils in Bezug auf die peak VO2, angewendet. Die Ergebnisse der Regressionsanalyse wurden in Form des Korrelationskoeffizienten r und der Irrtumswahrscheinlichkeit p für die Ablehnung der Nullhypothese (es liegt keine Korrelation zwischen den untersuchten Parametern vor) angegeben. Als Signifikanzgrenze wurde auch hier p < 0,05 angenommen. Die Symbolisierung der Irrtumswahrscheinlichkeiten erfolgte in allen Fällen mit Sternchen:

* : p < 0,05, ** : p < 0,01, *** : p < 0,001.

In der Studie II haben wir für die Patienten mit chronisch thromboembolischer pulmonaler Hypertonie für die AaDCO2 und die EaDCO2 bei Ruhe, maximaler Belastung und der Kombination für die Diagnose CTEPH die Sensitivität und die Spezifität berechnet. Nach Harms versteht man unter der Sensitivität die Wahrscheinlichkeit, mit der ein geringer als krank erkannt wird. Die Spezifität beschreibt die Wahrscheinlichkeit, mit der ein Gesunder als gesund erkannt wird.
Folglich ist in unserem Test die Sensitivität die Wahrscheinlichkeit, mit der ein CTEPH Patient (nicht PPH Kranker) auch als CTEPH Patient erkannt wird.

Die Spezifität ist dann die Wahrscheinlichkeit, mit der ein nicht CTEPH Kranker (PPH Patient) als ein solcher erkannt wird.
3. Ergebnisse

3.1. Studie I: Pulmonale Hypertonie infolge einer Lungenfibrose

3.1.1. Anthropometrische Daten

Eine Gegenüberstellung von Kontrollpersonen und Patienten mit pulmonaler Hypertonie infolge einer schweren Lungenfibrose (LF) zeigte keine signifikanten Unterschiede hinsichtlich Alter, Körpergröße und Körpergewicht (Tab. 2).

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Kontrollen</th>
<th>LF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl(n)</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Geschlecht(w)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(m) 9</td>
<td>9</td>
</tr>
<tr>
<td>Alter(Jahre)</td>
<td>52,2</td>
<td>51,9</td>
</tr>
<tr>
<td></td>
<td>(32-72)</td>
<td>(34-72)</td>
</tr>
<tr>
<td>Körpergröße(cm)</td>
<td>175,5</td>
<td>174,5</td>
</tr>
<tr>
<td></td>
<td>(164-195)</td>
<td>(162-190)</td>
</tr>
<tr>
<td>Körpergewicht(kg)</td>
<td>71,1</td>
<td>74,3</td>
</tr>
<tr>
<td></td>
<td>(56-92)</td>
<td>(51-95)</td>
</tr>
</tbody>
</table>

3.1.2. Ruheparameter

3.1.2.1. Lungenfunktion

Wie in Tab. 3 dargestellt, zeigten sich bei den Lungenfunktionsparametern signifikante Unterschiede zwischen den Kontrollpersonen und den LF Patienten. So war die Einsekundenausatmungskapazität in Litern bei den LF Patienten deutlich reduziert, \((p = 3,26 \times 10^{-5})\), ebenso die Einsekundenausatmungskapazität in Prozent der Norm \((p = 1,18 \times 10^{-6})\), die Vitalkapazität in Litern \((p = 1,82 \times 10^{-5})\), die Vitalkapazität in Prozent der Norm \((p = 9,70 \times 10^{-7})\), die totale Lungenkapazität in Litern \((p = 1,61 \times 10^{-5})\), die totalen Lungenkapazität in Prozent der Norm, \((p = 1,68 \times 10^{-6})\), die Resistance \((p = 0,0014)\), die Resistance in Prozent der Norm \((p = 0,0014)\), siehe Tab. 3.
Tabelle 3. Lungenfunktion bei Kontrollpersonen und Patienten mit pulmonaler Hypertonie infolge einer Lungenfibrose.

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Kontrollen</th>
<th>LF</th>
<th>Korrelationskoeffizient (r) mit peak VO₂ (% d. N.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEV₁ (l) ± SEM</td>
<td>3,88 ± 0,35</td>
<td>1,51 ± 0,17 ***</td>
<td>Kontrollen</td>
</tr>
<tr>
<td>FEV₁ (%d.N.) ± SEM</td>
<td>112,53 ± 4,65</td>
<td>46,63 ± 4,99 ***</td>
<td>0,40</td>
</tr>
<tr>
<td>VC (l) ± SEM</td>
<td>4,93 ± 0,41</td>
<td>2,15 ± 0,19 ***</td>
<td></td>
</tr>
<tr>
<td>VC (%d.N.) ± SEM</td>
<td>110,46 ± 3,98</td>
<td>51,15 ± 4,42 ***</td>
<td>0,45</td>
</tr>
<tr>
<td>TLC (l) ± SEM</td>
<td>7,69 ± 0,35</td>
<td>4,48 ± 0,36 ***</td>
<td></td>
</tr>
<tr>
<td>TLC (%d.N.) ± SEM</td>
<td>114,45 ± 2,75</td>
<td>68,76 ± 5,76 ***</td>
<td>0,22</td>
</tr>
<tr>
<td>RV (l) ± SEM</td>
<td>2,76 ± 0,15</td>
<td>2,34 ± 0,28</td>
<td></td>
</tr>
<tr>
<td>RV (%d.N.) ± SEM</td>
<td>127,81 ± 6,25</td>
<td>112,35 ± 15,08</td>
<td>-0,15</td>
</tr>
<tr>
<td>Resistance (kpa*s/l) ± SEM</td>
<td>0,17 ± 0,02</td>
<td>0,52 ± 0,08 **</td>
<td></td>
</tr>
<tr>
<td>Resistance (%d.N.) ± SEM</td>
<td>58,19 ± 5,19</td>
<td>174,93 ± 26,75 **</td>
<td>-0,29</td>
</tr>
<tr>
<td>DLCOc (mmol/min/kpa) ± SEM</td>
<td>3,31 ± 0,49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLCOc (%d.N.) ± SEM</td>
<td>35,49 ± 4,70</td>
<td>0,83 **</td>
<td></td>
</tr>
<tr>
<td>peak VO₂ (%d.N.) ± SEM</td>
<td>112,08 ± 7,47</td>
<td>45,65 ± 4,94 ***</td>
<td></td>
</tr>
<tr>
<td>Ruhe pO₂ (mmHg) ± SEM</td>
<td>78,25 ± 2,99</td>
<td>62,89 ± 3,31 *</td>
<td>0,19</td>
</tr>
</tbody>
</table>

3.1.2.2. Maximale Sauerstoffaufnahme

Die maximalen Sauerstoffaufnahme in Prozent der Norm war bei den LF Patienten stark erniedrigt und betrug im Mittel lediglich 45,65 % der Norm (p = 5,51 * 10⁻⁵, Tab. 3).

3.1.2.3. Blutgasanalyse

Der Sauerstoffpartialdruck in Ruhe war bei den LF Patienten mittelgradig auf 62,89 mmHg erniedrigt (p= 0,015) (Tab. 3).

Der Kohlendioxidpartialdruck in Ruhe war ebenfalls mittelgradig auf 35,90 mmHg erniedrigt (p = 0,007) (Abb. 6).

3.1.2.4. Hämodynamik

Die Hämodynamikwerte wurden nur von den LF Patienten erhoben. Hier zeigten sich keine Signifikanzen für die Korrelationen mit der maximalen Sauerstoffaufnahme (Tab. 4).
<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Mittelwert ± SEM</th>
<th>Korrelationskoeffizient (r) mit peak VO(_2) (% d.N.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mPAP (mmHg) ± SEM</td>
<td>32,56 ± 4,02</td>
<td>-0,42</td>
</tr>
<tr>
<td>HMV (l/min) ± SEM</td>
<td>4,2 ± 0,46</td>
<td>-0,16</td>
</tr>
<tr>
<td>PVR (dyn) ± SEM</td>
<td>598,44 ± 107,99</td>
<td>-0,22</td>
</tr>
<tr>
<td>CVP (mmHg) ± SEM</td>
<td>2,00 ± 1,04</td>
<td>-0,36</td>
</tr>
<tr>
<td>mSAP (mmHg) ± SEM</td>
<td>29,78 ± 1,45</td>
<td>-0,56</td>
</tr>
<tr>
<td>SVR (dynscm(^{-5})) ± SEM</td>
<td>1770 ± 132,28</td>
<td>-0,11</td>
</tr>
<tr>
<td>SaO(_2) (%) ± SEM</td>
<td>89,91 ± 1,61</td>
<td>0,64</td>
</tr>
<tr>
<td>SvO(_2) (%) ± SEM</td>
<td>60,38 ± 2,10</td>
<td>0,23</td>
</tr>
<tr>
<td>CI (l/min/m(^2)) ± SEM</td>
<td>2,16 ± 0,19</td>
<td>-0,24</td>
</tr>
</tbody>
</table>

Tabelle 4. Hämodynamik bei Patienten mit pulmonaler Hypertonie infolge einer Lungenfibrose. Mittelwerte ± SEM. mPAP, mittlerer pulmonal-arterieller Druck, HMV, Herzminutenvolumen, PVR, pulmonal vaskulärer Widerstand, CVP, zentraler Venendruck, mSAP, mittlerer systemisch arterieller Druck, SVR, systemisch vaskulärer Widerstand, SaO\(_2\), arterielle Sauerstoffsättigung, SvO\(_2\), zentralvenöse Sauerstoffsättigung, CI, Cardiac Index.

3.1.3. Spiroergometrische Daten

3.1.3.1. Hämodynamische und ventilatorische Parameter

Wie in Abb. 5 dargestellt, betrug die Herzfrequenz in Ruhe bei den Kontrollpersonen 75,91 ± 3,15 min\(^{-1}\), bei LF Patienten war sie auf 86,91 ± 2,83 min\(^{-1}\) erhöht (p = 0,004).

Bei maximaler Belastung erreichten die Kontrollpersonen eine signifikant höhere Herzfrequenz als die LF Patienten (150,64 ± 7,88 min\(^{-1}\) vs. 120,36 ± 3,99 min\(^{-1}\), p = 0,009).

Drei Minuten nach maximaler Belastung sank bei den Kontrollpersonen die Herzfrequenz auf 103,45 ± 5,60 min\(^{-1}\) und bei den LF Patienten auf 96,91 ± 3,88 min\(^{-1}\).

Acht Minuten nach maximaler Belastung sank die Herzfrequenz weiter auf 92 ± 4,57 min\(^{-1}\) bei den Kontrollpersonen und auf 88,45 ± 2,38 min\(^{-1}\) bei den LF Patienten. Bei den Erholungsherzfrequenzen lagen keine signifikanten Differenzen zwischen den Gruppen vor.

Die Sauerstoffaufnahme in Ruhe ergab keinen signifikanten Unterschied zwischen den Gruppen. Sie betrug bei den Kontrollpersonen 0,27 ± 0,02 l/min, bei den LF Patienten 0,25 ± 0,01 l/min.
Bei maximaler Belastung war die Sauerstoffaufnahme bei den LF Patienten, im Gegensatz zu den Kontrollpersonen, stark erniedrigt (2,37 ± 0,34 l/min vs. 0,91 ± 0,08 l/min, p = 0,0013).

Nach drei Minuten sanken die Werte auf 0,48 ± 0,06 l/min für die Kontrollpersonen und auf 0,39 ± 0,03 l/min für die LF Patienten.

Acht Minuten nach maximaler Belastung sank die Sauerstoffaufnahme weiter 0,36 ± 0,04 l/min bei Kontrollpersonen und auf 0,29 ± 0,02 l/min bei den LF Patienten. Die Erholungswerte zeigten keine signifikanten Unterschiede zwischen den Gruppen.

Die Ventilation unter Ruhebedingungen ergab keinen signifikanten Unterschied zwischen den Gruppen. Sie betrug bei den Kontrollpersonen 10,55 ± 0,78 l/min und bei den LF Patienten 14,29 ± 2,19 l/min.

Bei maximaler Belastung betrug die Ventilation bei den Kontrollpersonen 76,06 ± 10,09 l/min, bei den LF Patienten war sie auf 44,18 ± 4,34 l/min signifikant erniedrigt (p = 0,006).

Nach drei Minuten sank die Ventilation dann wieder auf 25,93 ± 2,87 bei den Kontrollpersonen und auf 21,87 ± 1,56 bei den LF Patienten.

Acht Minuten nach maximaler Belastung sank die Ventilation weiter auf 16,39 ± 1,68 l/min bei den Kontrollpersonen und 15,92 ± 0,77 l/min bei den LF Patienten. Auch hier lagen bei den Erholungswerten keine signifikanten Unterschiede zwischen den Gruppen vor.

Das Atemzugvolumen in Ruhe betrug bei den Kontrollpersonen 0,71 ± 0,06 l und bei den LF Patienten 0,73 ± 0,09 l.

Bei maximaler Belastung erreichten die Kontrollpersonen ein signifikant höheres Atemzugvolumen als die LF Patienten (2,63 ± 0,30 l vs. 1,17 ± 0,14 l, p = 0,0007).

Nach drei Minuten gingen die Werte bei den Kontrollpersonen auf 1,18 ±0,13 l nach acht Minuten weiter auf 0,83 ± 0,08 l zurück.

Bei den LF Patienten fiel das Atemzugvolumen nach drei Minuten auf 0,89 ± 0,11 l und nach acht Minuten auf 0,72 ± 0,06 l. Es ergaben
sich bei den Erholungswerten des Atemzugvolumens keine signifikantenden Differenzen zwischen den Gruppen.

Die Atemfrequenz bei den LF Patienten war in Ruhe 19,87 ± 1,73 min⁻¹, bei den Kontrollpersonen 15,67 ± 1,35 min⁻¹.

Bei maximaler Belastung hatten die LF Patienten eine signifikant höhere Atemfrequenz als die Kontrollpersonen (29,12 ± 1,63 min⁻¹ vs. 39 ± 2,67 min⁻¹, p = 0,012).

Drei Minuten nach maximaler Belastung betrug die Atemfrequenz bei den LF Patienten 26,19 ± 1,99 min⁻¹ und 22,97 ± 1,95 min⁻¹ bei den Kontrollpersonen.

Acht Minuten nach maximaler Belastung sank die Atemfrequenz auf 20,55 ± 1,82 min⁻¹ bei den Kontrollpersonen und auf 22,89 ± 1,53 min⁻¹ bei den LF Patienten. Auch hier lagen bei den Erholungswerten keine signifikanten Unterschiede zwischen den Gruppen vor.
Abbildung 5. Hämodynamische und ventilatorische Parameter vor, während und nach maximaler Belastung bei Kontrollpersonen und Patienten mit pulmonaler Hypertonie infolge einer Lungenfibrose. Mittelwerte ± SEM. Weisse Säulen: Kontrollen (n = 11). Graue Säulen: Lungenfibrosen (n = 11). HR, Herzfrequenz, VO$_2$, Sauerstoffaufnahme, VE, Ventilation, VT, Atemzugvolumen, BF, Atemfrequenz. *, p < 0.05, **, p < 0.01, ***, p < 0.001 für Unterschiede zwischen den Gruppen.
3.1.3.2. Arterielle und exspiratorische Sauerstoff- und Kohlendioxidpartialdrucke

Wie in Abb. 6 dargestellt, war der Sauerstoffpartialdruck in Ruhe bei den Kontrollpersonen signifikant höher als bei den LF Patienten (78,25 ± 2,99 mmHg vs. 62,89 ± 3,31 mmHg, p = 0,015).

Auch bei maximaler Belastung war der Sauerstoffpartialdruck bei den Kontrollpersonen signifikant höher als bei den LF Patienten (81,52 ± 2,40 mmHg vs. 51,92 ± 4,37 mmHg, p = 0,0003).

Drei Minuten nach maximaler Belastung ergaben sich Werte für die Kontrollpersonen von 95,30 ± 2,36 mmHg und für die LF Patienten von 68,58 ± 6,17 mmHg (p = 0,004) und war somit signifikant erniedrigt.

Auch acht Minuten nach maximaler Belastung zeigte sich ein signifikant erniedrigter Sauerstoffpartialdruck von 70,38 ± 5,10 mmHg bei den LF Patienten und 90,40 ± 2,46 mmHg bei den Kontrollpersonen (p = 0,004).

Der Kohlendioxidpartialdruck in Ruhe betrug bei den Kontrollpersonen 39,85 ± 0,88 mmHg und war bei den LF Patienten auf 35,90 ± 1,52 erniedrigt (p = 0,007).

Bei maximaler Belastung ergaben sich Kohlendioxidpartialdrucke von 37,42 ± 1,17 für die Kontrollpersonen und 36,72 ± 2,19 für die LF Patienten.

Drei Minuten nach maximaler Belastung zeigten sich Partialdrucke von 34,44 ± 1,11 mmHg für die Kontrollpersonen und 35,65 ± 1,56 mmHg für die LF Patienten.

Die Kontrollpersonen hatten acht Minuten nach maximaler Belastung Kohlendioxidpartialdrucke von 34,49 ± 1,14 mmHg und die LF Patienten von 34,16 ± 1,07 mmHg.

Der Base Excess in Ruhe betrug bei den Kontrollpersonen 2,11 ± 0,37 mmol/l und bei den LF Patienten 1,06 ± 0,66 mmol/l und war damit nicht signifikant unterschiedlich zwischen den Gruppen.
Bei maximaler Belastung zeigte sich ein signifikant erhöhter Base Excess bei den LF Patienten gegenüber den Kontrollpersonen (-3,27 ± 1,16 mmol/l vs. -0,31 ± 0,84 mmol/l, p = 0,014).

Drei Minuten nach maximaler Belastung ergab sich ein Base Excess für die Kontrollpersonen von -6,45 ± 1,42 mmol/l und für die LF Patienten von -2,21 ± 0,87 mmol/l (p = 0,004).

Auch nach acht Minuten zeigte sich ein signifikant erhöhter Base Excess für die LF Patienten gegenüber den Kontrollpersonen (-5,84 ± 1,48 mmol/l vs. -1,56 ± 0,82 mmol/l, p = 0,008).

Der endexspiratorische Sauerstoffpartialdruck in Ruhe betrug bei den Kontrollpersonen 109,14 ± 1,17 mmHg und bei den LF Patienten 111,05 ± 2,39 mmHg.

Unter maximaler Belastung stieg der endexspiratorische Sauerstoffpartialdruck bei den Kontrollpersonen auf 112,30 ± 1,51 mmHg und bei den LF Patienten auf 116,90 ± 3,38 mmHg an.

Nach drei Minuten stieg der endexspiratorische Sauerstoffpartialdruck noch weiter auf 122,33 ± 0,87 mmHg bei den Kontrollpersonen und auf 117,33 ± 1,59 mmHg bei den LF Patienten an (p = 0,005).

Acht Minuten nach maximaler Belastung sank der endexspiratorische Sauerstoffpartialdruck dann auf 115,48 ± 1,38 mmHg bei den Kontrollpersonen und auf 115,06 ± 1,44 mmHg bei den LF Patienten.

Bei der alveoloarteriellen Sauerstoffdifferenz ergaben sich in Ruhe Werte von 30,88 ± 2,59 mmHg für die Kontrollpersonen und 48,15 ± 4,70 mmHg für die LF Patienten (p = 0,02).

Bei maximaler Belastung zeigten die LF Patienten eine signifikant erhöhte alveolo-arterielle Sauerstoffdifferenz als die Kontrollpersonen (30,23 ± 2,98 mmHg vs. 64,98 ± 7,44 mmHg, p = 0,003).

Nach drei Minuten ergab sich eine Differenz von 27,03 ± 1,95 mmHg bei den Kontrollpersonen und 48,75 ± 6,89 mmHg bei den LF Patienten (p = 0,02).
Auch nach acht Minuten hatten die LF Patienten eine signifikant höhere alveoloarterielle Sauerstoffdifferenz als die Kontrollpersonen (24,74 ± 1,63 mmHg vs. 44,68 ± 5,78 mmHg, p = 0,01).

Abbildung 6. Arterielle und exspiratorische O₂- und CO₂-Partialdrucke vor, während und nach maximaler Belastung bei Kontrollpersonen und Patienten mit pulmonaler Hypertonie infolge einer Lungenfibrose. Mittelwerte ± SEM. Weisse Säulen: Kontrollen (n = 11). Graue Säulen: Lungenfibrosen (n = 11). pO₂, Sauerstoffpartialdruck, pCO₂, Kohlendioxidpartialdruck, BE, Base Excess, P_{ET}O₂, endexspiratorischer O₂-Partialdruck, AaDO₂, Alveolo-arterielle Sauerstoffdifferenz. *, p < 0,05, **, p < 0,01, ***, p < 0,001 für Unterschiede zwischen den Gruppen.
3.1.3.3. Arterielle und exspiratorische Kohlendioxidkonzentratio-
nen

Wie in Abb. 7 dargestellt war die endexspiratorische Kohlendioxid-
konzentration in Ruhe bei den LF Patienten im Gegensatz zu den
Kontrollpersonen signifikant erniedrigt (5,18 ± 0,14 % vs. 4,31 ±
0,25 % p = 0,002).

Auch bei maximaler Belastung zeigte die endexspiratorische Kohlen-
dioxidkonzentration einen signifikanten Unterschied. Die Kontroll-
personen hatten eine endexspiratorische Kohlendioxidkonzentration
von 5,67 ± 0,16 % und die LF Patienten lediglich 4,25 ± 0,40 % (p =
0,007).

Nach drei Minuten hatten die Kontrollpersonen eine endexspiratori-
sche Kohlendioxidkonzentration von 4,85 ± 0,12 % und die LF Pati-
enten von 4,31 ± 0,29 %.

Acht Minuten nach maximaler Belastung hatten die Kontrollpersonen
eine signifikant erhöhte endexspiratorische Kohlendioxidkonzentrati-
on gegenüber den LF Patienten (4,71 ± 0,12 % vs. 4,19 ± 0,22 %, p =
0,04).

Der Kohlendioxidanteil der gemischten exspirierten Luft ergab in
Ruhe bei den LF Patienten einen deutlichen signifikant erniedrigten
Anteil als bei den Kontrollpersonen (3,16 ± 0,12 % vs. 2,22 ± 0,12
%, p = 7,70* 10^{-5}).

Auch bei maximaler Belastung zeigte sich für die LF Patienten ein
deutlich reduzierter Kohlendioxidanteil der gemischten exspirierten
Luft im Gegensatz zu den Kontrollpersonen (4,39 ± 0,14 % vs. 2,67 ±
0,22 %, p = 6,13* 10^{-5}).

Nach drei Minuten hatten die Kontrollpersonen einen Kohlendioxid-
anteil der gemischten exspirierten Luft von 3,32 ± 0,11 % und die LF
Patienten von 2,41 ± 0,17 % (p = 0,0008).

Auch acht Minuten nach maximaler Belastung war bei den LF Patien-
ten eine deutlich erniedrigte Kohlendioxidkonzentration der gemisch-
ten exspirierten Luft festzustellen (2,95 ± 0,09 % vs. 2,20 ± 0,11, p =
0,0003).
Bei der arteriellen Kohlendioxidkonzentration war nur in Ruhe ein signifikanter Unterschied zu erkennen. Die Kontrollpersonen hatten eine arterielle Kohlendioxidkonzentration von $5,56 \pm 0,12 \%$ und die LF Patienten von $5,09 \pm 0,24 \%$ ($p = 0,02$).

Die Kontrollpersonen hatten unter maximaler Belastung eine arterielle Kohlendioxidkonzentration von $5,22 \pm 0,17 \%$ und die LF Patienten von $5,30 \pm 0,31 \%$.

Drei Minuten nach maximaler Belastung ergab sich für die Kontrollpersonen eine arterielle Kohlendioxidkonzentration von $4,80 \pm 0,16 \%$ und für die LF Patienten von $5,07 \pm 0,24 \%$.

Nach acht Minuten zeigte sich bei den Kontrollpersonen eine arterielle Kohlendioxidkonzentration von $4,81 \pm 0,16$ und bei den LF Patienten von $4,85 \pm 0,17 \%$.

Die funktionelle alveoläre Ventilation betrug in Ruhe bei den Kontrollpersonen $6,43 \pm 0,49 \ l/\text{min}$ und bei den LF Patienten $7,59 \pm 1,40 \ l/\text{min}$.

Bei maximaler Belastung erreichten die Kontrollpersonen eine signifikant höhere funktionelle alveoläre Ventilation als die LF Patienten ($59,58 \pm 8,41 \ l/\text{min}$ vs. $28,65 \pm 3,53 \ l/\text{min}$, $p = 0,004$).

Drei Minuten nach maximaler Belastung sank die funktionelle alveoläre Ventilation bei den Kontrollpersonen auf $18,04 \pm 2,23 \ l/\text{min}$ und bei den LF Patienten auf $12,54 \pm 1,21 \ l/\text{min}$ ($p = 0,02$).

Nach acht Minuten sank die funktionelle alveoläre Ventilation weiter auf $10,39 \pm 1,17 \ l/\text{min}$ bei den Kontrollpersonen und auf $8,57 \pm 0,69 \ l/\text{min}$ bei den LF Patienten.

Die effektive alveoläre Ventilation betrug in Ruhe bei den Kontrollpersonen $6,01 \pm 0,51 \ l/\text{min}$ und bei den LF Patienten $5,74 \pm 1,24 \ l/\text{min}$.

Bei maximaler Belastung erreichten die Kontrollpersonen eine signifikant höhere effektive alveoläre Ventilation als die LF Patienten ($66,57 \pm 10,16 \ l/\text{min}$ vs. $19,00 \pm 2,74 \ l/\text{min}$, $p = 0,0006$).
Auch nach drei Minuten zeigten die Kontrollpersonen eine signifikant höhere effektive alveolare Ventilation als die LF Patienten (18,48 ± 2,41 l/min vs. 9,39 ± 1,45 l/min, p = 0,005).

