TY - GEN
T1 - Descriptional complexity of pushdown store languages
A1 - Malcher,Andreas
A1 - Meckel,Katja
A1 - Mereghetti,Carlo
A1 - Palano,Beatrice
Y1 - 2012/11/23
N2 - It is well known that the pushdown store language P(M) of a pushdown automaton (PDA) M — i.e., the language consisting of words occurring on the pushdown
along accepting computations of M — is a regular language. Here, we design succinct nondeterministic finite automata (NFA) accepting P(M). In detail, an upper bound on the size of an NFA for P(M) is obtained, which is quadratic in the number of states and linear in the number of pushdown symbols of M. Moreover, this upper bound is shown to be asymptotically optimal. Then, several restricted variants of PDA are considered, leading to improved constructions. In all cases, we prove the asymptotical optimality of the size of the resulting NFA. Finally, we apply our results to decidability questions related to PDA, and obtain solutions in deterministic polynomial time.
CY - Gießen
PB - Universitätsbibliothek
AD - Otto-Behaghel-Str. 8, 35394 Gießen
UR - http://geb.uni-giessen.de/geb/volltexte/2012/9085
ER -