Giessener Elektronische Bibliothek

GEB - Giessener Elektronische Bibliothek

Water Splitting Reaction at Polar Lithium Niobate Surfaces

Dues, Christof ; Schmidt, Wolf Gero ; Sanna, Simone


Originalveröffentlichung: (2019) ACS Omega 4(2):3850-3859 doi: 10.1021/acsomega.8b03271
Zum Volltext im pdf-Format: Dokument 1.pdf (4.539 KB)


Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgende
URN: urn:nbn:de:hebis:26-opus-148926
URL: http://geb.uni-giessen.de/geb/volltexte/2019/14892/


Sammlung: Open Access - Publikationsfonds
Universität Justus-Liebig-Universit√§t Gie√üen
Institut: Institut f√ľr theoretische Physik
Fachgebiet: Physik
DDC-Sachgruppe: Physik
Dokumentart: Aufsatz
Sprache: Englisch
Erstellungsjahr: 2019
Publikationsdatum: 22.10.2019
Kurzfassung auf Englisch: Water splitting is a highly promising, environmentally friendly approach for hydrogen production. It is often discussed in the context of carbon dioxide free combustion and storage of electrical energy after conversion to chemical energy. Since the oxidation and reduction reactions are related to significant overpotentials, the search for suitable catalysts is of particular importance. Ferroelectric materials, for example, lithium niobate, attracted considerable interest in this respect. Indeed, the presence of surfaces with different polarizations and chemistries leads to spatial separation of reduction and oxidation reactions, which are expected to be boosted by the electrons and holes available at the positive and negative surfaces, respectively. Employing the density functional theory and a simplified thermodynamic approach, we estimate the overpotentials related to the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) on both polar LiNbO3 (0001) surfaces. Our calculations performed for ideal surfaces in vacuum predict the lowest overpotential for the hydrogen evolution reaction (0.4 V) and for the oxygen evolution reaction (1.2 V) at the positive and at the negative surfaces, respectively, which are lower than (or comparable with) commonly employed catalysts. However, calculations performed to model the aqueous solution in which the reactions occur reveal that the presence of water substantially increases the required overpotential for the HER, even inverting the favorable polarization direction for oxidation and reduction reactions. In aqueous solution, we predict an overpotential of 1.2 V for the HER at the negative surface and 1.1 V for the OER at the positive surface.
Lizenz: Veröffentlichungsvertrag für Publikationen ohne Print on Demand