Acht Minuten nach maximaler Belastung zeigte sich ebenfalls eine signifikant höhere effektive alveolare Ventilation für die Kontrollpersonen im Gegensatz zu den LF Patienten (10,27 ± 1,22 l/min vs. 6,50 ± 0,89 l/min, p = 0,01).
Abbildung 7. Arterielle und exspiratorische CO₂-Konzentrationen zur Berechnung der alveolären Ventilation bei Kontrollpersonen und Patienten mit pulmonaler Hypertonie infolge einer Lungenfibrose. Mittelwerte ± SEM. Weisse Säulen: Kontrollen (n = 11). Graue Säulen: Lungenfibrosen (n = 11). F$_{ET}$CO₂, endexspiratorische CO₂-Konzentration, F$_{EC}$CO₂, CO₂-Anteil der gemischten exspirierten Luft, FaCO₂, arterielle CO₂-Konzentration, fkt alv VE, funktionelle alveoläre Ventilation, eff alv VE, effektive alveoläre Ventilation. *, p < 0,05, **, p < 0,01, ***, p < 0,001 für Unterschiede zwischen den Gruppen.
3.1.3.4. Funktioneller und effektiver Totraum

Wie in Abb. 8 dargestellt, betrug der funktionelle Totraum bei den Kontrollpersonen in Ruhe $0,27 \pm 0,02$ l und bei den LF Patienten $0,35 \pm 0,04$ l.

Bei maximaler Belastung erreichte der funktionelle Totraum bei den LF Patienten einen signifikant niedrigeren Wert als bei den Kontrollpersonen ($0,57 \pm 0,05$ l vs. $0,42 \pm 0,05$ l, $p = 0,04$).

Nach drei Minuten sank der funktionelle Totraum bei den Kontrollpersonen auf $0,35 \pm 0,03$ l und bei den LF Patienten auf $0,38 \pm 0,04$ l.

Acht Minuten nach maximaler Belastung sank der funktionelle Totraum weiter auf $0,30 \pm 0,02$ l bei den Kontrollpersonen und auf $0,33 \pm 0,03$ l bei den LF Patienten.

Der Quotient aus dem funktionelle Totraum und dem Atemzugvolumen (fkt VD/VT, funktioneller relativer Totraum) war bei den Kontrollpersonen signifikant niedriger als bei den LF Patienten ($39,01 \pm 1,37 \%$ vs. $48,09 \pm 1,75 \%, p = 0,004$).

Bei maximaler Belastung zeigte sich bei den Kontrollpersonen eine deutliche signifikante Erniedrigung des funktionellen relativen Totraumes gegenüber Ruhe. Demgegenüber fiel der Wert bei den LF Patienten deutlich weniger stark ab und war bei Belastung signifikant höher als bei den Kontrollpersonen ($22,73 \pm 1,01 \%$ vs. $36,04 \pm 2,30 \%, p = 0,0003$).

Auch drei Minuten nach maximaler Belastung ergab sich für die Kontrollpersonen eine deutliche signifikante Erniedrigung bei dem funktionellen relativen Totraum gegenüber Ruhe. Im Gegensatz hierzu fiel der Wert bei den LF Patienten deutlich weniger stark ab und war drei Minuten nach Belastung signifikant höher als bei den Kontrollpersonen ($31,39 \pm 1,74 \%$ vs. $43,54 \pm 2,51$, $p = 0,0009$).

Nach acht Minuten hatten die Kontrollpersonen einen funktionellen relativen Totraum von $37,21 \pm 1,62 \%$ und die LF Patienten von $46,64 \pm 2,58 \%$ ($p = 0,01$).
Der effektive Totraum betrug bei den Kontrollpersonen in Ruhe 0,30 ± 0,03 l und bei den LF Patienten 0,44 ± 0,05 l (p = 0,04). Bei maximaler Belastung ergab sich für die Kontrollpersonen ein effektiver Totraum von 0,33 ± 0,03 l und für die LF Patienten von 0,66 ± 0,12 l (p = 0,03).

Nach drei Minuten war der effektive Totraum 0,33 ± 0,02 l bei den Kontrollpersonen und bei den LF Patienten sank er auf 0,51 ± 0,08 l. Acht Minuten nach maximaler Belastung sank der effektive Totraum bei den Kontrollpersonen auf 0,30 ± 0,02 l und auf 0,42 ± 0,05 l bei den LF Patienten (p = 0,04).

Der effektive relative Totraum (eff VT / VT) war in Ruhe bei den LF Patienten signifikant erhöht (43,03 ± 1,96 % vs. 60,62 ± 4,62 %, p = 0,01). Bei maximaler Belastung war der effektive relative Totraum bei den LF Patienten, im Gegensatz zu den Kontrollpersonen, deutlich signifikant erhöht (15,47 ± 2,73 % vs. 53,40 ± 5,68 %, p = 0,0003). Nach drei Minuten stieg bei den LF Patienten der Quotient von effektiven Totraum / Atemzugvolumen auf 56,97 ± 5,34 % und bei den Kontrollpersonen stieg er auf 30,27 ± 2,69 % (p = 0,002). Acht Minuten nach maximaler Belastung stieg der effektive relative Totraum weiter auf 58,81 ± 5,06 % bei den LF Patienten und auf 38,24 ± 2,19 % bei den Kontrollpersonen (p = 0,005).

Der Quotient aus effektiven Totraum und funktionellen Totraum (eff VT / fkt VT) betrug in Ruhe bei den LF Patienten 1,28 ± 0,12 und 1,10 ± 0,03 bei den Kontrollpersonen. Bei maximaler Belastung hatten die LF Patienten einen signifikant höheren Wert als die Kontrollpersonen (0,65 ± 0,09 vs. 1,57 ± 0,27, p = 0,012). Drei Minuten nach maximaler Belastung hatten die Kontrollpersonen einen eff VT / fkt VT von 0,95 ± 0,04 und die LF Patienten von 1,36 ± 0,18.
Nach acht Minuten zeigten die Kontrollpersonen einen eff VD/ fkt VD von 1,02 ± 0,03 und die LF Patienten von 1,30 ± 0,16. Bei den Erholungswerten ergaben sich keine signifikanten Unterschiede zwischen den Gruppen.

Abbildung 8. Funktioneller und effektiver Totraum vor, während und nach maximaler Belastung bei Kontrollpersonen und Patienten mit pulmonaler Hypertonie infolge einer Lungenfibrose. Mittelwerte ± SEM. Weisse Säulen: Kontrollen (n = 11). Graue Säulen: Lungenfibrosen (n = 11). fkt VD, funktioneller Totraum, fkt VD/VT, funktioneller Totraum/Atemzugvolumen, eff VD, effektiver Totraum, eff VD/VT, effek- tiver Totraum/Atemzugvolumen, eff VD/fkt VD, effektiver Totraum/funktioneller Totraum. *, p < 0,05, **, p < 0,01, ***, p < 0,001 für Unterschiede zwischen den Gruppen.
3.1.3.5. Maximale hämodynamische, ventilatorische und metabolische Parameter

Eine Gegenüberstellung von Kontrollpersonen und LF Patienten ergab bei allen Parametern signifikante Unterschiede zwischen den Gruppen, siehe Tab. 5.

<table>
<thead>
<tr>
<th></th>
<th>Kontrollen</th>
<th>LF</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. HR</td>
<td>150,64</td>
<td>120,36</td>
<td>0,009</td>
</tr>
<tr>
<td>Max. HR, % d. N.</td>
<td>81,45</td>
<td>41,59</td>
<td>0,004</td>
</tr>
<tr>
<td>Max. VO₂ (peak VO₂)</td>
<td>2,37</td>
<td>0,91</td>
<td>0,001</td>
</tr>
<tr>
<td>Max. VO₂ (peak VO₂), % d. N.</td>
<td>112,08</td>
<td>45,65</td>
<td>5,5*10⁻⁵</td>
</tr>
<tr>
<td>Max. Vₑ</td>
<td>76,06</td>
<td>44,18</td>
<td>0,006</td>
</tr>
<tr>
<td>Max. Vₑ, % d. N.</td>
<td>111,53</td>
<td>67,65</td>
<td>0,001</td>
</tr>
<tr>
<td>Max. VT</td>
<td>2,63</td>
<td>1,17</td>
<td>0,0007</td>
</tr>
<tr>
<td>Max. VT, % d. N.</td>
<td>139,61</td>
<td>67,44</td>
<td>6,8*10⁻⁴</td>
</tr>
<tr>
<td>Max. BF</td>
<td>29,12</td>
<td>39,00</td>
<td>0,012</td>
</tr>
<tr>
<td>Max. BF, % d. N.</td>
<td>80,89</td>
<td>108,34</td>
<td>0,012</td>
</tr>
<tr>
<td>3 min BE</td>
<td>-6,45</td>
<td>-2,21</td>
<td>0,004</td>
</tr>
<tr>
<td>3 min BE-Ruhe BE</td>
<td>-8,56</td>
<td>-3,27</td>
<td>0,002</td>
</tr>
</tbody>
</table>

3.1.3.6. Arterio-exspiratorische Kohlendioxiddifferenzen

Wie bereits oben dargestellt, hatten die LF Patienten in Ruhe einen signifikant erniedrigten Kohlendioxidanteil der gemischten exspirierten Luft, eine signifikant erniedrigte endexspiratorische Kohlendioxidkonzentration und eine signifikant erniedrigte arterielle Kohlendioxidkonzentration, gegenüber den Kontrollpersonen, siehe Abb. 7.

Wie in Abb. 9 dargestellt, betrug die Differenz aus der arteriellen Kohlendioxidkonzentration und dem Kohlendioxidanteil der gemischten exspirierten Luft (EaDCO₂) in Ruhe bei den Kontrollpersonen 2,40 ± 0,13 % und bei den LF Patienten 2,88 ± 0,18 % und zeigte damit keine signifikanten Unterschiede zwischen den Gruppen.
Das gleiche galt für die Differenz aus der arteriellen Kohlendioxidkonzentration und der endexspiratorischen Kohlendioxidkonzentration (AaDCO$_2$) (0,38 ± 0,10 % vs. 0,74 ± 0,12 %).

Wie bereits oben dargestellt, hatten die LF Patienten bei maximaler Belastung einen deutlichen signifikant niedrigeren Kohlendioxidanteil der gemischten exspirierten Luft und einen signifikant niedrigere endexspiratorische Kohlendioxidkonzentration als die Kontrollpersonen, siehe Abb. 9, Mitte, F$_E$CO$_2$, F$_{ET}$CO$_2$. Die arterielle Kohlendioxidkonzentration zeigte dagegen keinen signifikanten Unterschied zwischen Kontrollpersonen und den LF Patienten (siehe Abb. 9, Mitte, FaCO$_2$). Die EaDCO$_2$ erreichte entsprechend bei den LF Patienten unter maximaler Belastung einen signifikant höheren Wert als bei den Kontrollpersonen (0,83 ± 0,16 % vs. 2,55 ± 0,22 %, p = 0,0003). Auch die AaDCO$_2$ zeigte einen signifikant höheren Wert bei den LF Patienten gegenüber den Kontrollpersonen (-0,45 ± 0,11 % vs. 0,88 ± 0,16 %, p = 0,0002), wobei die Kontrollpersonen einen negativen Wert erreichten, welcher durch die vertiefte Atmung zu erklären ist (s. Diskussion).

3.1.3.7. Absolute Veränderungen der arteriellen und exspiratorischen Kohlendioxidkonzentrationen bei maximaler Belastung

Wie in Abb. 9 dargestellt, stieg der Kohlendioxidanteil der gemischten exspirierten Luft bei den Kontrollpersonen bei Belastung deutlich an, während bei den LF Patienten nur ein geringer Anstieg festzustellen war. Dadurch war bei den LF Patienten die entsprechende Differenz zur Ruhe und Maximalwerten signifikant gegenüber den Kontrollpersonen erniedrigt (1,23 ± 0,16 % vs. 0,46 ± 0,13 %, p = 0,005). Demgegenüber ergaben sich keine signifikanten Unterschiede zwischen den Gruppen hinsichtlich der endexspiratorischen Kohlendioxidkonzentration. Sie betrug bei den Kontrollpersonen 0,50 ± 0,16 % und bei den LF Patienten -0,06 ± 0,21 %.
Die arterielle Kohlendioxidkonzentration fiel bei den Kontrollpersonen unter Belastung geringfügig ab, während sie bei den LF Patienten leicht anstieg. Dadurch ergab sich ein signifikanter Unterschied der Ruhe – Arbeit Differenzen (-0,34 ± 0,12 % vs. 0,20 ± 0,16 %, p = 0,02).

Die EaDCO₂ sank bei Arbeit bei den Kontrollpersonen stark ab, während sie bei den LF Patienten nur geringfügig absank. Entsprechend war die Ruhe – Arbeit Differenz dieses Wertes signifikant unterschiedlich zwischen den Gruppen (-1,56 ± 0,15 % vs. -0,33 ± 0,13 %, p = 0,0009).

Die AaDCO₂ sank bei Arbeit bei den Kontrollpersonen ebenfalls ab, während sie bei den LF Patienten leicht anstieg. Entsprechend war die Ruhe – Arbeit Differenz dieses Wertes signifikant unterschiedlich zwischen den Gruppen (-0,83 ± 0,14 % vs. 0,14 ± 0,09 %, p = 0,0002).

3.1.3.8. Veränderungen der arteriellen Blutgase und der Toträume bei maximaler Belastung

Wie in Tab. 6 dargestellt, stieg der arterielle Sauerstoffpartialdruck bei den Kontrollpersonen leicht an, während er bei den LF Patienten deutlich absank. Dadurch ergab sich ein signifikanter unterschiedlicher Verlauf zwischen den Gruppen (3,26 ± 2,87 l vs. -10,97 ± 2,44 l, p = 0,0012).
Tabelle 6. Absolute Veränderungen der arteriellen Blutgase und der Toträume bei maximaler Belastung bei Kontrollpersonen und Patienten mit pulmonaler Hypertonie infolge einer Lungenfibrose. Mittelwerte ± SEM. pO₂, Sauerstoffpartialdruck, pCO₂, Kohlendioxidpartialdruck, fkt VD, funktioneller Totraum, eff VD, effektiver Totraum, eff/fkt VD, effektiver/funktioneller Totraum. *, p < 0,05, **, p < 0,01, ***, p < 0,001 für Unterschiede zwischen den Gruppen.

Die relative Veränderung betrug 5,15 ± 3,67 % vs. -18,25 ± 3,93 %, p = 0,001 (Vgl. Abb. 10).

Für den Kohlendioxidpartialdruck galt das gleiche, was oben bereits für den FaCO2 ausgeführt wurde. Die Ruhe – Arbeit Differenzen sind in Tab. 6 aufgeführt und ergaben signifikante Differenzen zwischen den Gruppen (p = 0,04). Die relative Veränderung betrug -6,09 ± 2,27 % vs. 2,01 ± 3,05 % (Vgl. Abb. 10).

Der funktionelle Totraum stieg bei den Kontrollpersonen deutlich an, während er bei den LF Patienten nur leicht anstieg. Dadurch ergab sich ein signifikant unterschiedlicher Verlauf zwischen den Gruppen (0,30 ± 0,04 l vs. 0,07 ± 0,03 l, p = 7,24 * 10⁻⁵). Die relative Veränderung betrug (111,02 ± 15,87 % vs. 19,89 ± 6,45 %, p = 0,0002), Vgl. Abb. 10.

Der effektive Totraum stieg bei beiden Gruppen an und zeigte keinen signifikant unterschiedlichen Verlauf. Die relative Veränderung betrug 20,59 ± 16,72 % bei den Kontrollpersonen und 43,64 ± 14,75 % bei den LF Patienten (Vgl. Abb. 10).

Der Quotient aus effektivem Totraum und funktionelle Totraum fiel bei den Kontrollpersonen stark ab, während er bei den LF Patienten deutlich anstieg. Dadurch ergab sich ein signifikant unterschiedlicher Verlauf zwischen den Gruppen (-0,46 ± 0,10 l vs. 0,30 ± 0,15 l, p = 0,0004). Die relative Veränderung betrug -40,76 ± 8,41 % bei den
Kontrollpersonen und 17,85 ± 6,20 % bei den LF Patienten, p = 0,0005, Abb. 10.

3.1.4. Korrelationsanalysen

3.1.4.1. Korrelation von Lungenfunktionsparametern mit der maximalen Sauerstoffaufnahme

Für die Kontrollpersonen ergaben sich keine signifikanten Korrelationen mit der maximalen Sauerstoffaufnahme. Folgende Parameter gehörten hierzu: Einsekundenausatmungskapazität, Vitalkapazität, totale Lungenkapazität, Residualvolumen, Resistance, Sauerstoffpartialdruck, (siehe Tab. 3 und Abb. 11).

Bei den LF Patienten ergaben sich für die Vitalkapazität (VC) (r = 0,623, p = 0,041) und für den CO Transferfaktor, korrigiert auf die aktuelle Hb – Konzentration (DLCOc) (r = 0,826, p = 0,003) signifikante Korrelationen mit der maximalen Sauerstoffaufnahme. Die anderen Parameter korrelierten auch hier nicht signifikant mit der maximalen Sauerstoffaufnahme (siehe Tab. 3 und Abb. 11).
Abbildung 11. Korrelation von Lungenfunktionsparamtern mit der maximalen Sauerstoffaufnahme bei Kontrollpersonen und Patienten mit pulmonaler Hypertonie infolge einer Lungenfibrose. Die Graphiken auf der linken Seite stellen die Kontrollen und auf der rechten Seite die LF Gruppe dar. $r =$ Regressionskoeffizient, $p =$ Irrtumswahrscheinlichkeit für Unterschiede zwischen den Gruppen. FEV1, Einsekundenausatmungskapazität, VC, Vitalkapazität, TLC, totale Lungenkapazität, RV, Residualvolumen, R, Atemwegswiderstand, DLCOc, CO Transferfaktor, korrigiert auf die aktuelle Hb-Konzentration, pO_2, Sauerstoffpartialdruck, peak VO$_2$, maximale Sauerstoffaufnahme in % der Norm.
3.1.4.2. Korrelation von CO$_2$ Atemäquivalent bei Belastung mit der maximalen Sauerstoffaufnahme

Das CO$_2$ Atemäquivalent (EQCO$_2$) war bei den LF Patienten signifikant gegenüber den Kontrollpersonen erhöht (44,2 vs. 26,07, $p = 0,0009$). Es ergab sich weder für die Kontrollpersonen noch für die LF Patienten eine signifikante Korrelation mit der maximalen Sauerstoffaufnahme. (siehe Abb. 12)

3.1.4.3. Korrelation von Hämodynamikwerten mit der maximalen Sauerstoffaufnahme

Keiner der hämodynamischen Parameter korrelierte signifikant mit der maximalen Sauerstoffaufnahme (siehe Tab. 4, Abb 13).

Dies betraf folgende Parameter: mittlerer pulmonal-arterieller Druck, Cardiac Index, zentraler Venendruck, mittlerer systemisch arterieller Druck, pulmonal vaskulärer Widerstand / systemisch vaskulärer Widerstand, pulmonal vaskulärer Widerstands Index, zentralvenöse Sauerstoffsättigung, arterielle Sauerstoffsättigung (siehe Abb. 13).
Abbildung 13. Korrelation von Hämodynamikwerten mit der maximalen Sauerstoffaufnahme bei Kontrollpersonen und Patienten mit pulmonaler Hypertonie infolge einer Lungenfibrose. Die Graphiken auf der linken Seite stellen die Kontrollen und auf der rechten Seite die LF Gruppe dar. r = Regressionskoeffizient, p = Irrtumswahrscheinlichkeit für Unterschiede zwischen den Gruppen. mPAP, mittlerer pulmonal-arterieller Druck, CI, Cardiac Index, CVP, zentraler Venendruck, mSAP, mittlerer systemisch arterieller Druck, PVR/SVR, pulmonal vaskulärer Widerstand/systemisch vaskulärer Widerstand, PVRi, pulmonal vaskulärer Widerstands Index, SvO\textsubscript{2}, zentralvenöse Sauerstoffsättigung, SaO\textsubscript{2}, arterielle Sauerstoffsättigung, peak VO\textsubscript{2}, maximale Sauerstoffaufnahme in % der Norm.
3.2. Studie II: Primäre pulmonale Hypertonie vs. chronisch thromboembolischer pulmonaler Hypertonie

3.2.1. Anthropometrische Daten

Eine Gegenüberstellung von Patienten mit primärer pulmonaler Hypertonie (PPH) und Patienten mit chronisch thromboembolischer pulmonaler Hypertonie (CTEPH) zeigte keine signifikanten Unterschiede hinsichtlich Alter, Körpergröße und Körpergewicht (Tab. 7).

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>PPH</th>
<th>CTEPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl(n)</td>
<td>21</td>
<td>16</td>
</tr>
<tr>
<td>Geschlecht(w) (m)</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>Alter(Jahre)</td>
<td>47,4 ± 2,1</td>
<td>53,2 ± 2,9</td>
</tr>
<tr>
<td>(32-61)</td>
<td>(32-71)</td>
<td></td>
</tr>
<tr>
<td>Körpergröße(cm)</td>
<td>169,9</td>
<td>172,8</td>
</tr>
<tr>
<td>(156-188)</td>
<td>(163-197)</td>
<td></td>
</tr>
<tr>
<td>Körpergewicht(kg)</td>
<td>73,3</td>
<td>78,8</td>
</tr>
<tr>
<td>(45-103)</td>
<td>(54-122)</td>
<td></td>
</tr>
</tbody>
</table>

3.2.2. Ruheparameter

3.2.2.1. Lungenfunktion

Wie in Tab. 8 dargestellt, zeigten sich bei den Lungenfunktionsparametern signifikante Unterschiede zwischen den PPH Patienten und den CTEPH Patienten. So war die Einsekundenausatmungskapazität in Prozent der Norm bei den CTEPH Patienten deutlich reduziert, (p = 0,005) und außerdem die Vitalkapazität in Prozent der Norm, (p = 0,02). Die anderen Lungenfunktionsparameter zeigten keine signifikanten Unterschiede zwischen den Gruppen.
Tabelle 8. Lungenfunktion bei primärer pulmonaler Hypertonie und chronisch thromboembolischer pulmonaler Hypertonie. Mittelwerte ± SEM und Mittelwerte in Prozent der Norm ± SEM. FEV1, Einsekundenausatmungskapazität, VC, Vitalkapazität, TLC, totale Lungenkapazität, RV, Residualvolumen, R, Atemwegswiderstand, DLCOc, CO Transferfaktor, korrigiert auf die aktuelle Hb-Konzentration, peak VO₂, maximale Sauerstoffaufnahme, Ruhe pO₂, Sauerstoffpartialdruck in Ruhe. *, p < 0,05, **, p < 0,01, ***, p < 0,001 für Unterschiede zwischen den Gruppen und für Signifikanz der Korrelationen.

3.2.2.1. Maximale Sauerstoffaufnahme

Die maximale Sauerstoffaufnahme in Prozent der Norm war bei den CTEPH Patienten deutlicher niedriger als bei den PPH Patienten (54,54 ± 3,72 vs. 43,00 ± 2,56, p = 0,02, siehe Tab. 8).

3.2.2.2. Blutgasanalyse

Der Sauerstoffpartialdruck in Ruhe war bei den PPH Patienten im Mittel auf 70,51 mmHg und bei den CTEPH Patienten im Mittel auf 61,04 mmHg erniedrigt (p = 0,03), siehe Tab. 8.

Der Kohlendioxidpartialdruck zeigte keine signifikanten Unterschiede zwischen den Gruppen (siehe Abb. 15).
3.2.2.3. Hämodynamik

Bei den Hämodynamikwerten ergab sich nur für den zentralen Venendruck ein signifikanter Unterschied zwischen den PPH Patienten und den CTEPH Patienten (p = 0,0012), siehe Tab. 9.

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>PPH</th>
<th>CTEPH</th>
<th>Korrelationskoeffizient (r) mit peak VO₂ (% d.N.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mPAP (mmHg) ± SEM</td>
<td>47,67 ± 2,72</td>
<td>46,75 ± 1,86</td>
<td>PPH: -0,55 ** CTEPH: -0,31</td>
</tr>
<tr>
<td>HMV (l/min) ± SEM</td>
<td>3,83 ± 0,20</td>
<td>3,78 ± 0,32</td>
<td>PPH: 0,37 CTEPH: 0,11</td>
</tr>
<tr>
<td>PVR (dyn) ± SEM</td>
<td>996,10 ± 108,54</td>
<td>903,69 ± 81,11</td>
<td>PPH: 0,04 CTEPH: 0,05</td>
</tr>
<tr>
<td>CVP (mmHg) ± SEM</td>
<td>4,71 ± 1,16</td>
<td>11,33 ± 1,49 **</td>
<td>PPH: -0,59 ** CTEPH: 0,11</td>
</tr>
<tr>
<td>mSAP (mmHg) ± SEM</td>
<td>91,41 ± 3,68</td>
<td>96,89 ± 4,92</td>
<td>PPH: 0,08 CTEPH: 0,15</td>
</tr>
<tr>
<td>SVR (dynscm⁻⁵) ± SEM</td>
<td>1866,10 ± 93,04</td>
<td>1951,20 ± 187,55</td>
<td>PPH: -0,05 CTEPH: -0,06</td>
</tr>
<tr>
<td>SaO₂ (%) ± SEM</td>
<td>92,75 ± 0,93</td>
<td>92,49 ± 1,26</td>
<td>PPH: 0,54 * CTEPH: 0,27</td>
</tr>
<tr>
<td>SvO₂ (%) ± SEM</td>
<td>62,89 ± 2,39</td>
<td>56,17 ± 2,84</td>
<td>PPH: 0,62 ** CTEPH: 0,31</td>
</tr>
<tr>
<td>CI (l/min/m²) ± SEM</td>
<td>2,10 ± 0,11</td>
<td>2,02 ± 0,18</td>
<td>PPH: 0,44 * CTEPH: 0,43</td>
</tr>
</tbody>
</table>

Tabelle 9. Hämodynamik bei primärer pulmonaler Hypertonie und chronisch thromboembolischer pulmonaler Hypertonie. Mittelwerte ± SEM. mPAP, mittlerer pulmonal-arterieller Druck, HMV, Herzmittenvolumen, PVR, pulmonal vaskulärer Widerstand, CVP, zentraler Venendruck, mSAP, mittlerer systemisch arterieller Druck, SVR, systemisch vaskulären Widerstand, SaO₂, arterielle Sauerstoffsättigung, SvO₂, zentralvenöse Sauerstoffsättigung, CI, Cardiac Index. *, p < 0,05, **, p < 0,01, ***, p < 0,001 für Unterschiede zwischen den Gruppen.

