Light tetraquarks and mesons in a DSE/BSE approach
Leichte Tetraquarks und Mesonen im DSE/BSE Zugang
Zum Volltext im pdfFormat:  Dokument 1.pdf (3.464 KB) 
Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgende
URN: urn:nbn:de:hebis:26opus116078
URL: http://geb.unigiessen.de/geb/volltexte/2015/11607/
Freie Schlagwörter (Deutsch):  Tetraquarks , BSE  
Freie Schlagwörter (Englisch):  Tetraquarks , BSE  
PACS  Klassifikation:  12.38.Lg , 11.10.St , 14.40.Rt , 14.40.Be  
Universität  JustusLiebigUniversitÃ¤t GieÃŸen  
Institut:  Institut fÃ¼r theoretische Physik  
Fachgebiet:  Physik  
DDCSachgruppe:  Physik  
Dokumentart:  Dissertation  
Sprache:  Englisch  
Tag der mÃ¼ndlichen PrÃ¼fung:  08.07.2015  
Erstellungsjahr:  2015  
Publikationsdatum:  22.07.2015  
Kurzfassung auf Englisch:  Part I: Bound states and their properties are an inherent nonperturbative feature of QCD. Moreover, QCD is a confining theory so that instead of the elementary quarks and gluons themselves, only colourless bound states formed of these elementary particles are directly measurable. One nonperturbative framework to describe QCD are the DysonSchwinger equations, which interrelate all Green functions of the theory by an infinite tower of integral equations, and the corresponding BetheSalpeter equations that define the bound states of the theory. To reduce the infinite tower to a tractable form, the equations have to be truncated. In this thesis the socalled rainbow ladderÂ´ truncation was used that reduces the quarkgluon vertex to the bare vertex and replaces the gluon by an effective modeled one so that the only Green function that has to be solved, is the quark propagator. This truncation preserves the important axial WardTakahashiidentity and the GellMannOakesRenner relation. For the effective gluon the MarisTandy interaction was used, modeled to reproduce the pion mass and decay constant. Starting from this wellestablished truncation, the fourbody tetraquark BetheSalpeter equation was constructed. To solve the tetraquark BetheSalpeter equation, a fully covariant basis for the tetraquark amplitude is necessary. Additionally, the basis has to reflect the quantum numbers of the tetraquark and has to fulfill the Pauli principle. The construction of such a basis was performed for all parts of the amplitude: The Diractensor structure, the phase space, the colour and the flavour tensor structure. Upon solving the tetraquark bound state equation, dynamical pion poles in the tetraquark amplitude phase space appeared, reflecting the actual physics that determines the tetraquark: The tetraquark is dominated by twobody correlations which manifest themselves as poles in the phase space. It is especially noteworthy that these twobody correlations in form of poles are of a dynamical nature and are not put in by hand. Additionally, these twobody poles in the fourbody equation can be interpreted as connection between the more fundamental fourbody picture, where four quarks bind together, and the twobody picture, where the tetraquark is pictured as a bound state of two mesons and/or diquarks. In accordance with previous studies in a twobody framework, the pionpion correlations are found to be much more dominant than the diquarkdiquark correlations. Guided by the result that the tetraquark is dominated by poles in the phase space, an explicit pole ansatz for the amplitude was constructed, improving the numerical stability considerably. Subsequently, the BetheSalpeter equation was solved for tetraquarks with the quantum numbers 0++. For physical u/dquark masses, the masses of the sigma (0.35 GeV), the kappa (0.64 GeV) and the f0/a0 (0.89 GeV) were calculated, with the corresponding masses given in brackets. Compared with the values of the experimental candidates, the masses are generically too low, probably caused by truncation artifacts. Nonetheless, according to the success of the MarisTandy model to describe ground state properties of mesons and baryons, the result is a strong indication that the lowest scalar nonet has indeed a considerable tetraquark component. Investigating the quark mass dependence of the sigma, candidates for an all strange tetraquark around 1.6 GeV and an all charm tetraquark around 5.7 GeV were found. These findings agree qualitatively with former results from a twobody approach. Additionally, the mass curve features an interesting cusp at a quark mass of about 0.65 GeV. Such cusps are known in the literature to be related to whether the Tmatrix pole corresponds to a boundstate, a resonance or a virtual state. Part II: Following the timehonored concept of taking functional derivatives to obtain an interaction kernel, this technique is extended to vertex models which explicitly depend on the quark propagator and itÂ´s dressing functions. This enables one to derive closed expressions for the interaction kernel beyond the rainbowladder approximation. This technique is very general, and in principle applicable to any vertex that is given in terms of quark dressing functions. As an improvement over previous approaches this technique allows one to determine not only the masses of the boundstates but also their BetheSalpeter wave functions. As examples, this technique was applied to two type of vertices, the BallChiu vertex and the Munczek vertex that both respect the constraints due to the vector WardTakahashi identity but contain additional structures related to spinorbit forces. Upon solving the BSE for pseudoscalar, scalar, vector and axialvector mesons it was found that these structures alone are not sufficient to generate a physical spectrum of light mesons while keeping the pion properties intact. 

Lizenz:  Veröffentlichungsvertrag für Publikationen ohne Print on Demand 