TY - THES T1 - Impact of hypercapnia on alveolar Na+-transport : Establishing a system for ENaC-protein detection A1 - Buchbinder,Benno Andreas Y1 - 2013/12/06 N2 - Acute respiratory distress syndrome is a life threatening condition triggered by a variety of pulmonary and extrapulmonary causes, that is characterized by pulmonary edema and subsequently impaired gas exchange. Due to lung protective ventilation strategies, its treatment is often associated with systemic accumulation of CO2, a condition termed permissive hypercapnia. Recent studies report a negative effect of CO2 on alveolar fluid clearance, a process mediated by its two key elements the Na+,K+-ATPase and epithelial Na+-channels (ENaCs). A reduced activity of the Na+,K+-ATPase during hypercapnia has already been demonstrated, but regulation of ENaC has never been directly linked to CO2. Many molecular signaling events that are activated during hypercapnia are known to regulate ENaC function, so the present study aimed to generate and subsequently apply techniques to investigate a possible contribution of ENaC to the reduction of alveolar epithelial fluid transport upon hypercapnia. ENaC function was studied in H441 cells by Ussing chamber experiments which revealed no significant regulation during short term hypercapnia, but a clear reduction of ENaC function during sustained hypercapnia. To identify the signaling mechanism on the molecular level, epitope-tagged human ENaC constructs for the α-, β- and γ-subunit were cloned and initially expressed in A549 cells. Exposition to hypercapnia up to 4 hours did not significantly reduce cell surface expression of the ENaC-subunits, but after 24 hours, a significant decrease of β-ENaC was observed. Since the molecular sizes of α- and γ-ENaC expressed in A549 cells were differing from previously published studies, transfection of ENaC was continued in other cells. H441 cells are commonly used for ENaC studies, so their transfection was established, yielding an efficiency of about 60 %. The molecular sizes of transfected ENaC subunits matched the pattern that was expected, but expression levels were evanescent and too low for further experiments. Since ENaC detection in these two cell lines remained problematic, a novel methodology was applied. Since the primary site of ENaC expression in the lung are epithelial cells, rat primary alveolar epithelial cells type II were used as recipients for ENaC plasmids. Non-viral transfection of ATII cells has been inefficient in the past, but during the present study a protocol was generated to efficiently deliver nucleic acids to exactly this cell type. ENaC expression was largely increased in ATII cells, compared to the cell lines used, indicating that established system might be extremely useful for further studies involving ENaC turnover. Thus, a new and highly relevant, non-viral transfection technique for primary alveolar epithelial type II cells was established, providing ground-breaking opportunities for future pulmonary research. KW - Hyperkapnie KW - ENaC KW - Nucleofection KW - Primärzellen CY - Gießen PB - Universitätsbibliothek AD - Otto-Behaghel-Str. 8, 35394 Gießen UR - http://geb.uni-giessen.de/geb/volltexte/2013/10417 ER -