3.2.3. Spiroergometrische Daten

3.2.3.1. Hämodynamische und ventilatorische Parameter

Wie in Abb. 14 dargestellt, betrug die Herzfrequenz in Ruhe bei den PPH Patienten 85,52 ± 2,73 min⁻¹ und bei den CTEPH Patienten 80,13 ± 4,92 min⁻¹.

Bei maximaler Belastung stieg die Herzfrequenz auf 135,90 ± 4,33 min⁻¹ bei den PPH Patienten und auf 127,63 ± 5,50 min⁻¹ bei den CTEPH Patienten an.

Drei Minuten nach maximaler Belastung sank die Herzfrequenz bei den PPH Patienten auf 102,10 ± 3,57 min⁻¹ und bei den CTEPH Patienten sank sie auf 94,00 ± 5,00 min⁻¹.

Acht Minuten nach maximaler Belastung sank die Herzfrequenz weiter auf 92,76 ± 3,15 min⁻¹ bei den PPH Patienten und auf 86,38 ±
4,16 min⁻¹ bei den CTEPH Patienten. Bei allen Werten zeigten sich keine signifikanten Unterschiede zwischen den Gruppen.

Die Sauerstoffaufnahme in Ruhe betrug bei den PPH Patienten 0,26 ± 0,01 l/min und bei den CTEPH Patienten 0,26 ± 0,02 l/min. Bei maximaler Belastung stieg die Sauerstoffaufnahme bei den PPH Patienten auf 1,10 ± 0,09 l/min und bei den CTEPH Patienten auf 0,89 ± 0,08 l/min. Nach drei Minuten sank die Sauerstoffaufnahme auf 0,39 ± 0,03 l/min bei den PPH Patienten und auf 0,36 ± 0,03 l/min bei den CTEPH Patienten.

Acht Minuten nach maximaler Belastung sanken die Werte weiter auf 0,29 ± 0,02 l/min bei den PPH Patienten und auf 0,27 ± 0,02 l/min bei den CTEPH Patienten. Auch hier ergaben sich bei allen Werten keine signifikanten Unterschiede zwischen den Gruppen.

Nur die Ventilation in Ruhe ergab einen signifikanten Unterschied zwischen den PPH Patienten und den CTEPH Patienten (11,55 ± 0,67 l/min vs. 14,29 ± 1,02 l/min, p = 0,03). Unter maximaler Belastung stieg die Ventilation auf 49,71 ± 2,68 l/min bei den PPH Patienten und auf 53,64 ± 3,96 l/min bei den CTEPH Patienten an. Nach drei Minuten sank die Ventilation auf 23,80 ± 1,85 l/min bei den PPH Patienten und auf 24,54 ± 2,15 l/min bei den CTEPH Patienten.

Nach acht Minuten sank die Ventilation weiter auf 15,20 ± 0,68 l/min bei den PPH Patienten und auf 16,68 ± 1,27 l/min bei den CTEPH Patienten.

Das Atemzugvolumen betrug in Ruhe bei den PPH Patienten 0,75 ± 0,05 l und bei den CTEPH Patienten 0,76 ± 0,07 l. Bei maximaler Belastung stieg das Atemzugvolumen bei beiden Gruppen an (1,94 ± 0,12 l vs. 1,65 ± 0,13 l).
Nach drei Minuten sank das Atemzugvolumen dann auf $1,16 \pm 0,10$ l bei den PPH Patienten und auf $1,14 \pm 0,10$ l bei den CTEPH Patienten.

Acht Minuten nach maximaler Belastung sank das Atemzugvolumen weiter auf $0,79 \pm 0,06$ l bei den PPH Patienten und auf $0,83 \pm 0,07$ l bei den CTEPH Patienten. Bei allen Werten ergaben sich ebenfalls keine signifikanten Unterschiede zwischen den Gruppen.

Die Atemfrequenz in Ruhe war bei den PPH Patienten signifikant niedriger als bei den CTEPH Patienten ($16,26 \pm 1,01$ min$^{-1}$ vs. $19,88 \pm 1,51$ min$^{-1}$, $p = 0,05$).

Bei maximaler Belastung stieg die Atemfrequenz bei den CTEPH Patienten deutlicher an als bei den PPH Patienten ($26,15 \pm 1,02$ min$^{-1}$ vs. $33,31 \pm 1,21$ min$^{-1}$, $p = 6,34 \times 10^{-5}$).

Drei Minuten nach maximaler Belastung sank die Atemfrequenz auf $21,19 \pm 0,93$ min$^{-1}$ bei den PPH Patienten und auf $21,88 \pm 0,93$ min$^{-1}$ bei den CTEPH Patienten.

Nach acht Minuten ging die Atemfrequenz auf $20,26 \pm 1,04$ min$^{-1}$ bei den PPH Patienten und auf $20,87 \pm 1,18$ min$^{-1}$ bei den CTEPH Patienten zurück.

Bei den Erholungswerten ergaben sich keine signifikanten Unterschiede zwischen den Gruppen.
3.2.3.2. Arterielle und exspiratorische Sauerstoff- und Kohlendioxidpartialdrucke

Wie in Abb. 15 dargestellt, war der Sauerstoffpartialdruck in Ruhe bei den PPH Patienten signifikant höher als bei den CTEPH Patienten (70,51 ± 3,11 mmHg vs. 61,14 ± 2,29 mmHg, p = 0,03).

Bei maximaler Belastung zeigte sich kein signifikanter Unterschied zwischen den Gruppen (65,52 ± 2,51 mmHg vs. 61,78 ± 1,68 mmHg). Nach drei Minuten betrug der Sauerstoffpartialdruck bei den PPH Patienten 84,11 ± 3,68 mmHg und bei den CTEPH Patienten 75,92 ± 2,52 mmHg.

Acht Minuten nach maximaler Belastung war der Sauerstoffpartialdruck bei den PPH Patienten signifikant höher als bei den CTEPH Patienten (78,66 ± 3,26 mmHg vs. 69,39 ± 2,36 mmHg, p = 0,03).

Der Kohlendioxidpartialdruck in Ruhe betrug bei den PPH Patienten 32,21 ± 0,82 mmHg und bei den CTEPH Patienten 32,93 ± 0,95 mmHg.

Bei maximaler Belastung ergaben sich Kohlendioxidpartialdrucke von 31,88 ± 1,00 mmHg bei den PPH Patienten und 30,71 ± 1,20 mmHg bei den CTEPH Patienten.

Nach drei Minuten zeigte sich ein Kohlendioxidpartialdruck bei den PPH Patienten von 30,65 ± 0,74 mmHg und bei den CTEPH Patienten von 31,23 ± 1,02 mmHg.

Acht Minuten nach maximaler Belastung betrug der Kohlendioxidpartialdruck bei den PPH Patienten 29,45 ± 0,64 mmHg und bei den CTEPH Patienten 30,79 ± 0,80 mmHg. Bei allen Werten ergaben sich keine signifikanten Unterschiede zwischen den Gruppen.

Der Base Excess in Ruhe war bei den PPH Patienten signifikant niedriger als bei den CTEPH Patienten (-0,62 ± 0,36 mmol/l vs. 0,99 ± 0,49 mmol/l, p = 0,0098).

Bei maximaler Belastung zeigte sich ebenfalls ein erniedrigter Base Excess bei den PPH Patienten gegenüber den CTEPH Patienten (-3,49 ± 0,47 mmol/l vs. -0,63 ± 0,74 mmol/l, p = 0,002).
Auch nach drei Minuten konnte ein signifikant niedrigerer Base Excess bei den PPH Patienten festgestellt werden (-5,69 ± 0,63 mmol/l vs. -2,89 ± 0,90 mmol/l, p = 0,01).

Acht Minuten nach maximaler Belastung betrug der Base Excess bei den PPH Patienten -4,89 ± 0,56 mmol/l und bei den CTEPH Patienten -2,09 ± 0,91 mmol/l (p = 0,009).

Der endexspiratorische Sauerstoffpartialdruck in Ruhe war bei den PPH Patienten signifikant niedriger als bei den CTEPH Patienten (115,81 ± 1,29 mmHg vs. 120,07 ± 1,34 mmHg, p = 0,03).

Auch bei maximaler Belastung war der endexspiratorische Sauerstoffpartialdruck bei den PPH Patienten signifikant niedriger gegenüber den CTEPH Patienten (121,59 ± 1,31 mmHg vs. 128,25 ± 1,33 mmHg, p = 0,001).

Drei Minuten nach maximaler Belastung betrug der endexspiratorische Sauerstoffpartialdruck bei den PPH Patienten 125,09 ± 0,73 mmHg und bei den CTEPH Patienten 126,13 ± 1,15 mmHg.

Nach acht Minuten ergab sich ein endexspiratorischer Sauerstoffpartialdruck bei den PPH Patienten von 120,72 ± 0,88 mmHg und bei den CTEPH Patienten von 123,45 ± 1,34 mmHg. Bei den Erholungswerten lagen keine signifikanten Unterschiede zwischen den Gruppen vor.

Bei der alveoloarteriellen Sauerstoffdifferenz ergaben sich in Ruhe Werte von 45,30 ± 3,78 mmHg für die PPH Patienten und 51,43 ± 7,73 mmHg für die CTEPH Patienten.

Bei maximaler Belastung betrug die alveoloarterielle Sauerstoffdifferenz bei den PPH Patienten 56,06 ± 3,30 mmHg und bei den CTEPH Patienten 58,45 ± 7,84 mmHg.

Nach drei Minuten ergab sich eine alveoloarterielle Sauerstoffdifferenz von 40,97 ± 3,81 mmHg für die PPH Patienten und von 42,33 ± 8,92 mmHg für die CTEPH Patienten.

Acht Minuten nach maximaler Belastung zeigte sich eine alveoloarterielle Sauerstoffdifferenz bei den PPH Patienten von 42,06 ± 3,59 mmHg und bei den CTEPH Patienten von 46,34 ± 8,53 mmHg. Bei al-
Abbildung 15. Arterielle und exspiratorische \(O_2 \)- und \(CO_2 \)-Partialdrucke vor, während und nach maximaler Belastung bei primärer pulmonaler Hypertonie und chronisch thromboembolischer pulmonaler Hypertonie. Mittelwerte ± SEM. Weisse Säulen: PPH (n = 21). Graue Säulen: CTEPH (n = 16). \(pO_2 \), Sauerstoffpartialdruck, \(pCO_2 \), Kohlendioxidpartialdruck, BE, Base Excess, \(P_{ETO_2} \), endexspiratorischer \(O_2 \)-Partialdruck, AaDO\(_2\), Alveoloarterielle Sauerstoffdifferenz. *, \(p < 0,05 \), **, \(p < 0,01 \), ***, \(p < 0,001 \) für Unterschiede zwischen den Gruppen.
3.2.3.3. Arterielle und exspiratorische Kohlendioxidkonzentrationen

Wie in Abb. 16 dargestellt, war die endexspiratorische Kohlendioxidkonzentration in Ruhe bei den PPH Patienten signifikant höher als bei den CTEPH Patienten (3,94 ± 0,13 % vs. 3,49 ± 0,15 %, p = 0,03).

Auch bei maximaler Belastung zeigte sich ein signifikanter Unterschied zwischen den Gruppen. Die PPH Patienten hatten eine endexspiratorische Kohlendioxidkonzentration von 3,94 ± 0,19 % und die CTEPH Patienten von 3,01 ± 0,20 % (p = 0,002).

Nach drei Minuten betrug die endexspiratorische Kohlendioxidkonzentration bei den PPH Patienten 3,84 ± 0,13 % und bei den CTEPH Patienten 3,36 ± 0,15 % (p = 0,02).

Auch nach acht Minuten hatten die PPH Patienten eine signifikant höhere endexspiratorische Kohlendioxidkonzentration als die CTEPH Patienten (3,74 ± 0,11 % vs. 3,34 ± 0,14 %, p = 0,03).

Der Kohlendioxidanteil der gemischten exspirierten Luft ergab in Ruhe bei den PPH Patienten einen signifikant höheren Anteil als bei den CTEPH Patienten (2,49 ± 0,11 % vs. 2,08 ± 0,14 %, p = 0,02).

Auch bei maximaler Belastung zeigte sich für die PPH Patienten ein erhöhter Kohlendioxidanteil der gemischten exspirierten Luft im Gegensatz zu den CTEPH Patienten (2,92 ± 0,15 % vs. 2,24 ± 0,15 %, p = 0,003).

Drei Minuten nach maximaler Belastung war der Kohlendioxidanteil der gemischten exspirierten Luft bei den PPH Patienten ebenfalls signifikant höher als bei den CTEPH Patienten (2,61 ± 0,11 % vs. 2,22 ± 0,14 %, p = 0,03).

Nach acht Minuten betrug der Kohlendioxidanteil der gemischten exspirierten Luft bei den PPH Patienten 2,40 ± 0,09 % und bei den CTEPH Patienten 2,09 ± 0,12 % und war somit nicht signifikant.

Die arterielle Kohlendioxidkonzentration betrug in Ruhe bei den PPH Patienten 4,51 ± 0,11 % und bei den CTEPH Patienten 4,64 ± 0,13 %.
Die PPH Patienten hatten bei maximaler Belastung eine arterielle Kohlendioxidkonzentration von $4,46 \pm 0,14\%$ und die CTEPH Patienten von $4,33 \pm 0,17\%$.

Nach drei Minuten ergab sich eine arterielle Kohlendioxidkonzentration von $4,29 \pm 0,10\%$ für die PPH Patienten und von $4,40 \pm 0,14\%$ für die CTEPH Patienten.

Acht Minuten nach maximaler Belastung betrug die arterielle Kohlendioxidkonzentration bei den PPH Patienten $4,12 \pm 0,09\%$ und bei den CTEPH Patienten $4,34 \pm 0,11\%$. Bei allen Werten zeigten sich keine signifikanten Unterschiede zwischen den Gruppen.

Die funktionelle alveolare Ventilation betrug in Ruhe bei den PPH Patienten $7,26 \pm 0,43\ l/\min$ und bei den CTEPH Patienten $8,37 \pm 0,63\ l/\min$.

Bei maximaler Belastung ergab sich eine funktionelle alveolare Ventilation von $37,10 \pm 2,30\ l/\min$ für die PPH Patienten und von $40,45 \pm 3,34\ l/\min$ für die CTEPH Patienten.

Drei Minuten nach maximaler Belastung zeigte sich eine funktionelle alveolare Ventilation bei den PPH Patienten von $16,30 \pm 1,45\ l/\min$ und bei den CTEPH Patienten von $16,28 \pm 1,61\ l/\min$.

Nach acht Minuten betrug die funktionelle alveolare Ventilation bei den PPH Patienten $9,71 \pm 0,48\ l/\min$ und bei den CTEPH Patienten $10,40 \pm 0,86\ l/\min$. Bei allen Werten zeigten sich keine signifikanten Unterschiede zwischen den Gruppen.

Die effektive alveolare Ventilation betrug in Ruhe bei den PPH Patienten $6,27 \pm 0,32\ l/\min$ und bei den CTEPH Patienten $6,25 \pm 0,48\ l/\min$.

Bei maximaler Belastung ergab sich eine effektive alveolare Ventilation von $32,77 \pm 2,40\ l/\min$ für die PPH Patienten und $27,64 \pm 2,45\ l/\min$ für die CTEPH Patienten.

Drei Minuten nach maximaler Belastung zeigte sich eine effektive alveolare Ventilation bei den PPH Patienten von $14,58 \pm 1,27\ l/\min$ und bei den CTEPH Patienten von $12,37 \pm 1,20\ l/\min$.
Nach acht Minuten betrug die effektive alveoläre Ventilation bei den PPH Patienten 8,76 ± 0,40 l/min und bei den CTEPH Patienten 7,94 ± 0,66 l/min. Hier ergaben sich ebenfalls bei allen Werten keine signifikanten Unterschiede zwischen den Gruppen.
Abbildung 16. Arterielle und exspiratorische CO$_2$-Konzentrationen zur Berechnung der alveolären Ventilation bei primärer pulmonaler Hypertonie und chronisch thromboembolischer pulmonaler Hypertonie. Mittelwerte ± SEM. Weisse Säulen: PPH (n = 21). Graue Säulen: CTEPH (n = 16). $F_{ET}CO_2$, endexspiratorische CO$_2$-Konzentration, F_aCO_2, CO$_2$-Anteil der gemischten exspirierten Luft, $FaCO_2$, arterielle CO$_2$-Konzentration, fkt alv V_E, funktionelle alveoläre Ventilation, eff alv V_E, effektive alveoläre Ventilation. *, $p < 0,05$, **, $p < 0,01$, ***, $p < 0,001$ für Unterschiede zwischen den Gruppen. Es fällt auf, dass zu allen Zeitpunkten die alveoläre CO$_2$-Konzentration ($F_{ET}CO_2$) bei der CTEPH Gruppe niedriger war, als bei PPH Gruppe.
3.2.3.4. Funktioneller und effektiver Totraum

Wie in Abb. 17 dargestellt, betrug der funktionelle Totraum in Ruhe bei den PPH Patienten 0,27 ± 0,02 l und bei den CTEPH Patienten 0,31 ± 0,03 l.

Bei maximaler Belastung stieg der funktionelle Totraum bei den PPH Patienten auf 0,49 ± 0,02 l und bei den CTEPH Patienten auf 0,41 ± 0,04 l.

Drei Minuten nach maximaler Belastung sank der funktionelle Totraum bei den PPH Patienten auf 0,36 ± 0,02 l und bei den CTEPH Patienten auf 0,38 ± 0,03 l.

Nach acht Minuten sank der funktionelle Totraum weiter auf 0,28 ± 0,02 l bei den PPH Patienten und auf 0,31 ± 0,02 l bei den CTEPH Patienten.

Der Quotient aus dem funktionellen Totraum und dem Atemzugvolumen (VD/VT, funktioneller relativer Totraum) betrug bei den PPH Patienten 36,84 ± 1,46 % und bei den CTEPH Patienten 40,90 ± 1,93 %.

Bei maximaler Belastung ergaben sich für den funktionellen relativen Totraum Werte von 25,86 ± 1,02 % für die PPH Patienten und 25,20 ± 1,13 % für die CTEPH Patienten.

Drei Minuten nach maximaler Belastung betrug der funktionelle relative Totraum bei den PPH Patienten 32,16 ± 1,27 % und bei den CTEPH Patienten 34,17 ± 1,90 %.

Nach acht Minuten zeigte sich ein funktioneller relativer Totraum von 35,96 ± 1,52 % für die PPH Patienten und 37,66 ± 1,74 % für die CTEPH Patienten.

Der effektive Totraum betrug in Ruhe bei den PPH Patienten 0,33 ± 0,03 l und bei den CTEPH Patienten 0,42 ± 0,04 l.

Bei maximaler Belastung ergab sich für die PPH Patienten ein effektiver Totraum von 0,65 ± 0,04 l und für die CTEPH Patienten von 0,80 ± 0,07 l.
Drei Minuten nach maximaler Belastung war der effektive Totraum bei den PPH Patienten signifikant niedriger als bei den CTEPH Patienten (0,43 ± 0,03 l vs. 0,56 ± 0,05 l, p = 0,03).

Auch nach acht Minuten war der effektive Totraum bei den PPH Patienten signifikant niedriger als bei den CTEPH Patienten (0,33 ± 0,02 l vs. 0,43 ± 0,03 l, p = 0,02).

Der effektive relative Totraum (eff VT/VT) war in Ruhe bei den PPH Patienten deutlich signifikant erniedrigt (44,83 ± 1,76 % vs. 55,51 ± 2,04 %, p = 0,0003).

Auch bei maximaler Belastung war der eff VT/VT bei den PPH Patienten, gegenüber den CTEPH Patienten, stark signifikant erniedrigt (34,96 ± 1,95 % vs. 48,66 ± 1,74 %, p = 1,28* 10⁻²).

Nach drei Minuten war der eff VT/VT bei den PPH Patienten ebenfalls deutlich signifikant erniedrigt (39,03 ± 1,98 % vs. 49,76 ± 2,12 %, p = 0,0008).

Acht Minuten nach maximaler Belastung betrug der eff VT/VT bei den PPH Patienten 41,78 ± 1,89 % und bei den CTEPH Patienten 52,02 ± 2,07 %, (p = 0,0009).

Der Quotient aus effektivem Totraum und funktionellen Totraum (eff VT/ fkt VT) war in Ruhe bei den PPH Patienten signifikant niedriger als bei den CTEPH Patienten (1,22 ± 0,03 vs. 1,38 ± 0,04, p = 0,005).

Bei maximaler Belastung war der eff VT/ fkt VT bei den PPH Patienten signifikant stark erniedrigt (1,35 ± 0,06 vs. 2,00 ± 0,13, p = 1,56* 10⁻⁵).

Auch nach drei Minuten hatten die PPH Patienten einen signifikant niedrigeren Wert als die CTEPH Patienten (1,21 ± 0,04 vs. 1,50 ± 0,07, p = 0,0005).

Acht Minuten nach maximaler Belastung war der eff VT/ fkt VT bei den PPH Patienten ebenfalls signifikant erniedrigt gegenüber den CTEPH Patienten (1,16 ± 0,03 vs. 1,40 ± 0,04, p = 4,04* 10⁻⁵).
3.2.3.5. Maximale hämodynamische, ventilatorische und metabolische Parameter

Eine Gegenüberstellung von PPH Patienten und CTEPH Patienten ergab für folgende Werte signifikante Unterschiede zwischen den Gruppen:

maximale Sauerstoffaufnahme in Prozent der Norm, maximale Atemfrequenz, maximale Atemfrequenz in Prozent der Norm, drei Minuten Base Excess, siehe Tab. 10.

<table>
<thead>
<tr>
<th>Messparameter</th>
<th>PPH</th>
<th>CTEPH</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. HR</td>
<td>135,90</td>
<td>127,63</td>
<td>0,24</td>
</tr>
<tr>
<td>Max. HR, % d. N.</td>
<td>60,03</td>
<td>53,80</td>
<td>0,39</td>
</tr>
<tr>
<td>Max. VO_2 (peak VO_2)</td>
<td>1,10</td>
<td>0,89</td>
<td>0,09</td>
</tr>
<tr>
<td>Max. VO_2 (peak VO_2), % d. N.</td>
<td>54,54</td>
<td>42,98</td>
<td>0,02</td>
</tr>
<tr>
<td>Max. V_e</td>
<td>49,71</td>
<td>53,64</td>
<td>0,40</td>
</tr>
<tr>
<td>Max. V_e, % d. N.</td>
<td>74,55</td>
<td>80,54</td>
<td>0,37</td>
</tr>
<tr>
<td>Max. VT</td>
<td>1,94</td>
<td>1,65</td>
<td>0,10</td>
</tr>
<tr>
<td>Max. VT, % d. N.</td>
<td>105,06</td>
<td>88,66</td>
<td>0,07</td>
</tr>
<tr>
<td>Max. BF</td>
<td>26,15</td>
<td>33,31</td>
<td>6*10^-5</td>
</tr>
<tr>
<td>Max. BF, % d. N.</td>
<td>72,65</td>
<td>92,52</td>
<td>6*10^-5</td>
</tr>
<tr>
<td>3 min BE</td>
<td>-5,69</td>
<td>-2,89</td>
<td>0,01</td>
</tr>
<tr>
<td>3 min BE-Ruhe BE</td>
<td>-5,07</td>
<td>-3,88</td>
<td>0,18</td>
</tr>
</tbody>
</table>

3.2.3.6. Arterio-exspiratorische Kohlendioxiddifferenzen

Wie bereits oben dargestellt, hatten die PPH Patienten in Ruhe einen signifikant erhöhten Kohlendioxidanteil der gemischten exspirierten Luft und eine signifikant erhöhte endexspiratorische Kohlendioxidkonzentration gegenüber den CTEPH Patienten. Die arterielle Kohlendioxidkonzentration war nicht signifikant zwischen den Gruppen (Vgl. Abb. 16).

Wie in Abb. 18 dargestellt, war die Differenz aus der arteriellen Kohlendioxidkonzentration und dem Kohlendioxidanteil der gemischten exspirierten Luft (EaDCO_2) in Ruhe bei den PPH Patienten deutlich
signifikant niedriger als bei den CTEPH Patienten (2,01 ± 0,09 % vs. 2,56 ± 0,09 %, p = 0,0002).

Auch die Differenz aus der arteriellen Kohlendioxidkonzentration und der endexspiratorischen Kohlendioxidkonzentration (AaDCO₂) war bei den PPH Patienten deutlich signifikant niedriger gegenüber den CTEPH Patienten (0,57 ± 0,07 % vs. 1,15 ± 0,10 %, p = 2,25* 10⁻⁵).

Wie bereits oben dargestellt, hatten die PPH Patienten bei maximaler Belastung einen signifikant erhöhten Kohlendioxidanteil der gemischten exspirierten Luft und eine signifikant erhöhte endexspiratorische Kohlendioxidkonzentration gegenüber den CTEPH Patienten. Die arterielle Kohlendioxidkonzentration war nicht signifikant zwischen den Gruppen (Vgl. Abb. 16).

Die EaDCO₂ erreichte bei den PPH Patienten bei maximaler Belastung einen signifikant niedrigeren Werte als bei den CTEPH Patienten (1,54 ± 0,08 % vs. 2,08 ± 0,08 %, p = 4,93* 10⁻⁵).

Auch die AaDCO₂ war bei maximaler Belastung den PPH Patienten signifikant niedriger als bei den CTEPH Patienten (0,52 ± 0,08 % vs. 1,31 ± 0,09 %, p = 2,91* 10⁻⁷).
Abbildung 18. Arterio-exspiratorische CO₂-Differenzen bei Ruhe und maximaler Belastung bei primärer pulmonaler Hypertonie und chronisch thromboembolischer pulmonaler Hypertonie. Mittelwerte ± SEM. Max-Ruhe, Differenz zwischen Werten bei maximaler Belastung und Ruhe. Weisse Säulen: PPH (n = 21). Graue Säulen: CTEPH (n = 16). F\textsubscript{ET}CO\textsubscript{2}, CO\textsubscript{2}-Anteil der gemischten exspirierten Luft, F\textsubscript{E}CO\textsubscript{2}, endexspiratorische CO\textsubscript{2}-Konzentration, FaCO\textsubscript{2}, arterielle CO\textsubscript{2}-Konzentration, FaCO\textsubscript{2} - F\textsubscript{E}CO\textsubscript{2}, arterielle CO\textsubscript{2}-Konzentration - CO\textsubscript{2}-Anteil der gemischten exspirierten Luft, FaCO\textsubscript{2} - F\textsubscript{ET}CO\textsubscript{2}, arterielle CO\textsubscript{2}-Konzentration – endexspiratorische CO\textsubscript{2}-Konzentration. *, p < 0,05, **, p < 0,01, ***, p < 0,001 für Unterschiede zwischen den Gruppen. Die deutlichsten Unterschiede zwischen den Gruppen treten bei arterio-exspiratorischer CO\textsubscript{2}-Differenz bei Ruhe und Belastung zu Tage.

