Giessener Elektronische Bibliothek

GEB - Giessener Elektronische Bibliothek

Two nonlinear systems from mathematical physics

Sacchet, Matteo


Zum Volltext im pdf-Format: Dokument 1.pdf (489 KB)


Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgende
URN: urn:nbn:de:hebis:26-opus-136900
URL: http://geb.uni-giessen.de/geb/volltexte/2018/13690/

Bookmark bei del.icio.us


Universität Justus-Liebig-Universität Gießen
Institut: Mathematisches Institut
Fachgebiet: Mathematik
DDC-Sachgruppe: Mathematik
Dokumentart: Dissertation
Sprache: Englisch
Tag der mündlichen Prüfung: 27.03.2017
Erstellungsjahr: 2017
Publikationsdatum: 11.09.2018
Kurzfassung auf Deutsch: The dissertation is divided into two chapters.
In the first one, we consider the 2-Vortex problem for two point vortices in a complex domain. The Hamiltonian of the system contains the regular part of a hydrodynamic Green’s function, the Robin function h and two coefficinets which are the strengths of the point vortices. We prove the existence of infinitely many periodic solutions with minimal period T which are a superposition of a slow motion of the center of vorticity along a level line of h and of a fast rotation of the two vortices around their center of vorticity. These vortices move in a prescribed subset of the domain that has to satisfy a geometric condition. The minimal period can be any T in a certain interval. Subsets to which our results apply can be found in any generic bounded domain. The proofs are based on a recent higher dimensional version of the Poincaré-Birkhoff theorem due to Fonda and Ureña.
In the second part, we study bifurcations of a multi-component Schrödinger system. We construct a solution branch synchronized to a positive solution of a simpler system. From this branch, we find a sequence of local bifurcation values in the one dimensional case and also in the general case provided that the positive solution is nondegenerate.

Lizenz: Veröffentlichungsvertrag für Publikationen ohne Print on Demand