Giessener Elektronische Bibliothek

GEB - Giessener Elektronische Bibliothek

Hinweis zum Urheberrecht

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgende
URN: urn:nbn:de:hebis:26-opus-12272
URL: http://geb.uni-giessen.de/geb/volltexte/2003/1227/


Credit Risk Modeling with Random Fields

Credit Risk Modeling with Random Fields

Modellierung von Kreditrisiken mit zufälligen Feldern

Schmidt, Thorsten


pdf-Format: Dokument 1.pdf (1.073 KB)

Bookmark bei Connotea Bookmark bei del.icio.us
Freie Schlagwörter (Deutsch): Kreditrisiken , Stochastische Differentialgleichungen , Gaußsche Felder , Kalibrierung
Freie Schlagwörter (Englisch): Credit Risk , Stochastic Differential Equations , Gaussian Random Fields , Calibration
MSC - Klassifikation: 60H15 , 60G60 , 46N30 , 35R15
Universität Justus-Liebig-Universität Gießen
Institut: Mathematisches Institut
Fachgebiet: Mathematik
DDC-Sachgruppe: Mathematik
Dokumentart: Dissertation
Sprache: Englisch
Tag der mündlichen Prüfung: 11.09.2003
Erstellungsjahr: 2003
Publikationsdatum: 19.09.2003
Kurzfassung auf Englisch: In the first part of the work, a survey of the credit risk literature is given, which offers a quick introduction into the area and presents the mathematical methods in a unifying way. Second, we propose two new models of credit risk, focusing on different needs. The first model generalizes existing models using random fields in Hilbert spaces. The second model uses Gaussian random fields leading to explicit formulas for a number of derivatives, for which we propose two calibration procedures.

The work is organized as follows. In Chapter 1, a survey of the credit risk literature is given. This includes structural models, hazard rate models, methods incorporating credit ratings, models for baskets of credit risky bonds, hybrid models, market models and commercial models. In the last section we illustrate several credit derivatives. Generally the mathematical framework for the models is provided and some models are discussed in greater detail. Additionally, an explicit formula for the default intensity in the imperfect information model of Duffie and Lando (2001) is derived.

Chapters 2 and 3 focus on credit risk modeling using stochastic differential equations (SDEs) in infinite dimensions. Although known in interest rate theory, the application of these methods is new to credit risk. Chapter 2 contains an introduction to SDEs in Hilbert spaces providing an Ito formula which is adequate for our purposes. In Chapter 3 a Heath-Jarrow-Morton formulation of credit risk in infinite dimensions is given. The work of Duffie and Singleton (1999) and Bielecki and Rutkowski (2000) was enhanced with alternative recovery models and extended to infinite dimensions. These new models comprise most of the known credit risk models and still offer frameworks which are tractable.

In Chapter 4, a credit risk model is presented which uses Gaussian random fields and transfers the framework of Kennedy (1994) to credit risk. In contrast to the functional analytic approach in the previous two chapters, the methods used in this section concentrate on deriving formulas for pricing and hedging. Explicit expressions for the prices of several credit default options are obtained and an example for hedging credit derivatives is presented.

Based on these pricing formulas, two calibration methodologies are provided. The first calibration procedure fits the model to prices of derivatives using a least squares approach. As the data for derivatives like credit default swaptions is still scarce, the second approach takes this into account and in addition uses historical data. This new approach allows to calibrate perfectly to market prices and is applicable using only a small amount of credit derivatives data.
Kurzfassung auf Deutsch: Die Arbeit gliedert sich in zwei Teile. Der erste Teil gibt einen Überblick über die Literatur zum Thema 'Credit Risk' und bietet eine Einführung in das Gebiet sowie eine einheitliche Präsentation der unterschiedlichen Modelle. Im zweiten Teil werden zwei neue Modelle zur Modellierung von Kreditrisiken vorgestellt. Das erstere verallgemeinert existierende Modelle unter Verwendung von Stochastischen Differentialgleichungen auf Hilberträumen. Das zweite Modell benutzt Gaußsche Felder und ermöglicht die Bestimmung expliziter Preisformeln für eine große Zahl von Kreditderivaten. Darauf basierend werden im Anschluss zwei Methoden zur Kalibrierung der Modelle vorgestellt.

Die Arbeit gliedert sich wie folgt. Kapitel 1 gibt einen Überblick über die Literatur zum Thema 'Credit Risk'. Das beinhaltet strukturelle Modelle, intensitätsbasierte Modelle, Methoden, die Ratings verwenden, Modelle für Portfolios von kreditrisikobehafteten Bonds, hybride Modelle, Marktmodelle und kommerzielle Modelle. Im letzten Abschnitt werden verschiedene Kreditderivate vorgestellt. Darüberhinaus wird eine explizite Formel für die Ausfallintensität im Modell von Duffie und Lando (2001) abgeleitet.

Die Kapitel 2 und 3 behandeln die Modellierung von Kreditrisiko mit Hilfe von stochastischen Differentialgleichungen (SDG) auf Hilbterträumen. Dieser Zugang ist neu. Kapitel 2 enthält eine Einführung in SDG auf Hilberträumen und stellt eine Ito-Formel zur Verfügung, die unseren Zwecken angepasst ist. In Kapitel 3 wird das Heath-Jarrow-Morton Modell auf unendliche Dimensionen erweitert und dann auf Kreditrisiko übertragen. Das vorgestellte Modell beinhaltet einen Großteil der bekannten Kreditriskomodelle als Spezialfälle.

In Kapitel 4 wird ein Modell vorgestellt, das Gaußsche Felder benutzt. Dazu wird das Modell von Kennedy (1994) auf Kreditrisiko übertragen. Im Gegensatz zu dem funktionalanalytischen Zugang der beiden vorigen Kapitel konzentrieren sich die Methoden in diesem Abschnitt auf die Entwicklung von expliziten Formeln zum Pricen und Hedgen von Kreditderivaten.

Schließlich werden im Kapitel 5 zwei Methoden zur Kalibrierung der Modelle vorgestellt.