3.2.3.7. Absolute Veränderungen der arteriellen und exspiratorischen Kohlendioxidkonzentrationen bei maximaler Belastung

Wie in Abb. 18 dargestellt, stieg der Kohlendioxidanteil der gemischten exspirierten Luft bei den PPH Patienten bei Belastung an, während bei den CTEPH Patienten ein geringerer Anstieg festzustellen war. Dadurch war bei der entsprechenden Differenz zur Ruhe und Maximalwerten kein signifikanter Unterschied zwischen den Gruppen festzustellen. Sie betrug bei den PPH Patienten 0,43 ± 0,09 % und bei den CTEPH Patienten 0,16 ± 0,09 %.

Bei der endexspiratorischen Kohlendioxidkonzentration fielen die CTEPH Patienten unter Belastung stark ab, während bei den PPH Patienten kaum eine Veränderung festzustellen war. Dadurch ergab sich
ein signifikanter Unterschied der Ruhe – Arbeit Differenzen (-0,0005 ± 0,09 % vs. -0,48 ± 0,13 %, p = 0,003).

Die arterielle Kohlendioxidkonzentration fiel bei den PPH Patienten unter Belastung geringfügig ab, während sie bei den CTEPH Patienten deutlich abfiel. Dadurch ergab sich ein signifikanter Unterschied der Ruhe – Arbeit Differenzen (-0,05 ± 0,08 % vs. -0,31 ± 0,07 %, p = 0,02).

Die EaDCO₂ zeigte keinen signifikanten Unterschied zwischen den Gruppen bei den Ruhe – Arbeit Differenzen. Sie betrug bei den PPH Patienten -0,48 ± 0,06 % und bei den CTEPH Patienten -0,48 ± 0,09 %.

Dagegen sank die AaDCO₂ bei den PPH Patienten unter Belastung leicht ab, während sie bei den CTEPH Patienten anstieg. Entsprechend war die Ruhe – Arbeit Differenz dieses Wertes signifikant unterschiedlich zwischen den Gruppen (-0,04 ± 0,05 % vs. 0,16 ± 0,09 %, p = 0,04).

3.2.3.8. Differentialdiagnose zwischen PPH Patienten und CTEPH Patienten

Von allen untersuchten Parametern, welche Unterschiede zwischen den beiden Gruppen anzeigten, zeigte die EaDCO₂ und die AaDCO₂ die mit Abstand klarste Differenz zwischen den Gruppen, welche sich in einer sehr starken Signifikanz ausdrückte (jeweils < 10⁻⁵). Daher wurden diese Parameter ausgewählt, um diagnostische Kriterien für die zu unterscheidenden Krankheiten abzuleiten. Für die PPH Patienten lag in Ruhe die AaDCO₂ bei 0,57 ± 0,07 %, für die CTEPH Patienten bei 1,15 ± 0,10 %. (s. Tab. 11). Wenn ein Wert > 1 % als Hinweis auf eine CTEPH angesehen wird, dann weist dieses Kriterium eine Spezifität von 95% auf. Die Sensitivität liegt bei 75 %.

Bei maximaler Belastung lag die AaDCO₂ bei den PPH Patienten bei 0,52 ± 0,08 % und bei den CTEPH Patienten bei 1,31 ± 0,09 %. (s. Tab. 11). Wenn ein Wert > 1 % als Hinweis auf eine CTEPH angesehen wird, dann weist dieses Kriterium eine Spezifität von 90 %, und eine Sensitivität von 88 % auf. Eine Kombination aus diesen beiden
Kriterien ergibt eine Spezifität von 95 % und eine Sensitivität von 75 %.

Für die PPH Patienten lag in Ruhe die EaDCO₂ bei 2,01 ± 0,09 %, für die CTEPH Patienten bei 2,56 ± 0,09 %. (s. Tab. 11). Wenn ein Wert > 2,2 % als Hinweis auf eine CTEPH angesehen wird, dann weist dieses Kriterium eine Spezifität von 67 %, und eine Sensitivität von 81 % auf. Bei maximaler Belastung lag die EaDCO₂ bei den PPH Patienten bei 1,54 ± 0,08 % und bei den CTEPH Patienten bei 2,08 ± 0,08 % (siehe Tab. 10). Wenn ein Wert > 1,71 % als Hinweis auf eine CTEPH angesehen wird, dann weist dieses Kriterium eine Spezifität von 71 % und eine Sensitivität von 88 % auf. Eine Kombination aus diesen beiden Kriterien ergibt eine Spezifität von 81 % und eine Sensitivität von 75 %.

<table>
<thead>
<tr>
<th>AaDCO₂, Vol %</th>
<th>PPH</th>
<th>CTEPH</th>
<th>Diagnose CTEPH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mittelwert</td>
<td>SEM</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>Ruhe</td>
<td>0,57</td>
<td>0,07</td>
<td>1,15</td>
</tr>
<tr>
<td>Max</td>
<td>0,52</td>
<td>0,08</td>
<td>1,31</td>
</tr>
<tr>
<td>Kombi</td>
<td>>1</td>
<td>>1</td>
<td>>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EaDCO₂, Vol %</th>
<th>PPH</th>
<th>CTEPH</th>
<th>Diagnose CTEPH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mittelwert</td>
<td>SEM</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>Ruhe</td>
<td>2,01</td>
<td>0,09</td>
<td>2,56</td>
</tr>
<tr>
<td>Max</td>
<td>1,54</td>
<td>0,08</td>
<td>2,08</td>
</tr>
<tr>
<td>Kombi</td>
<td>>2,2</td>
<td>>1,71</td>
<td>>2,2</td>
</tr>
</tbody>
</table>

Tabelle 11. Differentialdiagnose zwischen PPH Patienten und CTEPH Patienten. Mittelwerte ± SEM. AaDCO₂, Alveolo-arterielle Kohlendioxiddifferenz, EaDCO₂, Differenz aus der arteriellen Kohlendioxidkonzentration und dem Kohlendioxidanteil der gemischten exspirierten Luft

3.2.3.9. Veränderungen der arteriellen Blutgase und der Toträume bei maximaler Belastung

Wie in Tab. 12 dargestellt, zeigte der Sauerstoffpartialdruck keinen signifikant unterschiedlichen Verlauf zwischen beiden Gruppen.
Tabelle 12. Absolute Veränderungen der arteriellen Blutgase und der Toträume bei maximaler Belastung bei primärer pulmonaler Hypertonie und chronisch thromboembolischer pulmonaler Hypertonie. Mittelwerte ± SEM. pO_2, Sauerstoffpartialdruck; pCO_2, Kohlendioxidpartialdruck; fkt VD, funktioneller Totraum; eff VD, effektiver Totraum; eff/fkt VD, effektiver/funktioneller Totraum. *, $p < 0,05$, **, $p < 0,01$, ***, $p < 0,001$ für Unterschiede zwischen den Gruppen.

Die relative Veränderung betrug bei den PPH Patienten -5,42 ± 3,52 % und bei den CTEPH Patienten 2,32 ± 3,40 %, siehe Abb.19.

Auch der Kohlendioxidpartialdruck ergab keinen signifikant unterschiedlichen Verlauf zwischen den Gruppen. Die relative Veränderung ergab jedoch einen signifikanten Unterschied. Er betrug bei den PPH Patienten -1,06 ± 1,74 % und bei den CTEPH Patienten -7,01 ± 1,74 %, $p = 0,02$ (Vgl. Abb. 19).

Der funktionelle Totraum stieg bei den PPH Patienten deutlich an, während er bei den CTEPH Patienten nur leicht anstieg. Dadurch er gab sich ein signifikant unterschiedlicher Verlauf zwischen den Gruppen (0,22 ± 0,02 l vs. 0,10 ± 0,02 l, $p = 0,0006$). Die relative Veränderung betrug bei den PPH Patienten 88,49 ± 9,34 % und bei den CTEPH Patienten 39,36 ± 9,78 %, $p = 0,001$), siehe Abb. 19.

Der effektive Totraum stieg bei beiden Gruppen an und zeigte keinen signifikant unterschiedlichen Verlauf. Die relative Veränderung betrug bei den PPH Patienten 105,44 ± 9,68 % und bei den CTEPH Patienten 94,87 ± 9,52 % (Vgl. Abb. 19).

Der Quotient aus effektivem Totraum und funktionellen Totraum stieg bei den PPH Patienten nur geringfügig an, während er bei den CTEPH Patienten stark anstieg. Dadurch ergab sich ein signifikant unterschiedlicher Verlauf zwischen den Gruppen (0,13 ± 0,04 l vs. 0,62 ± 0,12 l, $p = 0,0001$). Die relative Veränderung war ebenfalls signifikant zwischen den Gruppen. Sie betrug bei den PPH Patienten
10,13 ± 3,22 % und bei den CTEPH Patienten 45,52 ± 8,72 %, p = 0,0002, Abb. 19.

3.2.4. Korrelationsanalysen

3.2.4.1. Korrelation von Lungenfunktionsparametern mit der maximalen Sauerstoffaufnahme

Für die PPH Patienten ergab sich nur für den Sauerstoffpartialdruck (r = 0,567, p = 0,007) eine signifikante Korrelation mit der maximalen Sauerstoffaufnahme. Die anderen Parameter korrelierten nicht signifikant mit der maximalen Sauerstoffaufnahme. Folgende Parameter gehörten hierzu: Einsekundenausatmungskapazität, Vitalkapazität, totale Lungenkapazität, Residualvolumen, Resistance, CO Transferfaktor, korrigiert auf die aktuelle Hb – Konzentration (siehe Tab. 8 und Abb. 20).

Bei den CTEPH Patienten korrelierte keiner der Parameter signifikant mit der maximalen Sauerstoffaufnahme (siehe Tab. 8 und Abb. 20).
Abbildung 20. Korrelation von Lungenfunktionsparametern mit der maximalen Sauerstoffaufnahme bei primärer pulmonaler Hypertonie und chronisch thromboembolischer pulmonaler Hypertonie. Die Graphiken auf der linken Seite stellen die PPH Gruppe und auf der rechten Seite die CTEPH Gruppe dar. $r =$ Regressionskoeffizient, $p =$ Irrtumswahrscheinlichkeit für Unterschiede zwischen den Gruppen. FEV1, Einsekundenkapazität, VC, Vitalkapazität, TLC, totale Lungenkapazität, RV, Residualvolumen, R, Atemwegswiderstand, DLCOc, CO Transferfaktor, korrigiert auf die aktuelle Hb-Konzentration, pO_2, Sauerstoffpartialdruck, peak VO$_2$, maximale Sauerstoffaufnahme in % der Norm.
3.2.4.2. Korrelation von CO$_2$ Atemäquivalent bei Belastung mit der maximalen Sauerstoffaufnahme

Das CO$_2$ Atemäquivalent betrug für die PPH Patienten 42,51 und für die CTEPH Patienten 54,86 (p = 0,004). Für die PPH Patienten ergab sich eine deutliche signifikante Korrelation mit der maximalen Sauerstoffaufnahme (r = -0,815, p = 6,69 * 10$^{-6}$).

Bei den CTEPH Patienten korrelierte die EQCO$_2$ nicht signifikant mit der maximalen Sauerstoffaufnahme, siehe Abb. 21.

3.2.4.3. Korrelation von Häodynamikwerten mit der maximalen Sauerstoffaufnahme

Bei den PPH Patienten korrelierte der mittlere pulmonal-arterielle Druck (r = -0,546, p = 0,01), der Cardiac Index (r = 0,438, p = 0,047), der zentrale Venendruck (r = -0,587, p = 0,005), der Quotient aus dem pulmonal vaskulären Widerstand und dem systemischen vaskulären Widerstand (r = -0,553, p = 0,009), der pulmonal vaskuläre Widerstands Index (r = -0,640, p = 0,002), die zentralvenöse Sauerstoffsättigung (r = 0,618, p = 0,003) und die arterielle Sauerstoffsättigung (r = 0,540, p = 0,011) signifikant mit der maximalen Sauerstoffaufnahme (siehe Tab. 9 und Abb. 22 und 23).

Nur der mittlere systemisch arterielle Druck korrelierte nicht signifikant mit der maximalen Sauerstoffaufnahme (siehe Tab. 9 und Abb. 22).

Bei den CTEPH Patienten korrelierte nur der pulmonal vaskuläre Widerstands Index (r = -0,547, p = 0,035) signifikant mit der maximalen Sauerstoffaufnahme (Vgl. Tab. 9 und Abb. 23).
Abbildung 22. Korrelation von Hämodynamikwerten mit der maximalen Sauerstoffaufnahme bei primär pulmonaler Hypertonie und chronisch thromboembolischer pulmonaler Hypertonie. Die Graphiken auf der linken Seite stellen die PPH Gruppe und auf der rechten Seite die CTEPH Gruppe dar. r = Regressionskoeffizient, p = Irrtumswahrscheinlichkeit für Unterschiede zwischen den Gruppen. mPAP, mittlerer pulmonal-arterieller Druck, CI, Cardiac Index, CVP, zentraler Venendruck, mSAP, mittlerer systemisch arterieller Druck, peak VO$_2$, maximale Sauerstoffaufnahme in % der Norm.
Abbildung 23. Korrelation von Hämodynamikwerten mit der maximalen Sauerstoffaufnahme bei primärer pulmonaler Hypertonie und chronisch thromboembolischer pulmonaler Hypertonie. Die Graphiken auf der linken Seite stellen die PPH Gruppe und auf der rechten Seite die CTEPH Gruppe dar. r = Regressionskoeffizient, p = Irrtumswahrscheinlichkeit für Unterschiede zwischen den Gruppen. PVR/SVR, pulmonal vaskulärer Widerstand/systemisch vaskulären Widerstand, PVRi, pulmonal vaskulärer Widerstands Index, SvO₂, zentralvenöse Sauerstoffsättigung, SaO₂, arterielle Sauerstoffsättigung, peak VO₂, maximale Sauerstoffaufnahme in % der Norm.
3.3. Studie III: Cystische Fibrose

3.3.1. Anthropometrische Daten

Bei der Gegenüberstellung von Kontrollpersonen und Patienten mit cystischer Fibrose (CF) zeigte sich, dass die CF Patienten eine signifikant kleinere Körpergröße (p = 0,002) und ein signifikant geringeres Körpergewicht (p = 0,0004) als die Kontrollpersonen hatten (Tab. 13).

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Kontrollen</th>
<th>CF</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl(n)</td>
<td>13</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Geschlecht(w)</td>
<td>7</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>(m)</td>
<td>6</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Alter(Jahre)</td>
<td>26,8</td>
<td>27</td>
<td>0,002</td>
</tr>
<tr>
<td>(18-34)</td>
<td></td>
<td>(18-38)</td>
<td></td>
</tr>
<tr>
<td>Körpergröße</td>
<td>177,9</td>
<td>167,8</td>
<td>0,002</td>
</tr>
<tr>
<td>(155-200)</td>
<td></td>
<td>(144-183)</td>
<td></td>
</tr>
<tr>
<td>Körpergewicht</td>
<td>69,9</td>
<td>57,4</td>
<td>0,0004</td>
</tr>
<tr>
<td>(53-92)</td>
<td></td>
<td>(35-84)</td>
<td></td>
</tr>
</tbody>
</table>

3.3.2. Ruheparameter

3.3.2.1. Lungenfunktion

Wie in Tab. 14 dargestellt, zeigten sich bei den Lungenfunktionsparametern signifikante Unterschiede zwischen den Kontrollpersonen und den CF Patienten. So war die Einsekundenausatmungskapazität in Litern bei den CF Patienten signifikant reduziert, (p = 2,83* 10⁻⁹), ebenso die Einsekundenausatmungskapazität in Prozent der Norm, (p = 1,14* 10⁻⁸), die Vitalkapazität in Litern, (p = 1,42* 10⁻⁵), die Vitalkapazität in Prozent der Norm, (p = 1,58* 10⁻⁵), die totale Lungenkapazität in Litern, (p = 0,02), das Residualvolumen in Litern, (p = 0,011), das Residualvolumen in Prozent der Norm, (p = 0,0009). Signifikant erhöht war bei den CF Patienten die Resistance, (p = 0,03) und die Resistance in Prozent der Norm (p = 0,02).
Merkmal Kontrollen CF Korrelationskoeffizient (r) mit peak VO$_2$ (% d. N.)

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Kontrollen (l ± SEM)</th>
<th>CF (l ± SEM)</th>
<th>Kontrollen</th>
<th>CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEV1 (%)d.N. ± SEM</td>
<td>103,19 ± 3,68</td>
<td>57,02 ± 3,44</td>
<td>0,17</td>
<td>0,51 **</td>
</tr>
<tr>
<td>VC (%)d.N. ± SEM</td>
<td>7,28 ± 0,39</td>
<td>6,13 ± 0,22</td>
<td>-0,33</td>
<td>0,19</td>
</tr>
<tr>
<td>TLC (%)d.N. ± SEM</td>
<td>109,33 ± 3,16</td>
<td>106,19 ± 2,12</td>
<td>-0,33</td>
<td>0,19</td>
</tr>
<tr>
<td>RV (%)d.N. ± SEM</td>
<td>2,22 ± 0,14</td>
<td>2,90 ± 0,13</td>
<td>-0,46</td>
<td>-0,32</td>
</tr>
<tr>
<td>Resistance (kpa*s/l) ± SEM</td>
<td>0,24 ± 0,03</td>
<td>0,57 ± 0,08 *</td>
<td>-0,60 ***</td>
<td></td>
</tr>
<tr>
<td>resistance (%)d.N. ± SEM</td>
<td>79,95 ± 9,43</td>
<td>193,97 ± 26,01</td>
<td>0,13</td>
<td>-0,60 ***</td>
</tr>
<tr>
<td>DLCOc (mmol/min/kpa) ± SEM</td>
<td>8,81 ± 0,54</td>
<td>85,98 ± 4,32</td>
<td>0,70 **</td>
<td></td>
</tr>
<tr>
<td>peak VO$_2$ (l) ± SEM</td>
<td>90,62 ± 4,70</td>
<td>72,71 ± 2,59</td>
<td>-0,74</td>
<td>0,29</td>
</tr>
<tr>
<td>Ruhe pO$_2$ (mmHg) ± SEM</td>
<td>87,90 ± 2,21</td>
<td>73,73 ± 1,44</td>
<td>0,47</td>
<td>0,38 *</td>
</tr>
</tbody>
</table>

Tabelle 14. Lungenfunktion bei Kontrollen und cystischer Fibrose. Mittelwerte ± SEM und Mittelwerte in Prozent der Norm ± SEM. FEV1, Einsekundenausatmungskapazität, VC, Vitalkapazität, TLC, totale Lungenkapazität, RV, Residualvolumen, R, Atemwegswiderstand, DLCOc, CO Transferfaktor, korrigiert auf die aktuelle Hb-Konzentration, peak VO$_2$, maximale Sauerstoffaufnahme, Ruhe pO$_2$. Sauerstoffpartialdruck in Ruhe. Bei den Kontrollpersonen wurde keine DLCOc bestimmt. *, p < 0,05, **, p < 0,01, ***, p < 0,001 für Unterschiede zwischen den Gruppen bzw. die Signifikanz der Korrelationen.

3.3.2.2. Maximale Sauerstoffaufnahme

Die maximale Sauerstoffaufnahme in Prozent der Norm war bei den CF Patienten signifikant niedriger als bei den Kontrollpersonen und betrug im Mittel 72,71 ± 2,59 % der Norm (p = 0,0012), Tab. 14.

3.3.2.3. Blutgasanalyse

Der Sauerstoffpartialdruck in Ruhe war bei den CF Patienten signifikant auf 73,73 ± 1,44 mmHg erniedrigt (p = 6,15* 10$^{-6}$), siehe Tab. 14.

Der Kohlendioxidpartialdruck in Ruhe zeigte keinen signifikanten Unterschied zwischen den Kontrollpersonen und den CF Patienten, siehe Abb. 25.
3.3.3. Spiroergometrische Daten

3.3.3.1. Hämodynamische und ventilatorische Parameter

Wie in Abb. 24 dargestellt, betrug die Herzfrequenz in Ruhe bei den Kontrollpersonen 84,62 ± 3,07 min⁻¹ und bei den CF Patienten 89,72 ± 2,68 min⁻¹.

Beim maximaler Belastung stieg die Herzfrequenz bei den Kontrollpersonen auf 162,85 ± 3,08 min⁻¹ und bei den CF Patienten auf 158,05 ± 2,45 min⁻¹.

Drei Minuten nach maximaler Belastung sank die Herzfrequenz auf 113,00 ± 4,60 min⁻¹ bei den Kontrollpersonen und auf 115,51 ± 2,76 min⁻¹ bei den CF Patienten.

Nach acht Minuten sank die Herzfrequenz weiter auf 104,69 ± 3,49 min⁻¹ bei den Kontrollpersonen und auf 107,18 ± 3,96 min⁻¹ bei den CF Patienten. Bei allen Werten zeigten sich keine signifikanten Unterschiede zwischen den Gruppen.

Die Sauerstoffaufnahme in Ruhe ergab keinen signifikanten Unterschied zwischen den Gruppen. Sie betrug bei den Kontrollpersonen 0,27 ± 0,03 l/min und bei den CF Patienten 0,26 ± 0,009 l/min.

Bei maximaler Belastung war die Sauerstoffaufnahme bei den CF Patienten signifikant erniedrigt (2,40 ± 0,22 l/min vs. 1,57 ± 0,08 l/min, p = 3,57*10⁻⁵).

Nach drei Minuten betrug die Sauerstoffaufnahme bei den Kontrollpersonen 0,47 ± 0,04 l/min und bei den CF Patienten 0,41 ± 0,02 l/min.

Acht Minuten nach maximaler Belastung betrug die Sauerstoffaufnahme 0,35 ± 0,04 l/min bei den Kontrollpersonen und 0,30 ± 0,01 l/min bei den CF Patienten. Bei den Erholungswerten ergaben sich keine signifikanten Unterschiede zwischen den Gruppen.

Die Ventilation in Ruhe war bei den CF Patienten signifikant höher als bei den Kontrollpersonen (9,38 ± 0,67 l/min vs. 12,64 ± 0,58 l/min, p = 0,004).
Bei maximaler Belastung stieg die Ventilation bei den Kontrollpersonen auf 66,28 ± 7,24 l/min und bei den CF Patienten auf 51,91 ± 2,38 l/min (p = 0,02).

Nach drei Minuten ging die Ventilation bei den Kontrollpersonen zurück auf 22,93 ± 1,97 l/min und bei den CF Patienten auf 25,03 ± 1,05 l/min, und war damit nicht signifikant.

Acht Minuten nach maximaler Belastung war die Ventilation bei den CF Patienten signifikant höher als bei den Kontrollpersonen (13,65 ± 1,31 l/min vs. 16,72 ± 0,64 l/min, p = 0,03).

Das Atemzugvolumen in Ruhe betrug bei den Kontrollpersonen 0,58 ± 0,05 l und bei den CF Patienten 0,69 ± 0,04 l. Bei maximaler Belastung war bei den CF Patienten das Atemzugvolumen deutlich signifikant niedriger als bei den Kontrollpersonen (2,37 ± 0,18 l vs. 1,68 ± 0,09 l, p = 0,0008).

Nach drei Minuten erreichte das Atemzugvolumen bei den Kontrollpersonen 1,22 ± 0,12 l und bei den CF Patienten 1,18 ± 0,07 l.

Acht Minuten nach maximaler Belastung betrug das Atemzugvolumen 0,74 ± 0,08 l bei den Kontrollpersonen und 0,82 ± 0,05 l bei den CF Patienten. Bei den Erholungswerten zeigten sich keine signifikanten Unterschiede zwischen den Gruppen.

Die Atemfrequenz in Ruhe betrug bei den Kontrollpersonen 16,77 ± 1,07 min⁻¹ und bei den CF Patienten 19,22 ± 0,70 min⁻¹. Bei maximaler Belastung war die Atemfrequenz bei den CF Patienten signifikant höher als bei den Kontrollpersonen (27,89 ± 1,96 min⁻¹ vs. 32,41 ± 1,11 min⁻¹, p = 0,05).

Nach drei Minuten sank die Atemfrequenz bei den Kontrollpersonen auf 20,00 ± 1,52 min⁻¹ und bei den CF Patienten auf 24,79 ± 2,44 min⁻¹.

Acht Minuten nach maximaler Belastung sank die Atemfrequenz weiter auf 18,94 ± 1,10 min⁻¹ bei den Kontrollpersonen und auf 21,83 ± 0,85 min⁻¹ bei den CF Patienten. Bei den Erholungswerten zeigten sich keine signifikanten Unterschiede zwischen den Gruppen.
3.3.3.2. Arterielle und exspiratorische Sauerstoff- und Kohlendioxidpartialdrucke

Wie in Abb. 25 dargestellt, war der Sauerstoffpartialdruck in Ruhe bei den CF Patienten signifikant niedriger als bei den Kontrollpersonen (87,90 ± 2,21 mmHg vs. 73,73 ± 1,44 mmHg, p = 6,15* 10⁻⁶). Bei maximaler Belastung war der Sauerstoffpartialdruck bei den CF Patienten ebenfalls signifikant niedriger als bei den Kontrollpersonen (87,38 ± 1,46 mmHg vs. 70,24 ± 1,91 mmHg, p = 7,80* 10⁻⁶). Drei Minuten nach maximaler Belastung betrug der Sauerstoffpartialdruck bei den Kontrollpersonen 102,48 ± 1,65 mmHg und bei den CF Patienten 90,63 ± 2,12 mmHg (p = 0,003). Auch nach acht Minuten war der Sauerstoffpartialdruck bei den CF Patienten signifikant niedriger als bei den Kontrollpersonen (91,19 ± 1,83 mmHg vs. 82,93 ± 1,27 mmHg, p = 0,002).

