Giessener Elektronische Bibliothek

GEB - Giessener Elektronische Bibliothek

Incremental model breakdown to assess the multi-hypotheses problem

Jehn, Florian U. ; Breuer, Lutz ; Houska, Tobias ; Bestian, Konrad ; Kraft, Philipp

Originalveröffentlichung: (2018) Hydrology and Earth System Sciences 22(8):4565-4581 doi: 10.5194/hess-22-4565-2018
Zum Volltext im pdf-Format: Dokument 1.pdf (2.407 KB)

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgende
URN: urn:nbn:de:hebis:26-opus-153915

Sammlung: Open Access - Publikationsfonds
Universität Justus-Liebig-Universität GieĂźen
Institut: Institut für Landschaftsökologie und Ressourcenmanagement
Fachgebiet: Agrarwissenschaften und Umweltmanagement
DDC-Sachgruppe: Landwirtschaft
Dokumentart: Aufsatz
Sprache: Englisch
Erstellungsjahr: 2018
Publikationsdatum: 18.08.2020
Kurzfassung auf Englisch: The ambiguous representation of hydrological processes has led to the formulation of the multiple hypotheses approach in hydrological modeling, which requires new ways of model construction. However, most recent studies focus only on the comparison of predefined model structures or building a model step by step. This study tackles the problem the other way around: we start with one complex model structure, which includes all processes deemed to be important for the catchment. Next, we create 13 additional simplified models, where some of the processes from the starting structure are disabled. The performance of those models is evaluated using three objective functions (logarithmic Nash–Sutcliffe; percentage bias, PBIAS; and the ratio between the root mean square error and the standard deviation of the measured data). Through this incremental breakdown, we identify the most important processes and detect the restraining ones. This procedure allows constructing a more streamlined, subsequent 15th model with improved model performance, less uncertainty and higher model efficiency. We benchmark the original Model 1 and the final Model 15 with HBV Light. The final model is not able to outperform HBV Light, but we find that the incremental model breakdown leads to a structure with good model performance, fewer but more relevant processes and fewer model parameters.
Lizenz: Lizenz-Logo  Creative Commons - Namensnennung 4.0