Giessener Elektronische Bibliothek

GEB - Giessener Elektronische Bibliothek

Quotient graphs for certain arithmetic subgroups of PGL_3 over a rational function field

Quotientengraphen für bestimmte arithmetische Untergruppen der PGL_3 über einem rationalen Funktionenkörper

Christ, Bastian


Zum Volltext im pdf-Format: Dokument 1.pdf (1.085 KB)


Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgende
URN: urn:nbn:de:hebis:26-opus-136886
URL: http://geb.uni-giessen.de/geb/volltexte/2018/13688/

Bookmark bei del.icio.us


Freie Schlagwörter (Deutsch): Bruhat-Tits Gebäude , Quotientengraphen , affine Gebäude , arithmetische Gruppen , diskrete Bewertungen
Freie Schlagwörter (Englisch): Bruhat-Tits buildings , quotient graphs , affine buildings , arithmetic groups , discrete valuations
MSC - Klassifikation: 20E42 , 20G40
Universität Justus-Liebig-Universität Gießen
Institut: Mathematisches Institut
Fachgebiet: Mathematik
DDC-Sachgruppe: Mathematik
Dokumentart: Dissertation
Sprache: Englisch
Tag der mündlichen Prüfung: 10.07.2018
Erstellungsjahr: 2018
Publikationsdatum: 15.08.2018
Kurzfassung auf Englisch: In the present thesis we consider the action of PGL_3(F_q(t)), where F_q(t) is the rational function field over the finite field with q elements, on the associated Bruhat-Tits building. For a place p of F_q(t) there is the subring O_{p} of the rational function field consisting of those rational functions having possible poles only at p. We compute the quotient graph for the action of the arithmetic subgroup PGL_3(O_{p}) on the underlying graph (i.e. the 1-skeleton) of the Bruhat-Tits building corresponding to the place p.
Therefore we first compute the fundamental domain for the action of PGL_3(F_q[t]) on the underlying graph of the Bruhat-Tits building associated to the place infinity. Then we consider the action of PGL_3(O_{p,infinity}), where O_{p,infinity} are those rational functions with possible poles only at p and at infinity, on the product of the Bruhat-Tits building associated to p and the Bruhat-Tits building associated to infinity. The PGL_3(O_{p})-orbits on the vertices of the Bruhat-Tits building corresponding to p can be identified with certain PGL_3(F_q[t])-orbits on the vertices of the Bruhat-Tits building associated to infinity. So we can describe the vertices of the quotient graph. For the number of edges between two given vertices in the quotient we can compute the number of corresponding double cosets. To actually compute the number of double cosets we have to distinguish a lot of cases, so that we can calculate the needed cardinalities of the involved sets in order to find the number of double cosets in each of these cases. In the Main Theorem we describe the quotient graphs.
Kurzfassung auf Deutsch: In der vorliegenden Arbeit betrachten wir die Wirkung der PGL_3(F_q(t)), wobei F_q(t) den rationalen Funktionenkörper über dem endlichen Körper mit q Elementen bezeichnet, auf dem zugehörigen Bruhat-Tits Gebäude. Für eine Stelle p des rationalen Funktionenkörpers bezeichnet O_{p} den Teilring bestehend aus allen rationalen Funktionen, die nur in p eine mögliche Polstelle besitzen. Wir berechnen den Quotientengraphen bezüglich der Wirkung der arithmetischen Untergruppe PGL_3(O_{p}) auf dem zugrundeliegenden Graphen (d.h. dem 1-Skelett) des zu p assoziierten Bruhat-Tits Gebäudes. Dazu berechnen wir zunächst den Fundamentalbereich für die Wirkung der arithmetischen Untergruppe PGL_3(F_q[t]) auf dem zugrundeliegenden Graphen des zu unendlich assoziierten Bruhat-Tits Gebäudes. Wir können die PGL_3(O_{p})-Orbits auf den Ecken des zu p assoziierten Bruhat-Tits Gebäudes mit bestimmten PGL_3(F_q[t])-Orbits auf den Ecken des zu unendlich assoziierten Bruhat-Tits Gebäudes identifizieren. Dies liefert eine Beschreibung der Ecken im Quotientengraphen. Um die Anzahl an Kanten zwischen zwei Ecken zu berechnen, können wir die Anzahl an korrespondierenden Doppelnebenklassen bestimmen. Für die Berechnung der Anzahl an Doppelnebenklassen müssen wir einige Fälle unterscheiden, damit wir die benötigten Kardinalitäten der involvierten Mengen bestimmen können. Im Hauptresultat werden dann die Quotientengraphen beschrieben.
Lizenz: Veröffentlichungsvertrag für Publikationen ohne Print on Demand