Der Kohlendioxidpartialdruck in Ruhe betrug bei den Kontrollpersonen 38,22 ± 1,03 mmHg und bei den CF Patienten 36,92 ± 0,73 mmHg. Bei maximaler Belastung ergab sich ein Kohlendioxidpartialdruck von 38,69 ± 1,16 mmHg bei den Kontrollpersonen und 42,11 ± 1,02 mmHg bei den CF Patienten. Nach drei Minuten zeigte sich ein Kohlendioxidpartialdruck bei den Kontrollpersonen von 33,92 ± 1,10 mmHg und bei den CF Patienten von 35,48 ± 1,06 mmHg. Acht Minuten nach maximaler Belastung betrug der Kohlendioxidpartialdruck bei den Kontrollpersonen 33,33 ± 1,07 mmHg und bei den CF Patienten 32,91 ± 0,92 mmHg. Bei allen Werten zeigten sich keine signifikanten Unterschiede zwischen den Gruppen.

Der Base Excess in Ruhe betrug bei den Kontrollpersonen 1,08 ± 0,42 mmol/l und bei den CF Patienten 0,96 ± 0,31 mmol/l. Bei maximaler Belastung fiel der Base Excess bei den Kontrollpersonen auf -4,27 ± 0,88 mmol/l und bei den CF Patienten auf -3,92 ± 0,46 mmol/l.
Drei Minuten nach maximaler Belastung fiel der Base Excess weiter auf -7,13 ± 1,07 mmol/l bei den Kontrollpersonen und auf -7,31 ± 0,55 mmol/l bei den CF Patienten.
Nach acht Minuten ergab sich ein Base Excess bei den Kontrollpersonen von -5,63 ± 1,23 mmol/l und bei den CF Patienten von -6,77 ± 0,68 mmol/l.

Der endexspiratorische Sauerstoffpartialdruck in Ruhe war bei den CF Patienten signifikant höher als bei den Kontrollpersonen (106,88 ± 1,45 mmHg vs. 112,27 ± 0,93 mmHg, p = 0,005).
Bei maximaler Belastung betrug der endexspiratorische Sauerstoffpartialdruck bei den Kontrollpersonen 106,23 ± 1,41 mmHg und bei den CF Patienten 107,44 ± 1,12 mmHg.
Drei Minuten nach maximaler Belastung zeigte sich ein endexspiratorischer Sauerstoffpartialdruck von 119,69 ± 1,30 mmHg bei den Kontrollpersonen und von 119,94 ± 1,08 mmHg bei den CF Patienten.
Nach acht Minuten war der endexspiratorische Sauerstoffpartialdruck bei den CF Patienten signifikant höher als bei den Kontrollpersonen (112,02 ± 1,56 mmHg vs. 117,74 ± 0,86 mmHg, p = 0,002).

Bei der alveoloarteriellen Sauerstoffdifferenz zeigte sich in Ruhe eine signifikant höhere Differenz bei den CF Patienten als bei den Kontrollpersonen (18,98 ± 2,32 mmHg vs. 38,54 ± 1,32 mmHg, p = 1,39*10^{-9}).
Auch bei maximaler Belastung war die alveoloarterielle Sauerstoffdifferenz bei den CF Patienten signifikant erhöht (18,85 ± 1,85 mmHg vs. 37,20 ± 1,57 mmHg, p = 8,94*10^{-8}).
Nach drei Minuten ergab sich eine alveoloarterielle Sauerstoffdifferenz bei den Kontrollpersonen von 17,22 ± 1,67 mmHg und bei den CF Patienten von 30,72 ± 1,03 mmHg (p = 2,12*10^{-8}).
Acht Minuten nach maximaler Belastung war die alveoloarterielle Sauerstoffdifferenz bei den CF Patienten immer noch signifikant erhöht (20,13 ± 1,38 mmHg vs. 34,99 ± 1,12 mmHg, p = 7,94*10^{-9}).
Abbildung 25. Arterielle und exspiratorische O$_2$- und CO$_2$-Partialdrucke vor, während und nach maximaler Belastung bei Kontrollen und cystischer Fibrose. Mittelwerte ± SEM. Weisse Säulen: Kontrollen (n = 13). Graue Säulen: Cystische Fibrose (n = 39). pO$_2$, Sauerstoffpartialdruck, pCO$_2$, Kohlendioxidpartialdruck, BE, Base Excess, P$_{ET}$O$_2$, endexspiratorischer O$_2$-Partialdruck, AaDO$_2$, Alveoloarterielle Sauerstoffdifferenz. *, p < 0,05, **, p < 0,01, ***, p < 0,001 für Unterschiede zwischen den Gruppen.

3.3.3.3. Arterielle und exspiratorische Kohlendioxidkonzentrationen

Wie in Abb. 26 dargestellt, war die endexspiratorische Kohlendioxidkonzentration bei den CF Patienten in Ruhe im Gegensatz zu den
Kontrollpersonen signifikant erniedrigt (5,09 ± 0,13 % vs. 4,59 ± 0,10 %, p = 0,009).

Bei maximaler Belastung betrug die endexspiratorische Kohlendioxidkonzentration bei den Kontrollpersonen 6,17 ± 0,15 % und bei den CF Patienten 6,00 ± 0,13 %.

Drei Minuten nach maximaler Belastung erreichte die endexspiratorische Kohlendioxidkonzentration bei den Kontrollpersonen 5,02 ± 0,14 % und bei den CF Patienten 4,93 ± 0,14 %.

Nach acht Minuten war die endexspiratorische Kohlendioxidkonzentration bei den CF Patienten signifikant gegenüber den Kontrollpersonen erniedrigt (4,76 ± 0,13 % vs. 4,30 ± 0,11 %, p = 0,03).

Der Kohlendioxidanteil der gemischten exspirierten Luft ergab in Ruhe bei den CF Patienten einen deutlichen signifikant erniedrigten Anteil als bei den Kontrollpersonen (3,16 ± 0,08 % vs. 2,70 ± 0,06 %, p = 8,47* 10⁻⁵).

Auch bei maximaler Belastung war der Kohlendioxidanteil der gemischten exspirierten Luft bei den CF Patienten signifikant erniedrigt (4,92 ± 0,12 % vs. 4,24 ± 0,10 %, p = 0,0008).

Nach drei Minuten war der Kohlendioxidanteil der gemischten exspirierten Luft bei den CF Patienten ebenfalls deutlich signifikant erniedrigt (3,66 ± 0,13 % vs. 3,14 ± 0,08 %, p = 0,001).

Acht Minuten nach maximaler Belastung betrug der Kohlendioxidanteil der gemischten exspirierten Luft bei den Kontrollpersonen 3,10 ± 0,09 % und bei den CF Patienten 2,58 ± 0,06 % (p = 1,59* 10⁻⁵).

Die arterielle Kohlendioxidkonzentration in Ruhe betrug bei den Kontrollpersonen 5,37 ± 0,15 % und bei den CF Patienten 5,18 ± 0,11 %.

Bei maximaler Belastung stieg die arterielle Kohlendioxidkonzentration bei den Kontrollpersonen auf 5,44 ± 0,16 % und bei den CF Patienten auf 5,91 ± 0,14 % leicht an.
Drei Minuten nach maximaler Belastung fiel die arterielle Kohlendioxidkonzentration wieder auf 4,77 ± 0,15 % bei den Kontrollpersonen und auf 4,98 ± 0,15 % bei den CF Patienten. Nach acht Minuten fiel die arterielle Kohlendioxidkonzentration weiter auf 4,69 ± 0,15 % bei den Kontrollpersonen und auf 4,62 ± 0,13 % bei den CF Patienten. Bei allen Werten zeigten sich keine signifikanten Unterschiede zwischen den Gruppen.

Die funktionelle alveoläre Ventilation war unter Ruhebedingungen bei den CF Patienten leicht signifikant höher als bei den Kontrollpersonen (5,87 ± 0,46 l/min vs. 7,48 ± 0,38 l/min, p = 0,03). Bei maximaler Belastung zeigte sich eine signifikant niedrigere funktionelle alveoläre Ventilation bei den CF Patienten gegenüber den Kontrollpersonen (53,08 ± 5,93 l/min vs. 37,37 ± 1,98 l/min, p = 0,002).

Drei Minuten nach maximaler Belastung betrug die funktionelle alveoläre Ventilation bei den Kontrollpersonen 16,67 ± 1,44 l/min und bei den CF Patienten 16,15 ± 0,72 l/min. Nach acht Minuten ergab sich eine funktionelle alveolare Ventilation von 8,98 ± 0,92 l/min bei den Kontrollpersonen und von 10,14 ± 0,43 l/min bei den CF Patienten. Bei den Erholungswerten ergaben sich keine signifikanten Unterschiede zwischen den Gruppen.

Die effektive alveoläre Ventilation betrug in Ruhe bei den Kontrollpersonen 5,55 ± 0,41 l/min und bei den CF Patienten 6,60 ± 0,32 l/min. Bei maximaler Belastung war die effektive alveoläre Ventilation bei den CF Patienten deutlich signifikant erniedrigt gegenüber den Kontrollpersonen (60,23 ± 6,66 l/min vs. 38,56 ± 2,22 l/min, p = 0,0002). Drei Minuten nach maximaler Belastung sank die effektive alveolare Ventilation bei den Kontrollpersonen auf 17,71 ± 1,61 l/min und bei den CF Patienten auf 16,22 ± 0,85 l/min. Nach acht Minuten sank die effektive alveolare Ventilation weiter auf 9,35 ± 1,08 l/min bei den Kontrollpersonen und auf 9,55 ± 0,44 l/min.

Abbildung 26. Arterielle und exspiratorische CO₂-Konzentration zur Berechnung der alveolären Ventilation bei Kontrollen und cystischer Fibrose. Mittelwerte ± SEM. Weisse Säulen: Kontrollen (n = 13). Graue Säulen: Cystische Fibrose (n = 39). \(F_{ET\ CO_2} \), endexspiratorische CO₂-Konzentration, \(F_{E\ CO_2} \), CO₂-Anteil der gemischten exspirierten Luft, \(FaCO_2 \), arterielle CO₂-Konzentration, fkt alv VE, funktionelle alveoläre Ventilation, eff alv VE, effektive alveoläre Ventilation. *, p < 0,05, **, p < 0,01, ***, p < 0,001 für Unterschiede zwischen den Gruppen. Die gemischte exspiratorische CO₂-Konzentration war bei den CF Patienten zu jedem Zeitpunkt erniedrigt, während die endexspiratorische CO₂-Konzentration nur wenig von der Kontrollgruppe abwich.
3.3.3.4. Funktioneller und effektiver Totraum

Wie in Abb. 27 dargestellt, war der funktionelle Totraum bei den CF Patienten signifikant höher als bei den Kontrollpersonen (0,22 ± 0,02 l vs. 0,28 ± 0,02 l, p = 0,04).

Bei maximaler Belastung betrug der funktionelle Totraum bei den Kontrollpersonen 0,48 ± 0,04 l und bei den CF Patienten 0,47 ± 0,04 l.

Drei Minuten nach maximaler Belastung zeigte sich bei den CF Patienten eine signifikante Erhöhung des funktionellen Totraumes, im Gegensatz zu den Kontrollpersonen (0,32 ± 0,03 l vs. 0,41 ± 0,02 l, p = 0,04).

Nach acht Minuten sank der funktionelle Totraum auf 0,25 ± 0,02 l bei den Kontrollpersonen und auf 0,32 ± 0,02 l bei den CF Patienten.

Der Quotient aus dem funktionellen Totraum und dem Atemzugvolumen (fkt VD/VT, funktioneller relativer Totraum) betrug in Ruhe bei den Kontrollpersonen 37,84 ± 1,21 % und bei den CF Patienten 41,00 ± 0,93 %.

Bei maximaler Belastung zeigte sich bei den Kontrollpersonen eine deutliche signifikante Erniedrigung des funktionellen relativen Totraumes gegenüber Ruhe. Demgegenüber fiel der Wert bei den CF Patienten deutlich weniger stark ab und war bei Belastung signifikant höher als bei den Kontrollpersonen (20,20 ± 0,48 % vs. 29,08 ± 1,20 %, p = 0,0001).

Auch nach drei Minuten ergab sich für die Kontrollpersonen eine deutliche signifikante Erniedrigung des funktionellen relativen Totraumes gegenüber Ruhe. Im Gegensatz hierzu fiel der Wert bei den CF Patienten deutlich weniger stark ab und war drei Minuten nach maximaler Belastung signifikant höher als bei den Kontrollpersonen (27,17 ± 1,34 % vs. 35,76 ± 1,00 %, p = 3,64* 10⁻⁵).

Nach acht Minuten hatten die Kontrollpersonen einen funktionellen relativen Totraum von 34,75 ± 1,36 % und die CF Patienten von 39,61 ± 0,79 % (p = 0,003).
Der effektive Toraum in Ruhe betrug bei den Kontrollpersonen 0,24 ± 0,02 l und bei den CF Patienten 0,33 ± 0,02 l (p = 0,02).
Bei maximaler Belastung war der effektive Totaum bei den CF Patienten deutlich signifikant höher als bei den Kontrollpersonen (0,22 ± 0,03 l vs. 0,42 ± 0,02 l, p = 4,41* 10⁻⁵).
Auch drei Minuten nach maximaler Belastung zeigte der effektive Totaum bei den CF Patienten eine signifikante Erhöhung gegenüber den Kontrollpersonen (0,26 ± 0,03 l vs. 0,40 ± 0,02 l, p = 0,001).
Nach acht Minuten erreichte der effektive Totaum bei den CF Patienten ebenfalls eine signifikant höheren Wert als bei den Kontrollpersonen (0,24 ± 0,02 l vs. 0,35 ± 0,02 l, p = 0,003).

Der effektive relative Totaum (eff VD/ VT) war in Ruhe bei den CF Patienten signifikant höher als bei den Kontrollpersonen (40,88 ± 1,63 % vs. 47,58 ± 1,04 %, p = 0,002).
Bei maximaler Belastung zeigte sich bei den CF Patienten eine deutlich signifikante Erniedrigung des effektive relative Totaum gegenüber Ruhe. Demgegenüber fiel der Wert bei den Kontrollpersonen deutlich stärker ab und war bei Belastung signifikant niedriger als bei CF Patienten (9,14 ± 1,39 % vs. 27,29 ± 1,76 %, p = 5,64* 10⁻⁷).
Auch drei Minuten nach maximaler Belastung ergab sich für die CF Patienten eine deutliche signifikante Erniedrigung des effektiven relativen Totaumes gegenüber Ruhe. Im Gegensatz hierzu fiel der Wert bei den Kontrollpersonen deutlich stärker ab und war demzufolge drei Minuten nach maximaler Belastung signifikant niedriger als bei den CF Patienten (22,96 ± 2,14 % vs. 35,82 ± 1,55 %, p = 6,73* 10⁻⁵).
Nach acht Minuten betrug der effektive relative Totaum bei den Kontrollpersonen 33,06 ± 2,18 % und bei den CF Patienten 43,82 ± 1,04 (p = 1,25* 10⁻⁵).

Der Quotient aus effektiven Totaum und funktionellen Totaum (eff VD /fkt VD) betrug in Ruhe bei den Kontrollpersonen 1,08 ± 0,03 und bei den CF Patienten 1,16 ± 0,02 (p = 0,007).
Bei maximaler Belastung hatten die CF Patienten einen signifikant höheren eff VD/ fkt VD als die Kontrollpersonen (0,45 ± 0,07 vs. 0,92 ± 0,04, p = 5,23 \times 10^{-8}).

Drei Minuten nach maximaler Belastung stieg der eff VD/ fkt VD bei den Kontrollpersonen auf 0,83 ± 0,05 und bei den CF Patienten auf 1,00 ± 0,03 (p = 0,005).

Nach acht Minuten stieg der Wert weiter auf 0,94 ± 0,02 bei den Kontrollpersonen und auf 1,10 ± 0,01 bei den CF Patienten. Der eff VD/ fkt VD war bei den CF Patienten deutlich signifikant höher als bei den Kontrollpersonen (p = 6,00 \times 10^{-7}).
Abbildung 27. Funktioneller und effektiver Totraum vor, während und nach maximaler Belastung bei Kontrollen und cystischer Fibrose. Mittelwerte ± SEM. Weisse Säulen: Kontrollen (n = 13). Graue Säulen: Cystische Fibrose (n = 39). fkt VD, funktioneller Totraum, fkt VD/VT, funktioneller Totraum/Atemzugvolumen, eff VD, effektiver Totraum, eff VD/VT, effektiver Totraum/Atemzugvolumen, eff VD/fkt VD, effektiver Totraum/funktioneller Totraum. *, p < 0,05, **, p < 0,01, ***, p < 0,001 für Unterschiede zwischen den Gruppen.
3.3.3.5. Maximale hämodynamische, ventilatorische und metabolische Parameter

Eine Gegenüberstellung von Kontrollpersonen und CF Patienten ergab für folgende Parameter signifikante Unterschiede zwischen den Gruppen:

Maximale Sauerstoffaufnahme, maximale Sauerstoffaufnahme in Prozent der Norm, maximale Ventilation, maximales Atemzugvolumen, maximales Atemzugvolumen in Prozent der Norm, maximale Atemfrequenz, maximale Atemfrequenz in Prozent der Norm, siehe Tab. 15.

<table>
<thead>
<tr>
<th>Messparameter</th>
<th>Kontrollen</th>
<th>CF</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. HR</td>
<td>162,85</td>
<td>158,05</td>
<td>0,30</td>
</tr>
<tr>
<td>Max. HR, % d. N.</td>
<td>85,25</td>
<td>78,80</td>
<td>0,24</td>
</tr>
<tr>
<td>Max. VO2 (peak VO2)</td>
<td>2,40</td>
<td>1,57</td>
<td>4*10^-3</td>
</tr>
<tr>
<td>Max. VO2 (peak VO2), % d. N.</td>
<td>90,62</td>
<td>72,71</td>
<td>0,001</td>
</tr>
<tr>
<td>Max. V̇E</td>
<td>66,28</td>
<td>51,91</td>
<td>0,017</td>
</tr>
<tr>
<td>Max. V̇E, % d. N.</td>
<td>75,63</td>
<td>73,66</td>
<td>0,74</td>
</tr>
<tr>
<td>Max. VT</td>
<td>2,37</td>
<td>1,68</td>
<td>0,0008</td>
</tr>
<tr>
<td>Max. VT, % d. N.</td>
<td>99,03</td>
<td>84,99</td>
<td>0,05</td>
</tr>
<tr>
<td>Max. BF</td>
<td>27,89</td>
<td>32,41</td>
<td>0,048</td>
</tr>
<tr>
<td>Max. BF, % d. N.</td>
<td>77,46</td>
<td>90,03</td>
<td>0,05</td>
</tr>
<tr>
<td>3 min BE</td>
<td>-7,13</td>
<td>-7,31</td>
<td>0,88</td>
</tr>
<tr>
<td>3 min BE-Ruhe BE</td>
<td>-8,21</td>
<td>-8,27</td>
<td>0,96</td>
</tr>
</tbody>
</table>

3.3.3.6. Arterio-exspiratorische Kohlendioxiddifferenzen

Wie in Abb. 28 dargestellt, betrug die Differenz aus der arteriellen Kohlendioxidkonzentration und dem Kohlendioxidanteil der gemisch-
ten exspirierten Luft (EaDCO₂) in Ruhe bei den Kontrollpersonen 2,21 ± 0,13 % und bei den CF Patienten 2,48 ± 0,10 %.

Die Differenz aus der arteriellen Kohlendioxidkonzentration und dem endexspiratorischen Kohlendioxidanteil (AaDCO₂) war bei den CF Patienten signifikant höher als bei den Kontrollpersonen (0,28 ± 0,09 % vs. 0,59 ± 0,05 %, p = 0,004).

Wie bereits oben dargestellt, hatten die CF Patienten bei maximaler Belastung einen signifikant erniedrigten Kohlendioxidanteil der gemischten exspirierten Luft gegenüber den Kontrollpersonen. Der endexspiratorischen Kohlendioxidanteils und die arterielle Kohlendioxidkonzentration zeigten keine signifikanten Unterschiede zwischen den Gruppen, siehe Abb. 26 und 28.

Die EaDCO₂ war bei maximaler Belastung bei den CF Patienten signifikant höher als bei den Kontrollpersonen (0,51 ± 0,08 % vs. 1,67 ± 0,15 %, p = 5,69* 10⁻⁵).

Auch die AaDCO₂ zeigte einen signifikant höheren Wert für die CF Patienten als für die Kontrollpersonen (-0,74 ± 0,08 % vs. -0,10 ± 0,08 %, p = 7,77* 10⁻⁵).
3.3.3.7. Absolute Veränderungen der arteriellen und exspiratorischen Kohlendioxidkonzentrationen bei maximaler Belastung

Wie in Abb. 28 dargestellt, stieg der Kohlendioxidanteil der gemischten exspirierten Luft bei den Kontrollpersonen und bei den CF Patienten bei Belastung an, so dass kein signifikanter Unterschied der Ruhe – Arbeit Differenzen festzustellen war (1,77 ± 0,13 % vs. 1,54 ± 0,08 %).

Auch bei dem endexspiratorischen Kohlendioxidanteil ergaben sich keine signifikanten Unterschiede der Ruhe – Arbeit Differenzen zwischen den Gruppen. Die Differenz betrug bei den Kontrollpersonen 1,08 ± 0,11 % und bei den CF Patienten 1,41 ± 0,10 %.

Die arterielle Kohlendioxidkonzentration stieg bei den Kontrollpersonen unter Belastung nur geringfügig an, während sie bei den CF Patienten deutlicher anstieg. Dadurch ergab sich ein signifikanter
Unterschied der Ruhe – Arbeit Differenzen (0,07 ± 0,16 % vs. 0,75 ± 0,08 %, p = 0,0002).

Die EaDCO₂ sank bei Arbeit bei den Kontrollpersonen stark ab, während sie bei den CF Patienten nur geringfügig absank. Entsprechend war die Ruhe – Arbeit Differenz dieses Wertes signifikant unterschiedlich zwischen den Gruppen (-1,70 ± 0,15 % vs. -0,82 ± 0,09 %, p = 1,07* 10⁻⁵).

Die AaDCO₂ sank bei Arbeit bei den Kontrollpersonen ebenfalls deutlich ab, während sie bei den CF Patienten nur leicht absank. Dadurch ergab sich ebenfalls ein signifikanter Unterschied der Ruhe – Arbeit Differenzen (-1,01 ± 0,11 % vs. -0,68 ± 0,07 %, p = 0,02).

3.3.3.8. Veränderungen der arteriellen Blutgase und der Toträume bei maximaler Belastung

Wie in Tab. 16 dargestellt, zeigte sich bei dem arterielle Sauerstoffpartialdruck bei den Kontrollpersonen und CF Patienten kein signifikanter unterschiedlicher Verlauf.

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Ruhewerte</th>
<th>Maximalwerte</th>
<th>Differenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KO</td>
<td>CF</td>
<td>KO</td>
</tr>
<tr>
<td>pO₂ (mmHg)</td>
<td>87,90 ± 2,21</td>
<td>73,73 ± 1,44</td>
<td>-0,52 ± 2,81</td>
</tr>
<tr>
<td>pCO₂ (mmHg)</td>
<td>38,22 ± 1,03</td>
<td>36,92 ± 0,73</td>
<td>0,48 ± 1,12</td>
</tr>
<tr>
<td>fkt VD (l)</td>
<td>0,22 ± 0,02</td>
<td>0,28 ± 0,03</td>
<td>-0,02 ± 0,03</td>
</tr>
<tr>
<td>eff VD (l)</td>
<td>0,24 ± 0,02</td>
<td>0,33 ± 0,02</td>
<td>-0,02 ± 0,03</td>
</tr>
<tr>
<td>eff/fkt VD</td>
<td>1,08 ± 0,03</td>
<td>1,16 ± 0,03</td>
<td>-0,63 ± 0,07</td>
</tr>
</tbody>
</table>

Tabelle 16. Absolute Veränderungen der arteriellen Blutgase und der Toträume bei maximaler Belastung bei Kontrollen und cystischer Fibrose. Mittelwerte ± SEM. pO₂, Sauerstoffpartialdruck, pCO₂, Kohlendioxidpartialdruck, fkt VD, funktioneller Totraum, eff VD, effektiver Totraum, eff/fkt VD, effektiver/funktioneller Totraum. *, p < 0,05, **, p < 0,01, ***, p < 0,001 für Unterschiede zwischen den Gruppen.

Die relative Veränderung betrug bei den Kontrollpersonen 0,40 ± 3,69 % und bei den CF Patienten -4,36 ± 3,36 % (Vgl. Abb. 29).

Der arterielle Kohlendioxidpartialdruck stieg bei den CF Patienten stark an, während er bei den Kontrollpersonen nur geringfügig anstieg. Dadurch ergab sich ein signifikant unterschiedlicher Verlauf zwischen den Gruppen (0,48 ± 1,12 mmHg vs. 5,19 ± 0,59 mmHg, p = 0,0003). Die relative Veränderung betrug 1,69 ± 3,11 % bei den Kontrollpersonen und 14,10 ± 1,62 % (p = 0,0005), siehe Abb. 29.
Der funktionelle Totraum ergab keine signifikanten Unterschiede zwischen den Gruppen. Die relative Veränderung betrug bei den Kontrollpersonen 125,87 ± 16,30 % und bei den CF Patienten 76,01 ± 8,47 % (p = 0,006), siehe Abb. 29.

Der effektive Totraum fiel bei den Kontrollpersonen leicht ab, während er bei den CF Patienten anstieg. Dadurch ergab sich ein signifikant unterschiedlicher Verlauf zwischen den Gruppen (-0,02 ± 0,03 l vs. 0,10 ± 0,02 l, p = 0,003). Die relative Veränderung betrug (-6,90 ± 14,29 % vs. 34,62 ± 6,34 %, p = 0,004), siehe Abb. 29.

Der eff VD/ fkt VD fiel bei den Kontrollpersonen signifikant stärker ab als bei den CF Patienten (-0,63 ± 0,07 l vs. -0,24 ± 0,03 l, p = 1,64* 10^-6). Die relative Veränderung betrug bei den Kontrollpersonen -57,94 ± 6,32 % und bei den CF Patienten -20,96 ± 3,02 % (p = 4,27* 10^-7), siehe Abb. 29.

Abbildung 29. Prozentuale Veränderungen der arteriellen Blutgase und der Toträume bei maximaler Belastung bei Kontrollen und cystischer Fibrose. Mittelwerte ± SEM. Weisse Säulen: Kontrollen (n = 13). Graue Säulen: Cystische Fibrose (n = 39). pO₂, Sauerstoffpartialdruck, pCO₂, Kohlendioxidpartialdruck, fkt VD, funktioneller Totraum, eff VD, effektiver Totraum, eff/fkt VD, effektiver/funktioneller Totraum. *, p < 0,05, **, p < 0,01, ***, p < 0,001 für Unterschiede zwischen den Gruppen.

3.3.4. Korrelationsanalysen

3.3.4.1. Korrelation von Lungenfunktionsparametern mit der maximalen Sauerstoffaufnahme

Bei den CF Patienten ergaben sich für die Einsekundenausatmungskapazität \(r = 0,506, p = 0,001 \), für die Vitalkapazität \(r = 0,583, p = 0,0002 \), für die Resistance \(r = -0,604, p = 7,67 \times 10^{-5} \), für den CO Transferfaktor, korrigiert auf die aktuelle Hb – Konzentration \(r = 0,704, p = 0,003 \) und für den Sauerstoffpartialdruck \(r = 0,384, p = 0,016 \) signifikante Korrelationen mit der maximalen Sauerstoffaufnahme. Die anderen Parameter korrelierten auch hier nicht signifikant mit der maximalen Sauerstoffaufnahme (siehe Tab. 14 und Abb. 30).
3.3.4.2. Korrelation von CO₂ Atemäquivalent mit der maximalen Sauerstoffaufnahme

Das CO₂ Atemäquivalent war bei den CF Patienten gegenüber den Kontrollpersonen signifikant erhöht (28,61 vs. 24,74, p = 0,0004). Es ergab sich weder für die Kontrollpersonen noch für die CF Patienten eine signifikante Korrelation mit der maximalen Sauerstoffaufnahme (siehe Abb. 31).

4. Diskussion

4.1. Methodenkritik

4.1.1. Patientenauswahl

4.1.1.1. Patienten mit einer pulmonalen Hypertonie infolge einer Lungenfibrose

Die in unserer Studie untersuchten Patienten mit pulmonaler Hypertonie infolge einer schweren Lungenfibrose (LF) befanden sich in einer Spezialambulanz für pulmonale Hypertonie. Entsprechend zeigten sie im Durchschnitt deutlich erhöhte pulmonale Druck- und Widerstandswerte (mPAP = 32,6 mmHg, PVR = 598 dyn*s*cm⁻⁵). Im Vergleich dazu lagen in der Studie von Agusti et al.¹ die pulmonalen Druck- und Widerstandswerte in einem viel niedrigeren Bereich und zeigten einen mPAP von 20 mmHg, der erst unter Belastung auf 42 mmHg anstieg.

In einer Therapiestudie²³ bei Patienten mit Lungenfibrose und pulmonaler Hypertonie aus unserer Arbeitsgruppe hatten die Patienten einen noch höheren mPAP als unsere Patienten. Dieser lag bei einem durchschnittlichen mPAP von 40 mmHg. Allerdings hatten diese Patienten auch einen höheren klinischen Schweregrad und bei ihnen wurde deshalb auch keine Spiroergometrie durchgeführt.

In anderen Studien³⁶,⁶⁷, in denen Patienten mit Lungenfibrose spiroergometrisch belastet wurden, gab es keine Auskunft über die pulmonalen Druck- und Widerstandswerte. Die Lungenfunktion war aber in ähnlicher Weise eingeschränkt wie bei unseren Patienten.

Insgesamt war unsere untersuchte Patientengruppe etwas schwerer von Seiten der Lungenfibrose erkrankt als in anderen spiroergometrischen Studien. Insbesondere lag eine schwere pulmonale Hypertonie vor.
4.1.1.2. Patienten mit primärer pulmonaler Hypertonie

Die in unserer Studie untersuchten Patienten mit primärer pulmonaler Hypertonie (PPH) befanden sich ebenfalls in einer Spezialambulanz für pulmonale Hypertonie in fortlaufender Betreuung. Sie zeigten entsprechend im Durchschnitt deutlich erhöhte pulmonale Druck- und Widerstandswerte (mPAP = 47,7 mmHg, PVR = 996 dyn*s*cm⁻⁵).

Im Vergleich dazu zeigten die größeren Therapiestudien deutlich höhere pulmonale Druck- und Widerstandswerte. Hier wurde allerdings keine Spiroergometrie durchgeführt. Auch in den spiroergometrischen Studien von D’Alonzo et al.¹³ und Sun et al.⁹⁸, lagen höhere pulmonale Druck- und Widerstandswerte vor.

In der Studie von Riley et al.⁹³ wurden keine Angaben über die pulmonalen Druck- und Widerstandswerte gemacht.

Insgesamt waren unsere Patienten weniger stark erkrankt als in den Vergleichsstudien. Dies lag daran, dass bevorzugt diejenigen unserer Patienten für die spiroergometrische Untersuchung in Frage kamen, die die geringste körperliche Limitierung aufwiesen.

4.1.1.3. Patienten mit chronisch thromboembolischem pulmonaler Hypertonie

Computertomographie durchgeführt und auch hier war bei allen Patienten mindestens eine Okklusion zu sehen. Sie zeigten im Durchschnitt deutlich erhöhte pulmonale Druck- und Widerstandswerte (mPAP = 46,8 mmHg, PVR = 904 dyn*s*cm⁻⁵).

Im Vergleich dazu gibt es in der Literatur nur eine Studie, in der eine Patientengruppe mit dieser Krankheit spiroergometrisch untersucht wurde.

In der Studie von Iwase et al.⁴⁸ wurden 20 CTEPH Patienten vor und nach Thrombendarteriektomie untersucht. Hämodynamisch waren die Patienten vergleichbar mit unserem Kollektiv (mPAP = 44 mmHg, PVR = 916 dyn*s*cm⁻⁵). Auch die EQCO₂ war vergleichbar. Die peak VO₂ betrug 12,5 ml/kg/min. Im Vergleich dazu lag in unserem Kollektiv die peak VO₂ bei 11,3 ml/kg/min. Jedoch korrelierte bei unseren CTEPH Patienten keiner der Hämodynamikwerte signifikant mit der peak VO₂. In dieser Studie wurde der Schwerpunkt mehr auf den Zeitpunkt nach Thrombendarteriektomie gelegt, so dass hier nicht auf die pathophysiologischen Grundlagen des Gasaustausches eingegangen wurde.

In der Studie von Kapitan et al.⁵⁵, die sich mit dem Gasaustausch bei CTEPH Patienten unter Ruhebedingungen beschäftigte, lagen vergleichbare pulmonale Druck- und Widerstandswerte vor. In der Studie von Dantzker et al.¹⁶, bei der ebenfalls der Gasaustausch bei CTEPH Patienten unter Ruhebedingungen untersucht wurde, werden keine Angaben zu den Druck- und Widerstandswerten gemacht.

In einer anderen Studie¹⁷ hatten die Patienten etwas höhere pulmonale Druck- und Widerstandswerte, aber hier wurden PPH Patienten und CTEPH Patienten zusammen beschrieben.

Auch bei Dantzker et al.¹⁵ waren die pulmonale Druck- und Widerstandswerte höher als in unserem Kollektiv, was ebenfalls auf die gemeinsame Untersuchung von PPH und CTEPH Patienten zurückzuführen ist.

Insgesamt ist uns nur eine international publizierte Studie bekannt, die sich mit dem Gasaustausch unter Belastung bei CTEPH befasst.
hat. Zwar stimmen wesentliche Eigenschaften überein, aber die dort beschriebene Korrelation mit der peak VO$_2$ ist mit unseren Beobachtungen nicht vereinbar.

4.1.1.4. Patienten mit cystischer Fibrose

Die in unserer Studie untersuchten Patienten mit cystischer Fibrose (CF) befanden sich in unserer Spezialambulanz für Erwachsene mit Mukoviszidose in kontinuierlicher Betreuung. Sie zeigten im Durchschnitt deutlich eingeschränkte Lungenfunktionswerte (FEV1 = 2,06 l, VC = 3,23 l, somit 57 % und 74 % der Norm).

Im Vergleich dazu zeigten andere Studien60,61,88 mit Spiroergometrie bei erwachsenen CF Patienten deutlich bessere Lungenfunktionswerte.

In der Studie von McKone et al.71 lagen ähnliche Einschränkungen der Lungenfunktion vor wie in unserem Kollektiv, es wurden aber nur 9 Patienten untersucht.

Zusammenfassend waren unsere Patientenkollektive klar definiert und die Patienten waren jeweils repräsentativ für die entsprechende Krankheit. Eine vergleichende Untersuchung so vielfältiger Gruppen
mit gleicher Messmethodik ist bisher in der Literatur nicht beschrieben.

4.1.2. Belastungstest: Warum Spiroergometrie statt Ergometrie?

Die Spiroergometrie (spirare (lat.) = atmen, ergon (gr.) = Arbeit, metron (gr.) = Maß), in der Grundlage 1929 von dem deutschen Internisten Wilhelm Knipping eingeführt, ist als eine komplexe Untersuchungsmethode des kardio-respiratorischen Traktes seit langem in der Sportmedizin verbreitet. Sie ist eine nichtinvasive Messmethode zur Beurteilung der kardiopulmonalen Leistungsfähigkeit. Dabei wird neben den bekannten Herz – Kreislauf - Größen der Gasaustausch in Ruhe und bei körperlicher Belastung bestimmt.\(^{120}\) Sie bietet dem Untersucher die einzigartige Möglichkeit, zeitgleich die metabolische, kardiovaskuläre, und ventilatorische Antwort auf eine körperliche Belastung zu beurteilen. Belastungstests ohne Gasaustauschmodellierung haben nicht die Fähigkeit, die Funktion des kardiovaskulären und ventilatorischen Systems, z.B. Gasaustausch mit den Zellen, zu beurteilen.\(^{113}\)

Diese Messmethode gewährt Einblick in das Verbundsystem zwischen arbeitender Skelettmuskulatur, Herz – Kreislauf – System mit dem Blut als Transportmedium sowie den Lungen.\(^{120}\)

4.1.2.1. Ruhephase

Jede Untersuchung begann mit der Aufnahme von Ruhewerten. Dabei saß der Patient entspannt in 45° zurückgelegter Position und atmete durch das Mundstück des Spiroergometers. Die Ruhewerte wurden nach frühestens 5 Minuten erhoben. So wurde erreicht, dass sich die Patienten an die Untersuchungsbedingungen gewöhnen konnten und keine Hyperventilation mehr zeigten, was an dem ansteigenden Kohlendioxidpartialdruck erkennbar wurde.

4.1.2.2. Zwei Minuten Stufen

Bei der Spiroergometrie auf dem Fahrrad wählten wir ein stufenför- miges Programm (Steigerung der Belastung um 30 Watt/2 min). Übli-

4.1.2.3. Zeitpunkt der Abnahme

Um den Gasaustausch unter maximaler Belastung zu beurteilen, wurde eine Blutgasanalyse vor Ende der Belastung abgenommen und zum gleichen Zeitpunkt die Parameter der Spiroergometrie bestimmt, um das kardiovaskuläre und ventilatorische System zu beurteilen. Da der Base Excess erst ca. drei Minuten nach Belastungsende seinen negativsten Wert erreicht, wurde drei Minuten nach maximaler Belastung wiederum eine Blutgasanalyse durchgeführt und die Parameter bestimmt. Um die Erholungsfähigkeit des Organsystems zu beurteilen, wurde acht Minuten nach Beendigung der Belastung nochmals eine Blutgasanalyse abgenommen und die Parameter notiert.

4.2. Leistungslimitierende Faktoren

4.2.1. Kontrollpersonen

Bei unseren Kontrollen zeigte sich eine maximale Sauerstoffaufnahme, die im Durchschnitt über 90% der Norm lag. In anderen Studien erreichten die Kontrollpersonen eine etwas bessere maximale Sauerstoffaufnahme. Auch die Herzfrequenz der Kontrollgruppe war in anderen Studien etwas höher im Vergleich zu unserer Studie. Die maximale Herzfrequenz bei unseren Kontrollpersonen betrug im Durchschnitt nur 81 % der Norm.

Die Atemfrequenz stieg unter Belastung an, erreichte aber nur zwischen 77 % und 81 % der Norm.

Die maximale Ventilation war im Vergleich zu anderen Studien ebenfalls etwas niedriger, betrug aber im Durchschnitt 66 l/min bis
76 l/min je nach Alter, was zwischen 76 % und 112 % der Norm entsprach.
Der Sauerstoffpartialdruck blieb unter Belastung im Vergleich zur Ruhe gleich oder stieg sogar etwas an.
Im Vergleich zu einer anderen Studie⁶ war das maximale Atemzugvolumen bei unseren Kontrollpersonen größer. Es betrug zwischen 99 % und 140 % der Norm.
Der Base Excess fiel wie erwartet unter Belastung ab und erreichte nach drei Minuten seinen negativsten Wert. Der Abfall betrug im Mittel zwischen -8,2 und -8,6 mmol/l.
Der BE besitzt eine eindeutige Altersabhängigkeit, mit r = 0,63 und p = 2,06 * 10⁻¹², wie aus der Zusammenschau von 99 Personen aus unseren spiroergometrischen Untersuchungen hervorgeht. Diese Personen mussten als Kriterium eine peak VO₂ von > 85 % der Norm aufweisen und durften keine ernste Erkrankung haben.
Abbildung 32. Altersabhängigkeit des Base Excess-Abfalls bei Ausbelastung. n=99 Patienten mit einer peak \(\text{VO}_2 > 85 \% \) der Norm. delta BE, delta Base Excess (=3min BE-Ruhe BE).

4.2.2. Pulmonale Hypertonie infolge einer Lungenfibrose

In unserer Studie zeigte sich, wie in anderen Studien\(^1,36,67\) eine deutliche Einschränkung der maximalen Sauerstoffaufnahme mit einer Reduzierung auf 46 % der Norm.

Die Herzfrequenz unter maximaler Belastung erreichte bei unseren Patienten 42 % der Norm, und war damit stärker eingeschränkt als bei Marciniuk et al.\(^67\). Im Vergleich zu Agusti et al.\(^1\) war die maximale Herzfrequenz bei unseren Patienten etwas höher.

Bei Marciniuk et al.\(^67\) wurde eine Atemfrequenz von 108 % der Norm von den Patienten erreicht. Auch unsere LF Patienten erreichten eine
Atemfrequenz von 108 % der Norm. Verglichen mit Hansen et al.36 war die Atemfrequenz in unserer Studie nicht so stark erhöht. Die maximale Ventilation betrug 44 % der Norm und war im Vergleich zu Agusti et al.1 weniger stark, aber im Vergleich zu Marciniuk et al.67 deutlich stärker eingeschränkt. Das Atemzugvolumen betrug im Mittel 67 % der Norm und war damit stärker eingeschränkt als bei Marciniuk et al.67.

Der Sauerstoffpartialdruck fiel bei unseren Patienten unter Belastung im Mittel auf 52 mmHg und sank somit stärker ab als bei Agusti et al.1 und Hansen et al.36.

Der Base Excess fiel im Mittel um -3,27 mmol/l ab. Hansen et al.36 beschreibt einen maximalen Laktatspiegel von 6 mmol/l.

\textbf{Fazit:} Verglichen mit Hansen et al.36 und Marciniuk et al.67 erreichten unsere Patienten eine vergleichbare maximale Sauerstoffaufnahme, Herzfrequenz, Ventilation und Atemfrequenz. Die Oxygenierung unserer Patienten war aber etwas stärker komprimiert. Dies mag an der relativ ausgeprägten pulmonalen Hypertonie unserer Patienten gelegen haben. Manche Autoren führen die pulmonale arterielle Hypertonie bei Patienten mit einer interstitiellen Lungenerkrankung auf eine Destruktion der Blutgefäße, die durch den fibrotischen Prozeß zustande kommt, zurück.38 In anderen Veröffentlichungen wird die pulmonale Vasokonstriktion, welche durch die alveolare Hypoxie (Hypoxische Pulmonale Vasokonstriktion) ausgelöst wird, für die pulmonal arterielle Hypertonie verantwortlich gemacht.49,74,114 Hansen et al.36 erklären die Leistungslimitierung durch eine ventilatorischen und einer zirkulatorischen Einschränkung, wobei die zirkulatorischen Komponente der pulmonalen Gefäßerkrankung zugeschrieben wird. Auch unsere Patienten zeigten eine ventilatorische und zirkulatorische Einschränkung, wie aus dem eben erwähnten hervorgeht. Im Vergleich dazu erklären Marciniuk et al.67 die Leistungslimitierung ausschließlich ventilatorisch.

Eine ventilatorische Limitierung resultiert aus der eingeschränkten Atmungseffektivität der Patienten. Die Atemfrequenz ist über die
Norm gesteigert, das maximale Atemzugvolumen und die maximale Ventilation sind dagegen stark reduziert. Mit anderen Worten, die Patienten können trotz gesteigerter Atemfrequenz ihre Ventilation nicht adäquat steigern, da das Atemzugvolumen massiv erniedrigt ist. Die Erniedrigung des Atemzugvolumens ist durch die pulmonale Restriktion, welche sich in der Lungenfunktion in einer verminderten Vitalkapazität widerspiegelt, zu erklären. Die Vitalkapazität korrelierte entsprechend mit der peak VO₂ (r = 0,62, p = 0,04). Gowda et al.31 und Jones et al.52 beschreiben, dass das Atemzugvolumen proportional zu der verminderten Vitalkapazität reduziert ist. Die eingeschränkte Ventilation ist durch die reduzierte Lungencompliance zu erklären, welche die Arbeit des Atmens erhöht12,25 und dadurch die ventilatorischen Möglichkeiten einschränkt36. Die bei Ruhe bestehende Hypoxie prägte sich unter maximaler Belastung noch stärker aus, so dass auch dies als leistungslimitierender Faktor in Frage kommt. Zusätzlich entsteht durch die Gasaustauschstörungen ein erhöhter effektiver Totraum. Auch dieser trägt zur Ineffektivität bei und ist ein leistungslimitierender Faktor. Auch die Diffusionskapazität (DLCOc) war deutlich reduziert und korrelierte besser als die Parameter der Lungenfunktion mit der peak VO₂ (Tab.3). Auch in anderen Studien wird eine Korrelation der peak VO₂ mit der DLCOc beschrieben.1,36 Möglicherweise erfasst die DLCOc am besten die globale Gasaustauschstörung und hat dadurch den besten Vorhersagewert für die peak VO₂.

Wie man Tab. 3 entnehmen kann, korrelierte keiner der Hämodynamikparameter signifikant mit der peak VO₂. Es scheinen mehr die in der Lungenfunktion sich wiederspiegelnden Limitierungen eine entscheidende Rolle für die eingeschränkte Leistungsfähigkeit zu spielen, als die Hämodynamik. In der Literatur gibt es hierzu nur eine Veröffentlichung114, die aber lediglich eine signifikante Korrelation zwischen der VO₂ und dem Cardiac Index beschreibt.

4.2.3. Primäre pulmonale Hypertonie

Wie in anderen Studien13,93 wurde in unserer Studie ebenfalls eine deutlich reduzierte peak VO₂ beschrieben. Unsere Patienten erreich-
ten eine peak VO₂ von 55 % der Norm. Bei Sun et al.⁹⁸ wurde eine noch geringere peak VO₂ der Patienten beschrieben.

Unsere Patienten erreichten eine HF von 136/min, was 60 % der Norm entspricht. Auch in anderen Studien⁹³,⁹⁸ zeigte sich eine HF von 136 bzw. 135/min. Nur D’Alonzo et al.¹³ beschrieb eine höhere maximale HF bei den Patienten.

Die maximale Atemfrequenz betrug bei unseren Patienten 73 % der Norm. In anderen Studien¹³,⁹³,⁹⁸ wird keine Aussage über die maximale Atemfrequenz gemacht.

Im Vergleich zu D’Alonzo et al.¹³, Riley et al.⁹³ und Sun et al.⁹⁸ erreichten unsere Patienten eine höhere maximale Ventilation von 75 % der Norm.

Das Atemzugvolumen war mit 105 % der Norm normal.

Der Sauerstoffpartialdruck fiel bei unserer Studie von 71 mmHg auf 66 mmHg. Im Vergleich dazu fiel der pO₂ bei D’Alonzo et al.¹³ von 81 mmHg auf 70 mmHg.

Der Base Excess fiel wie erwartet unter Belastung ab. Der Abfall betrug im Mittel -5,07 mmol/l. Riley et al.⁹³ beschrieben eine maximale Laktatkonzentration von 4,2 mmol/l, was damit gut übereinstimmt.

Fazit: Formal sehen wir weder eine respiratorische Ausbelastung noch eine kardiale oder eine metabolische Ausbelastung bei den Patienten. Würde man aber gleichzeitig eine Katheteruntersuchung durchführen, so wäre festzustellen, dass in aller Regel bei einem pulmonalen Mitteldruck von ca. 70-90 mmHg und einer zentralvenösen O₂-Sättigung von 25-35 % der Abbruch der Belastung erfolgt. Das bedeutet, dass eine komplette zirkulatorische Ausbelastung vorliegt, die durch die nichtinvasiven spiroergometrischen Parameter nicht erfasst werden kann. Die Tatsache, dass unsere Patienten die Belastung meistens wegen Dyspnöe abbrachen, spricht dafür, dass die zirkulatorische Ausbelastung subjektiv in Form von Atemnot wahrgenommen wird.

Wie man Tab. 8 entnehmen kann, korrelierte in unserer Untersuchung keiner der Lungenfunktionsparameter signifikant mit der peak VO₂.
Im Gegensatz dazu korrelierte in der Studie von Sun et al.99 die FEV1 und die DLCO\textsubscript{c} als Parameter der Lungenfunktion signifikant mit der peak VO\textsubscript{2}.

Der mittlere pulmonal-arterielle Druck (mPAP), der zentral vaskuläre Druck (CVP), die zentralvenöse Sauerstoffsättigung (SvO\textsubscript{2}), die arterielle Sauerstoffsättigung (SaO\textsubscript{2}) und der Cardic Index (CI) korrelierten als Parameter der Hämodynamik signifikant mit der peak VO\textsubscript{2} (Vgl. Tab. 9). Dies passt zu den Beobachtungen, die Sun et al.98 beschrieben haben. Hier wurde eine signifikante Korrelation der NYHA Klasse mit der peak VO\textsubscript{2} beschrieben. Dies verdeutlicht, dass die pulmonale Vaskulopathie einen entscheidenden negativen Einfluss auf den Blutfluss durch die Lungen bei PPH Patienten hat und somit die maximale Sauerstoffaufnahme (peak VO\textsubscript{2}) entscheidend limitiert.

4.2.4. Chronisch thromboembolische pulmonale Hypertonie

Auch bei den CTEPH Patienten zeigte sich eine deutlich verminderte peak VO\textsubscript{2}. Sie war auf 43 % der Norm reduziert.

Die Herzfrequenz stieg unter Belastung an, erreichte aber nur 54 % der Norm.

Die Atemfrequenz erreichte bei den Patienten 93 % der Norm.

Bei den CTEPH verschlechterte sich die in Ruhe bestehende Hypoxie unter Belastung nicht. Das Atemzugvolumen bei Abbruch der Belastung betrug im Mittel 89 % der Norm. Die maximale Ventilation betrug 81 % der Norm. Die Patienten erreichten einen Abfall des Base Excess von -3,88 mmol/l.

Es gibt nur eine vergleichbare Untersuchung aus der Literatur, bei der ausschließlich CTEPH Patienten untersucht worden sind.

Fazit: Ähnlich wie bei den PPH Patienten sind die Patienten kardial, respiratorisch und metabolisch limitiert. Die charakteristischen Unterschiede zwischen diesen Patientengruppen werden im Kapitel 4.3. beschrieben.

Wie man Tab. 8 entnehmen kann, korrelierte in unserer Untersuchung keiner der Lungenfunktionsparameter signifikant mit der peak VO\textsubscript{2}.
In der Literatur ist uns keine Veröffentlichung bekannt, die sich mit Korrelationen zwischen Lungenfunktionsparametern und der peak VO$_2$ bei CTEPH Patienten befasst hat. Iwase et al.48 beschrieben bei CTEPH Patienten signifikante Korrelationen zwischen dem pulmonal vaskulären Widerstand (PVR) und dem mittleren pulmonal-arteriellen Druck (mPAP) mit der peak VO$_2$. In unserer Studie korrelierte keiner der Hämodynamikparameter signifikant mit der peak VO$_2$ (Tab. 9). Die Ruheparameter scheinen demnach keinen Einfluss auf die maximale Sauerstoffaufnahme (peak VO$_2$) zu haben. Vielmehr scheinen die bei Belastung auftretenden pathophysiologischen Veränderungen in der Lungenstrombahn die entscheidenden Faktoren für die eingeschränkte peak VO$_2$ zu sein. Das Ausbleiben signifikanter Korrelationen ist bemerkenswert, wenn man bedenkt, dass bei CTEPH Patienten prinzipiell die gleichen leistungslimitierenden Faktoren wirksam sind wie bei PPH Patienten. Bei letzteren waren die erwarteten Korrelationen zu beobachten (s. Kap. 3.2.). Der Unterschied ist möglicherweise dadurch zu erklären, dass die CTEPH Patienten etwas älter waren als die PPH Patienten und daher vielleicht mehr Ko-Morbidität aufwiesen und eine inhomogene Perfusionsstörung besaßen, die möglicherweise ihre Charakteristik unter Belastung in anderer Weise ändert, als bei PPH Patienten.

4.2.5. Patienten mit cystischer Fibrose

Die peak VO$_2$ war bei unseren Patienten im Vergleich zu anderen Studien60,61 stärker eingeschränkt. Sie betrug im Mittel 73 % der Norm.

Bei Pouliou et al.88 war die peak VO$_2$ allerdings auf 63 % der Norm und bei Nixon et al.81 auf 70 % der Norm reduziert. Die maximale Herzfrequenz betrug in unserer Studie 158/min, was einer Ausnutzung der Herzfrequenzreserve von 79 % der Norm entsprach. In anderen Studien60,61,88 wurden höhere maximale Herzfrequenzen beschrieben. Die Patienten zeigten einen Abfall des Base Excess von -8,27 mmol/l (78 % der Norm).
Bei maximaler Belastung war die Ventilation, wie in der Literatur60,61,88, deutlich verringert. In Anbetracht der eingeschränkten Lungenfunktion muß bei einigen Patienten auf deren 31-faches der FEV1 Bezug genommen werden. Damit erreichte die maximale Ventilation 89 % der Norm. Die Atemfrequenz war im Vergleich zu Pouliou et al.88 nicht so stark erhöht. Sie betrug 90 % der Norm. Das maximale Atemzugvolumen war auf 85 % der Norm reduziert. Der Sauerstoffpartialdruck fiel von 74 mmHg auf 70 mmHg ab. Diese Befunde sprechen dafür, dass im Mittel eine ventilatorische Ausbelastung, aber noch keine vollständige zirkulatorische und metabolische Ausbelastung vorlag. Die FEV1 betrug 57 % der Norm, die VC 74 % der Norm und das Residualvolumen war auf 190 % der Norm und die Resistance auf 194 % der Norm erhöht. Die DLCOc war auf 86 % der Norm reduziert (Vgl. Tab. 14) und korrelierte als bester Parameter der Lungenfunktion mit der peak VO\textsubscript{2} (r = 0,70; p = 0,003) (Abb. 30). Auch die Resistance (r = 0,60), die VC (r = 0,58) und die FEV1 (r = 0,51) korrelierten signifikant mit der peak VO\textsubscript{2} (siehe Tab. 14 und Abb. 30). CF Patienten wiesen somit eine obstruktive und restriktive Lungenfunktionsprüfung auf. Auch Lands et al.60 und Pouliou et al.88 haben gezeigt, dass Patienten mit einer reduzierten Lungenfunktion eine reduzierte peak VO\textsubscript{2} besitzen. Bei Lands et al.60 wurde beispielsweise eine signifikante Korrelation zwischen der peak VO\textsubscript{2} und der FEV1 (r = 0,88) beschrieben. Auch Pouliou et al.88 beschrieben eine signifikante Korrelation der FEV1 mit der peak VO\textsubscript{2} (r = 0,59).

Die effektive alveoläre Ventilation und die funktionelle alveoläre Ventilation waren signifikant gegenüber den Kontrollpersonen erniedrigt. Der Sauerstoffpartialdruck (pO\textsubscript{2}) war in Ruhe und unter Belastung verglichen mit den Kontrollpersonen ebenfalls signifikant erniedrigt (Vgl. Abb. 25). Der Kohlendioxidpartialdruck (pCO\textsubscript{2}) war nicht unterschiedlich im Vergleich zu den Kontrollpersonen. Die AaDO\textsubscript{2} und die AaDCO\textsubscript{2} wa-
ren signifikant höher als bei den Kontrollpersonen (Vgl. Abb. 25 und Abb. 28).

Dies lässt schließen, dass bei CF Patienten ein Shuntfluß oder low V/Q Perfusion besteht. Auch Cerny et al.\(^8\) haben dieses Phänomen beobachtet. Darüberhinaus wurde bei diesen Patienten ein Anstieg des effektiven Totraums beobachtet (siehe Abb. 27). Dieser betrug in Ruhe 0,33 l und stieg unter Belastung auf 0,42 l an. Dies hat eine ineffektive Ventilation zur Folge, welche sich in dem erhöhten EqCO\(_2\) (= \(V_E/VCO_2\)) und EqO\(_2\) (= \(V_E/VO_2\)) wiederpiegelt. Die EqCO\(_2\) betrug bei den Kontrollpersonen 24,7 und bei den CF Patienten 28,6 (\(p = 0,0004\)). Die EqCO\(_2\) korrelierte jedoch nicht signifikant mit der peak VO\(_2\) (siehe Abb. 31). Die EqO\(_2\) betrug bei den Kontrollpersonen 21,69 und bei den CF Patienten 28,64 (\(p = 8,53\times 10^{-7}\)). Auch Godfrey et al.\(^30\) beschrieben eine verschwenderische Ventilation zugunsten des erhöhten Totraumes. Dieser Anstieg der Totraumventilation erfordert einen Anstieg der Ventilation, um die alveoläre Ventilation konstant zu halten.\(^8,10,40\)

Zusammenfassend lässt sich sagen, dass die CF Patienten eine stark reduzierte peak VO\(_2\) besitzen, welche in erster Linie durch die eingeschränkte maximale Ventilation, assoziiert mit obstruktiven und restringiven Lungenfunktionsstörungen, zu erklären ist. Hinzu kommen Gas austauschstörungen, die zu einer ineffizienten Ventilation führen (anstiegen der Totraumventilation) und außerdem zur Hypoxämie.

Marcotte et al.\(^68\) und Coates et al.\(^9\) führen die Leistungslimitierung auf den Ernährungsstand und die Lungenfunktion zurück. Lands et al.\(^60\) führen die Leistungslimitierung hingegen auf die periphere Muskelfunktion zurück.

Fazit: In unserer Studie ist die Leistungslimitierung primär ventilatorisch bedingt. Trotz der Erhöhung der Atemfrequenz kann die Ventilation nicht gesteigert werden, weil das Atemzugvolumen reduziert ist. Diese Interpretation passt auch zu der reduzierten Vitalkapazität
und dem erhöhten Atemwegswiderstand in der Lungenfunktion (Tab. 14). Zusätzlich tragen die reduzierte Körpergröße und das reduzierte Körpergewicht der Patienten zur Reduktion der peak VO\textsubscript{2} im Vergleich zu den Kontrollen bei. Insofern kommen die Faktoren Ernährungszustand und Wachstum als leistungslimitierende Faktoren mit hinzu.

4.3. Vergleich zwischen Patienten mit pulmonaler Hypertonie infolge einer Lungenfibrose mit Kontrollpersonen

Durch die Einlagerung von fibrotischem Gewebe in das Lungengewebe von Patienten mit einer pulmonalen Hypertonie infolge einer schweren Lungenfibrose (LF) entstehen einerseits Bezirke, welche durch fibrotisches Gewebe völlig ersetzt werden, so dass in diesen Bezirken kein Gasaustausch mehr stattfinden kann. Andererseits entstehen Bezirke, die nur teilweise durch fibrotisches Gewebe ersetzt wurden, so dass hier noch in geringem Maße Gasaustausch stattfindet. Dieser Ersatz von gesundem gasaustauschfähigem Lungengewebe durch fibrotisches Gewebe führt auch zu einer Reduktion von Azini, so dass es durch diese Effekte zu einer verkleinerten Lunge kommt, was man an der deutlich reduzierten Lungenkapazität (siehe Tabelle 3) sieht.56 Die totale Lungenkapazität unserer Patienten war auf 69 \% der Norm signifikant reduziert, während die Kontrollpersonen eine totale Lungenkapazität von 114 \% der Norm aufwiesen (Vgl. Tab. 3). Außerdem waren die Vitalkapazität (VC), die Resistance (R) und die Einsekundenkapazität (FEV\textsubscript{1}) als weitere Lungenfunktionsparameter signifikant erniedrigt (siehe Tab. 3). Die Vitalkapazität korrelierte von diesen Parametern am besten mit der peak VO\textsubscript{2}.

Eine weitere Konsequenz aus den eben beschriebenen fibrotischen Einlagerungen in das Lungengewebe ist das reduzierte maximale Atemzugvolumen (VT) und die reduzierte Ventilation (V\textsubscript{E}) (siehe Abb. 5).

Dadurch, dass das Atemzugvolumen bei Belastung nicht adäquat gesteigert werden kann, müssen die Patienten ihre Atemfrequenz (BF) über die Norm steigern (siehe Abb. 5), um den ventilatorischen Anforderungen zu genügen.
Eine gesunde Person steigert ihre Ventilation während Belastung hauptsächlich durch eine Steigerung ihres Atemzugvolumens. Bei relativ großer Belastung (maximaler Belastung) wird ein weiterer Anstieg der Ventilation durch eine Steigerung der Atemfrequenz gewährleistet (siehe Abb.5).112 Dies kommt auch bei unseren Kontrollpersonen zum Ausdruck.

Ein weiterer Effekt aus den oben erwähnten Einlagerung von fibrotischem Gewebe in das Lungengewebe ist, dass es durch diese zu einer Diffusionsbarriere kommt, die den Gas austausch stört. Deutlich wird diese Gas austauschstörung an der signifikant reduzierten CO-Diffusionskapazität (DLCOc) (siehe Tab.3). Crystal et al.12 bezeichnen die Reduktion in der CO-Diffusionskapazität als ein übliches funktionelles Kennzeichen der Lungenfibrose. Es könnte einerseits eine Reduktion in den Bezirken der Kapillaroberflächen und /oder andererseits eine Verdickung der alveolar-kapillaren Membranen widerspiegeln.1

Patienten mit einer Lungenfibrose besitzen aufgrund des fibrotischen Umbaus ihrer Lunge „low V/Q-Areale“, d.h. Gebiete, die entweder in Relation zur Perfusion alveolär hypoventiliert sind oder eine relative kapilläre Hyperperfusion mit gesteigertem pulmonalkapillären Druck aufweisen117 und „high V/Q-Areale“, d.h. Gebiete, die entweder in Relation zur Perfusion hyperventiliert werden oder eine relative kapilläre Hypoperfusion aufweisen.

Bei gesunden Kontrollpersonen zeigt sich in Ruhe ein geringes „physiologisches“ Ventilations-Perfusions-Mismatch, welches im Alter zunimmt. Die apikalen Areale zeigen eine geringere Perfusion, und die basalen Regionen weisen eine größere Perfusion auf, während die
Ventilation weniger von dem Effekt der Gravitation abhängt.2,3,43,116,117

Unter maximaler Belastung fiel der pO\textsubscript{2} der LF Patienten noch weiter ab, aber der endexspiratorische Sauerstoffpartialdruck (P_{ET}O\textsubscript{2}) unterschied sich nicht von den Kontrollpersonen, so dass die AaDO\textsubscript{2} noch mehr anstieg und gegenüber den Kontrollpersonen deutlich erhöht war (siehe Abb.6).

Durch das V/Q-Missverhältnis kommt es also zu einem Shuntfluß, welcher zu einem reduzierten pO\textsubscript{2} und einer erhöhten AaDO\textsubscript{2} führt. Viele Autoren23,51,70,109,110 sehen den wichtigsten Grund für die fortschreitende Reduktion des arteriellen pO\textsubscript{2} während Belastung darin, dass die kontinuierliche und zunehmende Perfusion von wenig ventilierten Bezirken, zu „low V/Q-Arealen“ führt. Auch Fulmer26 beschreibt einen Zusammenhang der „low V/Q-Areale“ mit der Hypoxämie bei Patienten mit LF.

Die „low V/Q-Areale“ werden nun noch mehr perfundiert, es strömt noch mehr Blut durch diese Bezirke, obwohl sie nicht genügend ventiliert werden, so dass es zu einem weiteren Anstieg der AaDO\textsubscript{2} kommt (siehe Abb. 6).

In der Untersuchung von Agusti et al.1 mittels MIGET-Analyse (multiple inert gas elimination technique), welche von Wagner et al.108 im Detail beschrieben wurde, stellen sich die Ventilations-Perfusions-Verteilungsstörungen als der Hauptgrund für die arterielle Hypoxämie in Ruhe und unter Belastung dar. Aber der Transfer des Sauерstoffes ist ebenso teilweise durch den Grad der Diffusionsstörungen limitiert.

Die AaDCO\textsubscript{2} (Alveole-arterielle Kohlendioxiddifferenz = FaCO\textsubscript{2} - F_{ET}CO\textsubscript{2}) war in Ruhe bei den LF Patienten nicht signifikant unterschiedlich im Vergleich zu den Kontrollpersonen (siehe Abb.9). Das bedeutet, dass in Ruhe die Atmung der LF Patienten noch adäquat ist und das gut diffussible CO\textsubscript{2} das Blut verlassen kann. Anders sieht dies bei Belastung aus, da hier, wie in Abb. 5 dargestellt, die Ventilation und das Atemzugvolumen so stark eingeschränkt waren, dass das aus dem Stoffwechsel angefallene Kohlendioxid nun nur noch
eingeschränkt abgeatmet werden konnte. Dabei blieben die arterielle Kohlendioxidfraktion (FaCO₂) und der arterielle Kohlendioxidpartialdruck annähernd konstant und unterschieden sich nicht signifikant von den Kontrollpersonen (siehe Abb. 6 und 7), während die endexspiratorische (alveoläre) Kohlendioxidfraktion (FₑCO₂) im Vergleich zu den Kontrollpersonen signifikant niedriger war, so dass die AaDCO₂ anstieg (Vgl. Abb. 9).

Da bei den Kontrollpersonen bei Belastung der pCO₂ abfiel, kann man von einer Hyperventilation reden. Gleichzeitig kam es zu einem leichten Anstieg des endexspiratorischen Kohlendioxides. Hierdurch ergab sich eine Negativierung der AaDCO₂ (siehe Abb.9). Tatsächlich ist eine solche Negativierung physiologisch völlig unmöglich. Sie erklärt sich daraus, dass unter Belastung die endexspiratorische Kohlendioxidfraktion (FₑCO₂) nicht mehr der mittleren alveolären Kohlendioxidfraktion entspricht, weil das Atemzugvolumen groß im Vergleich zum intrathorakalen Gasvolumen wird. Insofern wird nicht die tatsächliche AaDCO₂ gemessen.

Auch die Differenz aus der FaCO₂ und der gemischte exspiratorischen Kohlendioxidfraktion (FₑCO₂), die EaDCO₂, war unter Belastung signifikant unterschiedlich zwischen LF Patienten und den Kontrollpersonen (siehe Abb. 9). Sie betrug 2,55 % bei den LF Patienten und 0,83 % bei den Kontrollpersonen. Die Kohlendioxidkonzentrationen der Atem- und Blutgase werden zur Berechnung der ventilatorischen Toträume benutzt. Hier ergaben sich wiederum signifikante Unterschiede zwischen den LF Patienten und den Kontrollpersonen. Die Kontrollpersonen können durch ihre vertiefte Atmung (s.o.) das alveoläre Kohlendioxid besser abatmen als die LF Patienten, weil der Anteil der alveolären Ventilation im Vergleich zur Totraumventilation sehr groß wird (> 90 %). LF Patienten dagegen können das Atemzugvolumen nur wenig steigern und haben daher einen größeren Totraumanteil am Atemzugvolumen. Das wird deutlich an dem verringerten alveolären Kohlendioxidanteil im Vergleich zu den Kontrollpersonen (siehe Abb. 7).
Neben dem anatomischen Totraum kommt hinzu, dass bei LF Patienten Alveolen, die hypoperfundiert oder sogar ganz von der Perfusion ausgeschlossen sind, ventiliert werden. Diese Ventilation entspricht dann einer zusätzlichen Totraumventilation. Das führt dazu, dass das ausgeatmete CO₂ (FE CO₂) und das alveoläre CO₂ (FET CO₂) im Vergleich zum arteriellen CO₂ noch stärker erniedrigt sind, als durch das verkleinerte Atemzugvolumen zu erwarten wäre. Dies erklärt auch die persistierende positive AaDCO₂ bei Belastung. Neben den genannten Werten spricht auch der EQCO₂ (= VE/VCO₂) für eine vermehrte Totraumventilation. Bei unseren LF Patienten war der EQCO₂ stark erhöht (44,2 vs. 26,07, p = 0,0009) (siehe Abb. 12). Dies bedeutet, dass sie im Vergleich zu gesunden Personen bei derselben Ventilation weniger CO₂ abatmen, was an den eben ausgeführten Ursachen liegt.

Wie in Abb. 8 dargestellt, sieht man bei den Kontrollpersonen, dass der effektive Totraum (eff VD) in Ruhe größer war als der funktionelle Totraum (fkt VD) (siehe Abb. 8). Unter Berücksichtigung der Formeln (siehe Messmethodik) liegt dies daran, dass in Ruhe, wie oben erwähnt, der arterielle pCO₂ noch größer ist als der alveolare pCO₂.

Unter Belastung dreht sich dieses Verhältnis um, weil nun der alveolare CO₂ den arteriellen CO₂ übersteigt. Dadurch übersteigt der funktionelle Totraum den effektiven Totraum.

Bei unseren LF Patienten zeigte sich auch ein signifikanter Anstieg des fkt VD von Ruhe zu Belastung (siehe Tab.6).

Anders als bei den Kontrollen stieg dagegen auch der effektive VD. Das kann dadurch erklärt werden, dass das gesteigerte Atemzugvolumen unter Belastung zum Teil in Lungenareale ohne adäquaten Gas austausch gelangt. Aber auch die durch eine Vasokonstriktion ausgelöste Hyperventilation von Arealen („high V/Q-Arealen“) führt zu einem Problem, nämlich einer ineffektiven Ventilation durch vergrößerte alveolare Toträume. Aufgrund Ventilations-Perfusions-Verteilungsstörungen haben die LF Patienten bereits in Ruhe einen deutlich größeren eff VD als fkt VD. Der Quotient aus den beiden Toträumen verdeutlicht die Gas austauschstörungen am deutlichsten. Er ist in
Ruhe und bei Belastung bei den LF Patienten signifikant unterschiedlich im Vergleich zu den Kontrollpersonen (siehe Abb. 8).
Andere Autoren12,36,113 beschreiben als einzigen Totraumparameter den Quotienten VD/VT. In diesem Quotienten geht jedoch der Effekt des Atemzugvolumens ein und der Umstand, dass unter Belastung der \(F_{ET}CO_2 \) nicht mehr dem \(FaCO_2 \) entspricht.

Der Gas austausch bei Patienten mit einer Lungenfibrose ist in komplexer Weise gestört. Das ergibt sich aus einem Zusammenspiel von Diffusionsstörungen und Ventilations-Perfusions-Verteilungsstörungen sowie der restriktiven Ventilationsstörung. Diese schweren Störungen im Gas austausch führen zu einer erheblichen Totraumventilation und Hypoxämie, die wiederum stark zu der eingeschränkten peak \(VO_2 \) beitragen.

4.4. Unterschiede zwischen Patienten mit primärer pulmonaler Hypertonie und Patienten mit chronisch thromboembolischer pulmonaler Hypertonie

Patienten mit einer primären pulmonalen Hypertonie (PPH) haben, wie schon im Messmethodikteil erwähnt, eine homogene Einschränkung der Perfusion der Lunge. Dadurch entsteht eine relativ homogene Vergrößerung des V/Q Quotienten.
Dagegen weisen Patienten mit einer chronisch thromboembolischen pulmonalen Hypertonie (CTEPH) eine ausgeprägte Inhomogenität in der Perfusion ihrer Lunge auf. Aufgrund dieser Perfusionsinhomogenitäten existieren bei CTEPH Patienten „low V/Q-Arealen“ neben „high V/Q-Arealen“.
Bei der PPH kommt es in Ruhe, aus noch unerklärten Gründen, zu einer Verengung der pulmonalen Blutgefäße, was sich in einem erhöhten mittleren pulmonal-arteriellen Druck (mPAP) und einem erhöhten pulmonalen Gefäßwiderstand (PVR) wieder spiegelt. Der mPAP betrug in Ruhe 48 mmHg und der PVR betrug 996 dyn*s*cm\(^{-5}\) (siehe Tab. 9). Olschewski et al.84 beschreiben, dass bei CTEPH Patienten meist ein deutlich höherer Perfusionswiderstand vorliegt, als man nach dem Ausmaß der Gefäßverschlüsse erwarten würde. Ausgelöst wird die-
ses durch eine aktive Vasokonstriktion der primär unbetroffenen und
damit überperfundierte Gefäße. Wie man Tab. 9 entnehmen kann, betru
ge der mPAP bei den CTEPH Patienten in Ruhe 47 mmHg und der
PVR 904 dyn*s*cm⁻¹.

Der pO₂ war bei beiden Kollektiven schon in Ruhe erniedrigt, aber
bei den CTEPH Patienten signifikant stärker als bei den PPH Patienten
(siehe Abb. 15) und betrug 61,1 mmHg vs. 70,5 mmHg. Bei ma
ximaler Belastung fiel der pO₂ bei den PPH Patienten weiter ab, wäh
rend er bei den CTEPH Patienten fast unverändert blieb. Dies lässt
schließen, dass es bei unseren PPH Patienten bei Belastung entweder
tzu einem low V/Q oder zu einem Rechts-Links Shunt kommt. Ein
Rechts-Links Shunt ist über ein offenes Foramen ovale zu erklären,
welches ca. 30 % der Patienten aufweisen. Low V/Q wäre theoretisch
durch die Perfusion bevorzugter Kapillaren, sogenannter „corner ves
sels“ ²⁹, zu erklären. Da es unter Belastung zu einem Anstieg des
HZV kommt, wird die Lunge nun mehr perfundiert. Durch diesen An
stieg der Perfusion unter Belastung kommt es wahrscheinlich zu einer
Rekrutierung von Kapillaren, welche nicht am Gastransport beteiligt
sind. Das Blut fließt somit an den Alveolen, also der Gasausstausch-
fläche, vorbei. Wagner et al.¹¹¹ fanden heraus, dass eine vermehrte
kapilläre Rekrutierung während Hypoxie abhängig vom Grad des
pulmonal arteriellen Druckes ist. Auch Lamm et al.⁵⁹ beschreiben,
daß eine Rekrutierung von sogenannten „corner vessels“ einerseits
vom transpulmonalen Druck und andererseits auch vom pulmonal ar
teriellen Druck abhängig sind. So wird die Perfusion der an dem Gas
ausstausch beteiligten Kapillaren gestoppt und in die „corner vessels“
umgeleitet. Hier entstehen dann „low V/Q-Areale“.

Eine weitere mögliche Erklärung wäre ein vermehrter Abfall der
SvO₂ durch einen inadäquaten Anstieg des Herzzeitvolumens. Auf der
Basis unserer Messdaten kann keiner der drei genannten Mechanis
men ausgeschlossen werden.

Auch Riley et al.⁹³ beschreiben, dass bei PPH Patienten bei Belastung
eine Hyperventilation von perfundierte Alveolen, aber auch Shunt-
fluß oder „low V/Q-Areale“ existieren, die zu einem pO₂ Abfall füh-
ren. Dantzker et al.17 haben bei Patienten mit chronisch obliterativer pulmonaler Hypertonie verschiedene Anstiege des Rechts-Links Shunts in Ruhe beobachtet. Ebenso beschreiben sie einen weiteren Anstieg des Ventilations-Perfusions-Missverhältnisses unter Belastung, obwohl sich der Grad des Ventilations-Perfusions-Missverhältnisses nicht veränderte.

Bei CTEPH Patienten war der pO\textsubscript{2} in Ruhe signifikant niedriger als bei den PPH Patienten, weil hier besonders viele Areale existieren, die überperfundiert sind (low V/Q), da andere Areale teilweise oder völlig obliteriert, das heißt, vollkommen von der Perfusion ausgeschlossen sind. In den verbliebenen Arealen ist der Blutfluss gesteigert, weil das gesamte Herzminutenvolumen durch die verbliebenen Perfusionsareale strömt, so dass dem Blut mit seinen Sauerstoffträgern weniger Zeit zum Gas austausch verbleibt. Warum unter Belastung der pO\textsubscript{2} nicht weiter sinkt, erklärt sich möglicherweise durch die massive Steigerung der Ventilation, welche den V/Q Quotienten anhebt.

In verschiedenen Studien14,62,119 werden das V/Q-Missverhältnis und der intrapulmonale Shunt für die Hypoxämie verantwortlich gemacht. Dantzker et al.17 sehen den Hauptgrund des pO\textsubscript{2} Abfalls allerdings in der arterio-venösen Sauerstoffdifferenz und nicht in dem V/Q-Missverhältnis.

Hierzu ist zu sagen, dass in allen Studien, die sich mit Gas austausch unter Belastung bei PPH und CTEPH beschäftigten, immer ein Kollektiv aus beiden, aber nie getrennt untersucht wurde. Warum die PPH Patienten stärker mit dem pO\textsubscript{2} abfallen als die CTEPH Patienten, lässt sich mit der verwendeten Methodik nicht endgültig klären.

Der P\textsubscript{ET}O\textsubscript{2} war bei den PPH Patienten in Ruhe signifikant niedriger als bei den CTEPH Patienten (siehe Abb. 15). Unter Belastung stieg der P\textsubscript{ET}O\textsubscript{2} bei beiden Gruppen an, war aber bei den PPH Patienten immer noch signifikant niedriger im Vergleich zu den CTEPH Patienten. Das lässt sich über die vergrößerten alveolären Toträume bei den CTEPH Patienten erklären.
In Ruhe war die AaDO\textsubscript{2} bei beiden Gruppen stark erhöht. Die PPH Patienten hatten eine AaDO\textsubscript{2} von 45 mmHg und die CTEPH Patienten eine AaDO\textsubscript{2} von 51 mmHg. Unter Belastung stieg die AaDO\textsubscript{2} bei beiden Patientengruppen an, wobei die PPH und CTEPH Patienten eine etwa gleich hohe AaDO\textsubscript{2} aufwiesen (56 mmHg vs. 58 mmHg) (siehe Abb. 15). Auch Dantzker et al.15,17, Kapitan et al.55 und D’Alonzo et al.13 beschreiben einen Anstieg der AaDO\textsubscript{2} unter Belastung. Dieser Anstieg der alveolo-arteriellen Sauerstoffdifferenz kann durch den Shuntfluß und das V/Q-Missverhältnis einerseits und die abfallende pulmonal-arterielle O\textsubscript{2}-Sättigung andererseits erklärt werden.

Der pCO\textsubscript{2} in Ruhe und unter Belastung war nicht signifikant unterschiedlich zwischen den Gruppen (siehe Abb. 15). Vergleicht man diesen Parameter jedoch mit Kontrollpersonen, sieht man, dass die PPH und CTEPH Patienten einen erniedrigten pCO\textsubscript{2} hatten. Newhouse et al.79 und O’Cain et al.82 beschreiben, dass die Hypokapnie, entweder durch eine regionale pulmonale Hypoperfusion oder durch Hyperventilation ausgelöst, oft einen bronchokonstriktorischen Reiz indiziert. Die CTEPH Patienten hatten während maximaler Belastung einen niedrigeren pCO\textsubscript{2} als die PPH Patienten. Dieser Unterschied war aber nicht signifikant. Auch Dantzker et al.15,17, D’Alonzo et al.13, Gazetopolous et al.28, Nadel et al.78, Kafer et al.54 und Kapitan et al.55 berichten, dass ihre Patienten hypokapnisch sind.

Guz et al.34 erklären diese Hypokapnie durch eine Hyperventilation, die durch eine ansteigende afferente Aktivität von intrapulmonalen Mechanorezeptoren ausgelöst wird. Diese Hypothese wird durch aktuelle Publikationen32,53,101 gestützt. Auch hier vermutet man, dass die Hypokapnie durch eine ansteigende afferente Aktivität, entstanden durch Rezeptoren in der Lunge oder Barorezeptoren in der Wand des pulmonalen Gefäßsystems oder des Herzens, zustande kommt.

Die bei PPH Patienten homogen eingeschränkte Perfusion und bei CTEPH Patienten inhomogene Einschränkung der Perfusion führt bei beiden zu einem vermehrten alveolären Totaumvolumen (siehe Abb. 17) und zu einer vermehrten Totraumventilation (siehe Abb. 16).
Weiterhin kommt es zu einer Differenz zwischen dem alveolären ($F_{ET}CO_2$) und dem arteriellen (FaCO$_2$) pCO$_2$ (siehe Abb. 16). Sowohl der funktionelle, als auch der effektive Totraum waren bei beiden Patientengruppen erhöht, unterschieden sich aber nicht signifikant voneinander (siehe Abb. 17).

Bei den PPH Patienten zeigte sich jedoch ein signifikanter Anstieg des funktionellen Totraumes (fkt VD) von 270 ml in Ruhe zu 490 ml bei maximaler Belastung (siehe Tab. 12), während die CTEPH Patienten nur einen Anstieg von 310 ml in Ruhe auf 410 ml bei maximaler Belastung aufwiesen (siehe Tab. 12).

Im Vergleich zu den PPH Patienten besaßen die CTEPH Patienten einen signifikant vermehrten prozentualen Anteil an effektivem Totraum bezogen auf das Atemzugvolumen (siehe Abb. 17). Der Anteil des effektiven Totraumes am Atemzugvolumen betrug in Ruhe bei den CTEPH Patienten 56 % und bei den PPH Patienten 45 %. Während maximaler Belastung fiel der Anteil auf 49 % bei den CTEPH Patienten und auf 35 % bei den PPH Patienten. Auch D’Alonzo et al. beschreiben einen Abfall des VD/VT während Belastung.

Betrachtet man den Quotienten eff VD/fkt VD, wird deutlich, dass der Quotient bei den CTEPH Patienten in Ruhe signifikant höher im Vergleich zu den PPH Patienten war (siehe Abb. 17). Er betrug bei den CTEPH Patienten 1,38 und bei den PPH Patienten 1,22. Während maximaler Belastung wurde dieser Unterschied noch deutlicher (2,00 vs. 1,35).

Bei beiden Patientenkollektiven zeigte sich unter Belastung ein erheblicher Anstieg sowohl der funktionellen alveolären Ventilation als auch der effektiven alveolären Ventilation (siehe Abb. 16).

Diese Zunahme der Totraumventilation manifestiert sich in einem Anstieg des $EQCO_2$ (V_E/VCO_2). Er betrug bei den PPH Patienten 42,51 und bei den CTEPH Patienten 54,86 ($p = 0,004$). Dieser Parameter korrelierte als bester Parameter mit der peak VO$_2$, aber nur bei den PPH Patienten und nicht bei den CTEPH Patienten (siehe Abb. 21). Sun et al. beschreiben, dass bei PPH Patienten die Ventilation von unterperfundierte Alveolen einen Anstieg der Totraumventilati-
on verursacht, welche sich durch einen hyperbolischen Anstieg der \(V_E \) relativ zur \(VCO_2 \) während Belastung manifestiert. Auch Riley et al.\(^9\) berichten bei PPH Patienten über eine schwere Abnormalität des ventilatorischen Äquivalentes (EQCO\(_2\)).

Die endexspiratorische CO\(_2\)-Fraktion (\(F_{ET}CO_2 \)) war bei den CTEPH Patienten gegenüber den PPH Patienten signifikant reduziert, während die arterielle CO\(_2\)-Fraktion (\(FaCO_2 \)) nicht signifikant unterschiedlich zwischen den Patientengruppen war (siehe Abb. 16). Dies bedeutet in Ruhe einen erheblichen Anstieg in der Alveolo-arteriellen CO\(_2\)-Differenz (AaDCO\(_2\)) von 1,15 % bei CTEPH Patienten und 0,57 % bei PPH Patienten (siehe Abb. 18). Unter maximaler Belastung stieg die AaDCO\(_2\) bei den CTEPH Patienten auf 1,31 % und bei den PPH Patienten fiel sie auf 0,52 % (siehe Abb. 18). Wenn man nun in Ruhe eine Schwelle bei 1 % der AaDCO\(_2\) annimmt, kann man mit einer Sensitivität von 75 % und einer Spezifität von 95 % zwischen CTEPH Patienten und PPH Patienten unterscheiden (siehe Tab. 11). Bei maximaler Belastung kann man bei einer Schwelle von 1 % mit einer Sensitivität von 88 % und einer Spezifität von 90 % zwischen CTEPH und PPH Patienten unterscheiden (siehe Tab. 11).

Riley et al.\(^9\) und Dantzker et al.\(^1\) haben eine Desaturation mit reduzierter P\(_{ET}CO_2\) (\(F_{ET}CO_2 \times 7 \)) und ein ansteigendes ventilatorisches Äquivalent während Belastung bei PPH Patienten demonstriert. Diese Abnormalitäten sind wahrscheinlich mit Rechts-Links Shunt vergeschossen.\(^9\)
5. Zusammenfassung

Die Spiroergometrie ist eine nichtinvasive Messmethode, die ein Verfahren bezeichnet, bei dem unter ergometrischer Belastung die Ventilation und der Gas austausch gemessen wird. Mit dieser Untersuchungsmethode können die allgemeine körperliche Leistungsfähigkeit und die Zusammenhänge zwischen der Belastung und der Herzleistung, dem Sauerstoffverbrauch und der Ventilation der Lunge aufgezeigt werden.

Bei LF Patienten war die peak VO₂ auf 46 % der Norm signifikant gegenüber den Kontrollpersonen reduziert (p = 5,5* 10⁻⁵). Die Leistungslimitierung beruhte überwiegend auf ventilatorischen Faktoren, es waren jedoch auch zirkulatorische Faktoren beteiligt. Die LF Pati-
enten zeigten eine eingeschränkte Atmungseffektivität, d.h. sie konnten trotz gesteigerter Atemfrequenz ihre Ventilation nicht adäquat steigern, weil ihr Atemzugvolumen stark erniedrigt war. Diese Erniedrigung des Atemzugvolumens wird durch die pulmonale Restriktion erklärt, die sich auch in einer verminderten Vitalkapazität widerspiegelt. Die Vitalkapazität korrelierte dementsprechend signifikant mit der peak VO$_2$ ($r = 0,62$, $p = 0,04$). Desweiteren trug die signifikant erniedrigte Diffusionskapazität (DLCOc) zur Leistungslimitierung. Die Diffusionskapazität korrelierte als bester Ruheparameter mit der peak VO$_2$ ($r = 0,83$, $p = 0,003$). Die DLCOc scheint somit am besten die globalen Gasautauschstörungen zu erfassen, die entscheidend für die Leistungslimitierung sind. Zusätzlich trugen Ventilations-Perfusions-Verteilungsstörungen, als eine weitere Komponente, zu den komplexen Gasautauschstörungen bei LF Patienten bei.

Diese schweren Störungen im Gasautausch führen zu enormer Totraumventilation einerseits und Hypoxämie andererseits, die beide zu der stark eingeschränkten peak VO$_2$ beitragen.

Bei unseren CF Patienten war die peak VO$_2$ auf 73 % der Norm signifikant gegenüber den Kontrollpersonen reduziert ($p = 0,001$). Es zeigte sich eine ventilatorische Leistungslimitierung. Dies passte auch zu den Beobachtungen, welche sich in der Lungenfunktion und den Korrelationsanalysen mit der peak VO$_2$ widerspiegelten. Die peak VO$_2$ der CF Patienten korrelierte signifikant mit der Einsekundenausatmungskapazität (FEV1) ($r = 0,51$, $p = 0,001$), der Vitalkapazität (VC) ($r = 0,58$, $p = 0,0002$) und der Resistance (R) ($r = -0,60$, $p = 7,67 \times 10^{-5}$). Weiterhin trugen die signifikant erniedrigte Körpergröße ($p = 0,002$) und das signifikant erniedrigte Körpergewicht ($p = 0,004$) zur reduzierten peak VO$_2$ bei. Auch bei den CF Patienten korrelierte die Diffusionskapazität (DLCOc) als bester Parameter mit der peak VO$_2$ ($r = 0,70$, $p = 0,003$) und schien auch hier den besten Vorhersagewert für die maximale Sauerstoffaufnahme zu haben.

Der effektive Totraum stieg von 330 ml in Ruhe auf 420 ml bei maximaler Belastung, während er sich bei der Kontrollgruppe nicht veränderte. Auch das Atemäquivalent für CO$_2$ ($V_E/VCO_2 = EQCO_2$)
änderte. Auch das Atemäquivalent für CO₂ (\(V_E/VCO_2 = EQCO_2\)) war bei den CF Patienten auf 28,6, gegenüber 24,7 bei den Kontrollpersonen, signifikant erhöht (\(p = 0,0004\)). Unter Ruhebedingungen war der \(pO_2\) signifikant gegenüber den Kontrollpersonen auf 74 mmHg (\(p = 6,15 \times 10^{-6}\)) reduziert und bei maximaler Belastung fiel er noch weiter auf 70 mmHg (\(p = 7,80 \times 10^{-6}\)).

CF Patienten weisen also erhebliche Gasaustauschstörungen auf, die einerseits durch Shuntfluß oder low V/Q erklärt werden können und andererseits durch Diffusionsstörungen und somit zu einer ineffizienten Ventilation mit gesteigerter Totraumventilation und zu Hypoxämie führen.

Bei den PPH Patienten war die peak \(VO_2\) auf 55 % der Norm und bei den CTEPH Patienten auf 43 % der Norm reduziert (\(p = 0,02\)). Wir beobachteten weder bei den PPH Patienten noch bei den CTEPH Patienten im Mittel eine respiratorische, kardiale oder metabolische Leistungslimitierung. Tatsächlich wiesen die Patienten eine zirkulatorische Leistungslimitierung auf, welche aber offenbar durch die Spiroergometrie, als nichtinvasive Untersuchungsmethode, nicht erfasst werden kann.

Bei unseren PPH Patienten korrelierten der mittlere pulmonalarterielle Druck (mPAP) (\(r = -0,55, p = 0,01\)), der zentral venöse Druck (CVP) (\(r = -0,59, p = 0,005\)), die zentral venöse Sauerstoffsättigung (SvO₂) (\(r = 0,62, p = 0,003\)), die arterielle Sauerstoffsättigung (SaO₂) (\(r = 0,54, p = 0,011\)), und der Cardiac Index (CI) (\(r = 0,44, p = 0,047\)) als hämodynamische Ruheparameter signifikant mit der peak \(VO_2\). Dies passt zu anderen Literaturangaben und spricht dafür, dass die pulmonale Vaskulopathie einen entscheidenden negativen Einfluss auf die peak \(VO_2\) hat.

Bei den CTEPH Patienten korrelierte dagegen keiner der hämodynamischen Ruheparameter signifikant mit der peak \(VO_2\). Eine hinreichende Erklärung für diesen Unterschied zwischen PPH und CTEPH Patienten ließ sich aus den erhobenen Daten nicht finden.

Bei PPH und CTEPH Patienten bestehen erhebliche V/Q-Verteilungsstörungen, die zu einer vermehrten Totraumventilation führen. Bei den PPH Patienten zeigte sich im Vergleich zu den CTEPH Patienten zum einen ein signifikanter Anstieg des funktionellen Totraumes von 270 ml in Ruhe zu 490 ml bei maximaler Belastung. Bei den CTEPH Patienten stieg er lediglich von 310 ml in Ruhe auf 410 ml bei maximaler Belastung. Weiterhin hatten die CTEPH Patienten im Vergleich zu den PPH Patienten einen signifikant vermehrten prozentualen Anteil an effektivem Totraum, bezogen auf das Atemzugvolumen (56 % vs. 45 % in Ruhe, 49 % vs. 35 % bei maximaler Belastung). Ebenfalls war der Quotient aus effektivem Totraum und funktionellen Totraum (eff VD/fkt VD) bei den CTEPH Patienten signifikant höher als bei den PPH Patienten (1,38 vs 1,22 in Ruhe, 2,00 vs. 1,35 bei maximaler Belastung). Diese Zunahme der Totraumventilation wird weiterhin deutlich an der signifikant höheren EQCO₂ bei den CTEPH Patienten (54,86 vs. 42,51, p = 0,004). Bei den PPH Patienten korrelierte dieser Parameter am besten mit der peak VO₂ (r = -0,82, p = 6,69* 10⁻⁶). Dahingegen korrelierte dieser bei den CTEPH Patienten nicht mit der peak VO₂.

Als bester Parameter zur Unterscheidung zwischen PPH und CTEPH Patienten erwies sich die alveolo-arterielle CO₂-Differenz (AaDCO₂). Wenn der pCO₂ des Blutes in die CO₂-Fraktion (FaCO₂) umgerechnet wird, so ergeben sich Normwerte bei ca. 4,6 %. Die endexspiratorische (alveoläre) CO₂-Fraktion (FETCO₂) liegt bei ca. 4,5 %. Somit beträgt die AaDCO₂ lediglich 0,1 %. Im Vergleich dazu zeigten die PPH Patienten eine AaDCO₂ von ca. 0,57 % und die CTEPH Patienten 1,15 % in Ruhe. Wenn eine AaDCO₂ von >1 % als Marker einer CTEPH zugrundegelegt wird, so erlaubt dieser die Abgrenzung von
einer PPH mit einer Spezifität von 95 % und einer Sensitivität von 75 %.

Bei maximaler Belastung betrug die AaDCO₂ bei den PPH Patienten 0,52 % und bei den CTEPH Patienten 1,31 %. Wenn nun eine AaDCO₂ ebenfalls von >1 % als Marker einer CTEPH zugrundegelegt wird, so erlaubt dieser die Abgrenzung von einer PPH mit einer Spezifität von 90 % und einer Sensitivität von 88 %.

So lassen sich PPH Patienten und CTEPH Patienten in Ruhe und unter maximaler Belastung mit relativ hoher Sensitivität und Spezifität von einander unterscheiden.

Insgesamt erwies sich die Spiroergometrie bei Patienten mit schweren bronchialen, parenchymatösen und vaskulären Lungenkrankheiten als sichere und zuverlässige Methode zur Erfassung der maximalen Sauerstoffaufnahme und der leistungslimitierenden Faktoren.
6. Conclusion

Spiroergometry is a noninvasive method to measure ventilation and gas exchange during exercise. This method allows assessment of physical capacity and the contribution of cardiac and ventilatory factors to exercise limitation.

By means of spiroergometry and blood gas analysis we examined 11 patients with pulmonary hypertension secondary to lung fibrosis and 11 sedentary matched controls, 39 patients with cystic fibrosis and 13 sedentary matched controls, 21 patients with primary pulmonary hypertension and 16 patients with chronic thromboembolic pulmonary hypertension. We characterized the cardiac and ventilatory parameters during rest, at peak exercise and after peak exercise and compared the cardiac, ventilatory and metabolic parameters at peak exercise between the groups. By means of correlation analysis of lung function and hemodynamic parameters with peak oxygen uptake we investigated, if resting parameters could predict peak oxygen uptake. Moreover the complex gas exchange abnormalities of the diseases and differences between PPH patients and CTEPH patients at rest and peak exercise were described and examined with regard to their sensitivity and specificity to distinguish between these two diseases.

In LF patients compared to controls the peak oxygen uptake was reduced to 46% of predicted (p = 5.5 * 10^{-5}). Peak exercise was limited by ventilatory factors and partly to circulatory factors. LF patients had a reduced ventilatory efficiency which is suggested by the increased ventilatory rate due to a markedly reduced tidal volume. This reduction in tidal volume is due to pulmonary restriction, which is also reflected in the reduced vital capacity. Vital capacity was significantly correlated with peak oxygen uptake (r = 0.62, p = 0.04). However, CO diffusion capacity (DLCOc) show the best correlation with peak oxygen uptake (r = 0.83, p = 0.003). It is concluded that DLCOc may be the best resting parameter which integrates all the common gas exchange abnormalities that limit physical capacity. Ventilation-perfusion-mismatch is an additional factor contributing
to the gas exchange abnormalities. This leads to high dead space ventilation on the one hand and hypoxemia on the other hand and these two factors contribute to reduction in peak oxygen uptake.

In CF patients compared to controls the peak oxygen uptake was significantly reduced to 73 % of predicted (p = 0,001). CF patients mostly showed a ventilatory limitation which is due to decreased lung function parameters as shown by correlation analysis with peak oxygen uptake. The peak oxygen uptake of the CF patients was significantly correlated to FEV1 (r = 0,51, p = 0,001), vital capacity (VC) (r = 0,58, p = 0,002), and the airway resistance (R) (r = -0,60, p = 7,67* 10^-5). Moreover, reduced peak oxygen uptake was due to the significantly reduced height (p = 0,002) and the significantly reduced weight (p = 0,004). In CF patients the CO diffusion capacity (DLCOc) correlated best with peak oxygen uptake (r = 0,70, p = 0,003) and proved to be the best resting parameter for predicting peak oxygen uptake.

The effective dead space increased from 330 ml at rest to 420 ml at peak exercise, while this parameter was unchanged in the control group. CO₂ equivalent (VE/VCO₂ = EQCO₂) in CF was significantly increased to 28,6 versus 24,7 in controls (p = 0,0004). At rest, in CF patients compared to controls, pO₂ was significantly reduced to 74 mmHg (p = 6,15*10^-6 vs. controls) and at peak exercise pO₂ decreased to 70 mmHg (p = 7,80*10^-6 vs. controls).

CF patients show considerable gas exchange abnormalities which are on the one hand due to shunting or low ventilation-perfusion and on the other hand due to diffusion abnormalities resulting in inefficient ventilation with increased dead space ventilation and hypoxemia.

In PPH patients, peak oxygen uptake was reduced to 55 % of predicted and in CTEPH patients to 43 % of predicted (p = 0,02). Neither in PPH nor in CTEPH, a respiratory, cardiac or metabolic exercise limitation became evident. Actually, the patients are known to
suffer from circulatory limitation, but this could not be detected with the non-invasive technique of spiroergometry and blood gas analysis.

In PPH patients, there was a significant correlation between mean PAP ($r = -0.55, p = 0.01$), CVP ($r = -0.59, p = 0.005$), SvO_2 ($r = 0.62, p = 0.003$), SaO_2 ($r = 0.54, p = 0.011$), CI ($r = 0.44, p = 0.047$) and peak oxygen uptake. This corresponds to other papers and shows that the pulmonary vasculopathy has a decisive negative influence on peak oxygen uptake.

In CTEPH patients, none of the resting parameters was significantly correlated to peak oxygen uptake. A sufficient explanation of this difference between PPH and CTEPH patients could not be derived from our data.

PPH like CTEPH patients showed high-ventilation/perfusion areas and also low-ventilation/perfusion areas, which may result from “corner vessels” or an additional fall in SvO_2 or right-left shunting. Actually none of these three mechanisms could be favorised or excluded.

Both in PPH and CTEPH patients, a moderate ventilation/perfusion mismatch is present leading to increased dead space ventilation. In PPH patients, in contrast to CTEPH patients, there was a significant increase in functional dead space volume from 270 ml at rest to 490 ml at peak exercise. In CTEPH patients, there was only an increase from 310 ml at rest to 410 ml at peak exercise. Moreover, CTEPH patients in contrast to PPH patients had a significantly increased effective dead space referred to tidal volume (56 % vs. 45 % at rest, 49 % vs. 35 % at peak exercise). Also the ratio of effective dead space and functional dead space (eff VD/fkt VD) was significantly higher in CTEPH in contrast to PPH patients (1.38 vs. 1.22 at rest, 2.00 vs. 1.35 at peak exercise). This increase in dead space ventilation also results in a significantly higher EQCO_2 in CTEPH patients (54.86 vs. 42.51, $p = 0.004$). In PPH patients, EQCO_2 correlated best with peak VO_2 ($r = -0.82, p = 6.69*10^{-6}$), whereas in CTEPH patients this parameter was not correlated to peak VO_2.
The best parameter to differentiate between PPH and CTEPH proved to be the alveolo-arterial CO₂-difference (AaDCO₂). If blood pCO₂ was converted into CO₂-fraction (FaCO₂), the normal values were 4.6 %. End-tidal (alveolar) CO₂-fraction (FETCO₂) was also around 4.6 %. So normal AaDCO₂ was only 0.1 %. In contrast, PPH patients showed an AaDCO₂ of 0.57 % and CTEPH patients of 1.15 % at rest. If a threshold of over one per cent for the AaDCO₂ was used to identify CTEPH patients, this distinguished between CTEPH from PPH patients with a sensitivity of 75 per cent and a specificity of 95 per cent.

At peak exercise in PPH patients AaDCO₂ was 0.52 % and in CTEPH 1.31 %. If a threshold of over one per cent for the AaDCO₂ was used to identify CTEPH patients, this distinguished CTEPH from PPH patients with a sensitivity of 88 per cent and a specificity of 90 per cent.

In conclusion, AaDCO₂ at rest and during exercise is suitable to distinguish between PPH and CTEPH patients with high sensitivity and specificity.

Altogether, spiroergometry proved to be a safe and reliable method in patients with severe pulmonary hypertension, bronchial and parenchymatous pulmonary diseases to assess the peak oxygen uptake and the typical constellation of ventilatory and cardiac factors at peak exercise.
7. **Literaturverzeichnis**

15. Dantzker DR and Bower JS. Mechanism of gas exchange abnormality in patients with chronic obliterative pulmonary vascular disease. JCI 1979; 64: 1050-1055

23. Finley TN, Swenson EW, Comroe JH. The cause of arterial hypoxemia at rest in patients with “alveolar-capillary block syndrome”. JCI 1962; 41: 618-622

25. Fulmer JD, Roberts WC, von Gal ER, Crystal RG. Morphologic-physiologic correlates of the severity of fibrosis and degree of cellularity in idiopathic pulmonary fibrosis. JCI 1979; 63: 665-676

43. Holley HS, Milic-Emili J, Becklake MR, and Bates DV. Regional distribution of pulmonary ventilation and perfusion in obesity. JCI 1966; 45: 1349-1356

61. Lands LC, Heigenhauser GJF, and Jones NL. Cardiac output determination during progressive exercise in Cystic Fibrosis. Chest 1992; 102: 1118-1123

89. Ratjen F, Doring G. Cystic fibrosis. Lancet 2003; 361: 681-689

8. Publikationsverzeichnis in Abstractform

9. Danksagung

Mein ganz besonderer Dank gilt meinem Betreuer, Herrn PD Dr. med. Horst Olschewski, für die Stellung des Dissertationsthemas, für das entgegengebrachte Vertrauen, für die Hilfestellung bei der Einarbeitung in die statistische Auswertung und die unermüdliche und geduldige Unterstützung dieser Arbeit. Herr PD Dr. med. H. Olschewski ist mir ein Vorbild in klinischer, wissenschaftlicher und menschlicher Hinsicht.

Herrn Dr. med. Ralph Wiedemann danke ich besonders für die freundschaftliche Zusammenarbeit und Unterstützung.

Frau Dr. med. Christine Fegbeutel danke ich für ihre Beiträge im Rahmen der Datensammlungen für die CF Patienten.

Meinem Freund Thomas Fritz danke ich besonders für seine Geduld und seine Aufmunterungen während der Verfassung dieser Arbeit.

Auch meinen Eltern möchte ich für ihre Unterstützung während meines Studiums und bei dieser Arbeit danken.

Mein aufrichtiger Dank gilt allen Patienten.
10. Lebenslauf

PERSÖNLICHE INFORMATIONEN

- Name: Englisch
- Vorname: Christina Elvira
- Geburtsdatum: 15.01.1977
- Geburtsort: Bad Hersfeld
- Familienstand: ledig
- Staatsangehörigkeit: deutsch
- Eltern: Helmut und Gabriele Englisch
- Geschwister: Mark Englisch (30)
- Anschrift: Riegelpfad 40, 35392 Giessen
- Telefon: 0641/72261

SCHULE

1983 - 1987 Ernst-von-Harnack-Grundschule, Bad Hersfeld
1987 - 1989 Förderstufe Gesamtschule Obersberg, Bad Hersfeld
1989 - 1993 gymnasialer Zweig Gesamtschule Obersberg, Bad Hersfeld
1993 - 1996 gymnasiale Oberstufe Modellschule Obersberg, Bad Hersfeld

STUDIUM

1996 - 2003 Studium der Humanmedizin, Justus-Liebig-Universität Gießen

- 08/98 Physikum
- 08/99 1. Staatsexamen
- 04/02 2. Staatsexamen
- 05/03 3. Staatsexamen

FAMULATUREN

- 03/99 Chirurgie, Kreiskrankenhaus Bad Hersfeld
- 02/00 Allgemeinmedizin, Bad Hersfeld
- 07/00 Innere Medizin, JLU-Gießen
- 09/01 Ambulanz für pulmonale Hypertonie, JLU-Gießen

185
PRAKTISCHES JAHR

- 04/02 - 08/02 Anästhesie, JLU-Gießen
- 08/02 - 12/02 Innere Medizin, JLU-Gießen
- 12/02 - 04/03 Chirurgie, JLU-Gießen

ÄRZTIN IM PRAKTIKUM

- seit 07/03 Pneumologische Klinik Waldhof/Elgershausen